
Formal Analysis of A Single Sign-on Protocol
Implementation for Android

Quanqi Ye, Guangdong Bai, Kailong Wang and Jin Song Dong
National University of Singapore

Abstract—As the boom of social networking, Single Sign-On
(SSO) services developed by major commercial service providers
like Facebook, Google and Twitter, have been widely used by
web-based service providers as an alternative authentication
scheme. Despite rich research has focused on browser-based web
applications, little has been conducted on the implementation of
SSO on mobile platforms. However, we reveal that due to the
fundamental difference of isolation mechanism in mobile OS and
applications from the origin-based isolation in browsers, the SSO
encounters a novel attack surface and adversarial models. We
perform the first formal analysis on the implementation of the
most widely used SSO service–Facebook Login. Our study takes
as input the available implementation and dynamic execution
traces of Facebook SDK for Android, from which we abstract the
implementation-level protocol. The protocol is then modeled in
typed Pi-calculus, and automatically checked against the mobile
platform specific attack models in a protocol verifier Proverif.
Our study has successfully identified a major vulnerability, which
allows an attacker to steal authentication credentials from victims
and log into their Facebook accounts.

I. INTRODUCTION

Single Sign-On (SSO) [1] is an authentication scheme that
allows a user to use his identity registered with an identity
provider (IdP) to login to third party applications (simply apps
hereafter). As it reduces the cost of managing the website
accounts and security risk of password leakage1 for the users,
it has been widely deployed in the modern web environment.
Major commercial websites like Facebook, Google and Twitter
have developed their SSO services and opened for third party
apps to use.

As mobile devices are increasingly becoming a main portal
of the web—people use their mobile devices to handle lots of
daily activities ranging from online shopping, premium service
subscribing to internet banking, traditional web services which
were originally designed for web browsers are migrated to
Android. There is no exception for SSO service. It is reported
that Facebook Login service had been imported by 9 million
apps by 2012 [3], and 81 of the top 100 iOS apps and 62 of
the top 100 Android apps use Facebook Login [4], [5].

Due to its popularity, security of SSO has become a
concern of recent research [6]–[8]. While most prior studies
have focused on the desktop or web-based browser environ-
ment, few study has inspected the security problems of SSO
implementation on mobile platforms. However, we remark
that Android has different security assumptions and attack
surfaces which are very different from the traditional desktop
and browser environment. On one hand, mobile devices are

1A recent research reveals that many people tend to use a same password
for multiple accounts across websites [2].

usually under constraints of computational resource and battery
power so that it is infeasible for mobile platforms to deploy
the real-time malware detection and this will render the system
easy to suffer attacks from malicious apps; on the other hand,
the unavailability of important security mechanisms like the
Same Origin Policy (SOP) [9], [10] which is widely adopted in
desktop browsers makes mobile devices easy to have vulnera-
bilities that were impossible or difficult to exist in the browser
environment [11]. Additionally, the concrete implementation
of SSO protocol that has additional features not specified
by SSO might introduce new vulnerabilities in the protocol.
For example, Facebook Login service introduces authorization
into its SSO implementation. Thus, it is necessary to take
these assumptions and attack surfaces into consideration when
evaluating the security of the SSO implementation on mobile
platforms.

In this work, we formally analyze the security properties
of the implementation of the most widely used SSO service—
Facebook Login service. We built a formal model in typed Pi-
calculus2 for the extracted implicit protocol of Facebook Login
via examining the network traces and source code of its SDK.
Using Proverif to analyze the model against a set of security
properties, we successfully identified a major vulnerability
which allows a malicious app to obtain the authentication
credentials associated with the victim’s Facebook account.
We have constructed a concrete attack on the real-world
implementation after examining the counterexamples.

Over the years, formal analysis has been proved to be a
powerful approach to analyze the design of security protocols
in a mathematical and rigorous way. Our analysis further
demonstrates its effectiveness in analyzing the protocols on
the implementation level. Although our analysis targets the
implementation on Android, which has been reported to share
the largest mobile market [14], this approach is also applicable
to other platforms like iOS. To the best of our knowledge, we
are the first to perform formal analysis on SSO implementation
on a mobile platform. We summarize our contributions in the
following:

1) We are the first to perform a formal analysis on an
SSO implementation (Facebook Login for Android)
on Android.

2) We highlight the mobile platform specific attack mod-
els against the authentication implementation. They
should be take into consideration for future design
and analysis of authentication protocols.

3) We have identified a major vulnerability in the ex-
isting Facebook Login for Android implementation,

2A variant of Applied Pi-calculus [12] and modelling language for Proverif
[13].

which allows the attacker to steal credentials from
victims and access their Facebook accounts.

II. BACKGROUND

We first introduce the advantages of performing a formal
analysis on the implementation of SSO protocol on a mobile
platform. We then present a typical SSO process to ease the
understanding in later sections. Finally, we introduce Proverif
and its input language typed Pi-calculus which is used to model
protocols.

A. Advantages of Formal Analysis on SSO

Security vulnerabilities in SSO are multifaceted. They
may be introduced due to mistakes in protocol design or
misunderstandings of the developers on the documentation [7].
In addition, Android is very different from desktop or web
browser environment, which has different attack surfaces for
attacker to exploit [15] as aforementioned in Introduction
section. To address the above problems, a rigorous approach
needs to be adopted to provide a systematic analysis. Formal
analysis is such a rigorous approach which is good at proving
properties in a formal model.

Formal analysis has been proved to be effective in recent
research of security analysis and protocol verification [8], [16],
[17]. In this work, we aim to use it to analyze the implemen-
tation of SSO protocol—Facebook Login. As a summary, the
metrics of formal analysis which make it a powerful analysis
tool for security protocol include the following two aspects.

• A Systematic Approach. Formal analysis is a system-
atic approach that help researchers to analyze a proto-
col from different aspects. Different attack models can
be checked against the formal model of the protocol
in an incremental manner, and this enables us to check
the security properties from different angles.

• Proving Property. Property proving is a trait of
formal analysis which is very useful in analyzing pro-
tocols. Researchers can examine the correctness of a
protocol by specifying properties that it should satisfy.
Then, verifier can be used to check the satisfiability
of these properties in order to prove the correctness
of the protocol.

B. Introduction to SSO Login Process

We introduce the general SSO login process and then we
use a concrete example to introduce Facebook Login which is
a real implementation of SSO login protocol.

SSO is a mechanism which allows a user to use his identity
registered with an identity provider to login to a third party app
(a.k.a. service provider, SP). There are mainly three principals
involved in a typical SSO login flow: a user, a third party
app and the Identity Provider (IdP) as is shown in left half of
Fig. 1.

1) A user wants to login to the third party app with his identity in IdP. He
initiates a login request to the app.

2) The app requires user to provide a token proving he has access to his identity
information in IdP.

3) User asks IdP to generate an token for him.

App

Facebook
SDK

Facebook
Authentication

&
Authorization

Server

1

3

4

5

2

6

App IDP

USER

1

2
3

4
5

Fig. 1: General SSO Process to A concrete exmaple

4) IdP generates a token and returns the token to user.
5) User uses the token as a proof to show to the app he has access to his

account and logs in to the app with his identity on IdP.

In Facebook Login implementation, to facilitate the devel-
opers to incorporate Facebook Login service into their apps,
Facebook separates the IdP into two parts as shown at the
right half of Fig. 1. One is the client side identity provider
server (IdP C) which is normally the Facebook Login SDK.
The other part is the server side identity provider (IdP S)
which is the Facebook authentication and authorization server.
We demonstrate Facebook Login with an example of a user
logging into a news digest app with his Facebook account.

1) User wants to login to the the news digest app with his Facebook account
and the app issues a request to Facebook SDK asking for an access token
with user’s credentials.

2) Facebook SDK redirects the request to Facebook authentication and autho-
rization server.

3) If user has not logged in to Facebook, Facebook server would verify the
user’s credentials and authenticate the user at this step. Then, Facebook
server returns a cookie back to Facebook SDK. If user has already logged
in, step 2 and this step are skipped. At the end of this step, user has logged
in Facebook with his credentials and has got the cookie.

4) Facebook SDK asks Facebook server to generate access token for user with
user’s cookie.

5) Facebook server verifies user’s cookie and returns the access token to
Facebook SDK if user’s cookie is correct.

6) Facebook SDK hands over the access token to the app to finish the protocol
execution.

In Facebook Login implementation, it enables users to autho-
rize third party apps to access their Facebook accounts. This
is not specified by traditional SSO protocol and this makes
the protocol complicated. After step 3 and before step 4,
Facebook would prompt to user to authorize the app to access
to user’s Facebook account. The protocol proceeds if the user
consents authorizing the app. Therefore, step 2 and 3 are the
authentication steps and step 4 and 5 are the authorization steps
of Facebook Login.

C. Proverif and Applied Pi-calculus

In this paper, we model Facebook Login protocol in typed
Pi-calculus and check it using the tool Proverif. Proverif
[18] is an automatic cryptographic protocol verifier which is
developed by Blanchet et al. It is able to prove reachability
properties and correspondence assertions. These abilities can
be used to check security properties during the execution
of a protocol. If some security properties are violated, there
might exists vulnerabilities. The reachability property and
correspondence assertion are specified in the form of query.

Reachability query is checked by command query
attacker(secret) in the declaration part of the model to
test the secrecy of a secret. Actually the query inside Proverif
is proved by deducing the opposite of the original query. For
example, if there is a query query attacker(message)
in the formal model, Proverif tries to prove query not

attacker(message) and the report also shows the result
of query not attacker(message).

Correspondence query is in the forms of query
event(e2) ==> event(e1) which means for each e2
event that happened, there is a previously happened event
e1. The one-to-one relationship query can be captured
by injective event query, i.e., query event(e2) ==>
inj-event(e1), which means that for each e2 that hap-
pened, there is one and only one previous event e1 happened.
There is no difference to write either event or inj-event
before ==> in the correspondence query as they have the same
meanings.

III. METHOD OVERVIEW

In this section, we introduce the overview of our method.
As shown in Fig. 2, our analysis consists of four stages. Each
stage generates an artifact as the input for the next stage. In
the following, we intuitively introduce each stage and leave
the technique details to the future sections.

• Protocol Extraction. Before formally modeling the
Facebook Login, it is necessary to understand how
the protocol works, including what messages are ex-
changed among participants, and what are the seman-
tics of the exchanged messages. To learn these, in
protocol extraction stage, we first statically analyze
the source code of Facebook SDK for Android to
understand the communication channel between SDK
and the third party app. Then, we dynamically run the
protocol and capture the network traffics between the
app and Facebook server. After that, by performing
protocol semantic inference, we remove the redundant
messages in the network traffic and thus get a refined
protocol of Facebook Login.

• Protocol Modelling. In this step, we aim to formally
model the derived protocol in formal language. The
challenge is the gap between the implementation and
the high-level formal presentation. To solve this, we
first specify the derived protocol into an intermediate
representation which is close to our modeling lan-
guage. Then, the intermediate representation is trans-
lated into the formal model, combined with the formal
specification of the security properties to check the
attack models.

• Protocol Verification and Vulnerability Analysis.
The formal models are checked in Proverif, and we
study the verification report generated by it. If any
property is violated, Proverif generates counterexam-
ples in the form of traces leading to the violation.
Based on the counterexamples, we construct concrete
attacks and feed them to a dynamic testing which help
us to confirm the vulnerabilities in the implementation.

Assumptions. Our analysis makes the following assumptions.

• IdP S is trusted. IdP S in this paper refers to the
Facebook authentication and authorization servers. We
assume that the IdP S can always be trusted and we
don’t consider the situation when it is compromised
by the adversary.

Verification Analysis

Modelling Protocol
Extraction

Network
Traces

Protocol
Modelling Refine

Finished?

Repeat
Refinement

N

Y

Attacker
Model

Protocol
Fuzzing

Model

Model
Verification

Report

Refined
Protocol

Report
Analysis

Confirmed
vulnerability

Reconstruct
Attack

Attacker
Model

SDK
Analysis Security

Property

Fig. 2: Overview of Formal Analysis to Facebook Login for
Android

• Cryptographic Algorithms are correct and not
exploitable. We assume that the cryptographic algo-
rithms used in the communication are trusted and
secure.

• Android OS is trusted. We assume that the An-
droid Operating system itself is trusted and not com-
promised. Although there might be malicious apps
installed in the system, the app can not affect the
behavior of the system.

IV. PROTOCOL EXTRACTION

To build a formal model for Facebook Login protocol, we
need to figure out 1) what information is exchanged during the
protocol execution and what the semantics of these messages
are, and 2) how these messages are transmitted. The key
challenges in protocol extraction include the following two
aspects.

• Partially Available Source code. In most of the time,
security analysts are not able to obtain the full source
code or they can just obtain part of the source code
of a programme. We face this situation during our
analysis—we only have the source code of Facebook
SDK for Android which is the client side of the SSO
implementation, and we do not have any source code
of the implementation on the server side. We are not
able to know exactly what are the states of the server;
how the state transitions take place; and how the server
examines the messages obtained from the client-side
SDK. We can only infer the server side logic from the
responses of the server by fuzzing the server.

• Undocumented Semantics. When we are attempting
to understand the semantics of the transmitted mes-
sages (obtained through capturing the network traces),
the challenge is that the meanings of the parameters in
a request or response are not easy to understand and
infer, because some of them may be a cipher which
appears as a random string. To make the problem even
worse, there is not any official documentation which
explains this.

To address the first question and these two challenges,
we take the implementation of the server as a blackbox. In

clientStartLogin

Client IdP_C
1. Click on Login Button

IdP_S

2. GET /v2.2/dialog/oauth?parameters

3. 302 Rediect

4. GET /login.php?parameters

5. 200 OK 6. Display Login Form to User

7. User fill in Email & Password & Click Login 8. POST /login.php?parameters;
body=email&pass

9. 302 Redirect ; Set cookies: c_user&xs

10. GET /v2.2/oauth?parameters; Cookies: c_user&xs

11. 200 OK 12. Display Confirm form to user

13. User consent & Click Confirm 14. POST /v2.2/dialog/oauth/confirm; Cookies:
c_user&xs; body: __CONFIRM__

15. 200 OK & access_token
16. Deliver access_token to user app

serverFinishLogin

serverAcceptLogin clientFinishLogin

clientStartAuthr

clientFinishAuthr

serverAcceptAuthr

serverFinishAuthr

Fig. 3: Refined Protocol. Here the triangle represents the
occurrence of certain events. The 4 events from top to down

at IdP C are: clientStartLogin(), clientFinishLogin(),
clientStartAuthr() and clientFinishAuthr(); the other 4 event

from top to down at IdP S are: serverAcceptLogin(),
severFinishLogin(), serverAcceptAuthr() and

serverFinishAuthr().

particular, we study the communication between the IdP C
and IdP S. We first perform parameter fuzzing to remove
redundant parameters from the network traces captured during
a successful SSO login process, and through this we can
obtain the messages relevant to the protocol. Then we manually
examine the remaining parameters to recover their semantics.
For the second question, we performed a white box analysis
to the source code of Facebook Login SDK to see what are
transmitted and how the credentials are delivered in different
channels. In the remain of this section, we detail the key
techniques we use during the protocol extraction.

A. Protocol Initialization

In this section, we introduce the techniques we use to
identify the participants in Facebook Login protocol and to
identify the participants’ communication channels. After that,
we summarize a rough protocol steps at the end of this section.

Participants. We use a valid Facebook account to login to
a third party app. During the successful login, we record the
network traces. By manually inspecting the network traces,
we find that there are three participants involved in Facebook
Login protocol. They are Facebook authentication and autho-
rization server, Facebook SDK and the third party app.

Communication Channels. In order to identify all the com-
munication channels, we need to understand how Facebook
SDK works and figure out the channels it uses to relay
credentials. To do this, we manually analyze Facebook SDK
source code and the captured network traces. Our manual
analysis reveals that Facebook SDK works as follows:

Firstly, the user clicks the login button provided
by Facebook SDK and then a new Activity named
com.facebook.LoginActivity from SDK is started
by invoking startActivityForResult(). Secondly, at
the absence of native Facebook app, a webView dialog is
launched inside the newly started activity, inside which the
user has to fill in his login credentials (email and password)
to login to Facebook. Thirdly, Facebook server verfies user’s
login credentials and if the credentials are correct, it returns a

confirmation form indicating what the third party app would
like to access to user’s account. Fourthly, user consents and
clicks confirm button to authorize the app and finally an access
token is returned from Facebook server to the webView of
SDK. By studying the network traces, we find that the last
message from Facebook server at the protocol is a piece of
Javascript code inside which the access token returned from
Facebook server is wrapped as a parameter of the url. The
following Javascript is a real example derived from our app.
<script type="text/javascript">window.location.href=
"fbconnect://success#access_token=
actual_access_token&expires_in=sometime";</script>

From the Javascript code we can know it’s a redirection to
a url with self-defined scheme [19], [20]. Through further
inspection of SDK source code, we find that the webView
dialog has overridden shouldoverrideurlloading()
method to match the scheme fbconnect://success.
Inside that overridden method, the access token is extracted
from the url’s parameter, wrapped in an intent and delivered
back to the app by onActivityResult().

Therefore, at this point, we have already identified two
communication channels through which the credentials flow.
First channel is the https channel between IdP S and IdP C,
second channel is the inter-component communication channel
used by Intent between IdP C and the app. We also find that
app stores the access token in local storage with Android data
storage mechanism. In this case, we also regard this as a
communication channel between app and local storage. In a
real world case, both app and Facebook SDK can access to the
same local storage. Hence, the third communication channel
is the one that connects local storage to app and IdP C.

Protocol Steps. After identifying the involved princi-
ples and the communication channels they use, we ex-
tract the initial protocol from the captured network
traces. The protocol consists of 6 steps in general.

1) IdP C ->IdP S: initiate SSO login request
2) IdP S ->IdP C: request user login
3) IdP C ->IdP S: provide user’s credentials to login
4) IdP S ->IdP C: ask for user’s authorize confirmation
5) IdP C ->IdP S: confirm authorization by user
6) IdP S ->IdP C: return access token

B. Protocol Refinement

To understand the semantics, we need to reduce the proto-
col by identifying the critical information and removing those
redundant or unimportant information from the protocol. Then,
we infer the semantics of the reduced protocol by manually
inspecting the parameters.

Redundant Reduction. To remove redundant and unimportant
information in the protocol, we repeat every request in the
Network Traces with less parameters (and less cookies if there
is any) to see whether Facebook server replies a same response
or not. Same response does not mean that the responses are
exactly the same. We regard a same response code and same
content in two responses as two same responses. For example,
if the response is a redirection with code 302 to the same
origin and with a subset of parameters in the redirected url,
then we would regard them as two same responses. In this
definition, the redirection to http://a.com/page.php?a=xxx&b=
xxx&c=xxx would be regarded the same as redirection to
http://a.com/page.php?b=xxx. As for those responses with html
pages, we check and examine the html files to determine

an oracle for them. If we see a same oracle in the new
response as the one in the old response, we regard those
two responses as the same responses. We keep removing the
redundant information in the network traces in this way until
we can no longer get the same responses again so that we
get a reduced protocol. We summarize our protocol redundant
reduction algorithm in Algorithm 1.

The algorithm needs input of the network traces as list.
Firstly, the algorithm initials RT list to an empty list. Then
it extracts the requests and responses from NT list. After
that, as long as the number in RT list is not the same as
that in NT list, it will go into the loop. Inside the loop, it
first gets the first request from Req list and response from
Res list; then removes redundant parameters from req and
sends it to server with function make_request(); if the
response is the same, then it keeps removing and sending the
request until it gets a different response; when the response
is different, it stops and appends the last request that has the
same response as that in NT list to RT list and appends
the response to RT list. The algorithm finally returns the
RT list which is the reduced protocol containing requests
and responses of refined parameters.

Algorithm 1: Redundant Reduction
Input : NT list: network traces list
Output: RT list: reduced network traces list

1 RT list← ∅;
2 Req list← extractRequest(NT list);
3 Res list← extractResponse(NT list);
4 while length(RT list) 6= length(NT list) do
5 req ← popFirst(Req list);
6 response← popFirst(Res list);
7 rm req ← remove_param(req);
8 res← make_request(rm req);
9 if res = response then

10 req ← rm req ;
11 goto 7 ;
12 else
13 append(RT list, req);
14 append(RT list, response);
15 end
16 end
17 return RT list

By applying Algorithm 1, we get the reduced protocol out
of the original network traces. The reduced protocol is the
communication flow shown at right half of Fig. 3 between
IdP C and IdP S.

Semantics Inference. After the redundant reduction step, we
identify three critical parameters from the refined protocol.
They are c user, xs and access token respectively.

• c user is a user id: we use two valid Facebook
accounts to perform several successful SSO logins and
record those network traces. Through analyzing the
network traces, we find that c user is always identical
in the same account’s network traces across different
sessions. Therefore, we conclude that c user is a user
id.

• xs is a session id: we use one valid Facebook account
to perform multiple successful SSO logins and also
record network traces. We find that xs changes every
time we successfully log in and it is returned right

after the user’s login step. In the authorization process,
Facebook server needs to verify this information.
Therefore, we conclude that xs is a session id.

• access token is an access token: by white box in-
specting Facebook SDK’s source code, we find that
this is used as an access token in SDK and delivered
as an access token to the app. Hence, we conclude
this is an access token.

After this stage, we have figured out the semantics in the
network traffics and have extracted the refined protocol for
Facebook Login.

V. PROTOCOL MODELING

During the protocol modeling, we model the protocol
derived from the extraction step. We first specify the derived
protocol into an intermediate representation which is close
to the input language, such that we can bridge the gap be-
tween the implementation and the formal language. Then, we
translate the intermediate representation into a protocol formal
model. Third, we model the attacks that may compromise the
protocol implementation on Android in three attacker models.
Fourth, we specify the security properties for the protocol
formal model.

A. Intermediate Representation

We present the refined protocol for Facebook Login includ-
ing the communication between Facebook SDK and third party
app in Fig. 3. The refined protocol indicates that Facebook
Login process is divided into two phases. The first phase
is authentication process started by user initiating login and
ended by SDK getting the cookie credentials. The second
phase is authorization process started from the request after
the redirect response and ended by SDK receiving the access
token.

In order to ease the protocol modelling, we translate the
protocol in Fig. 3 into an intermediate representation shown
in Table I. We intuitively introduce the translation method
as follows. For every communication message in Fig. 3, the
sender of that message initiates Send() to send out the
message which consists of the parameters and cookies used to
complete the authentication and authorization process, while
the receiver uses Rec() to receive this message. The first
parameter of Send() is the receiver and the rest is the
message to be sent. Similarly, the first parameter of Rec()
specifies from whom to receive this message and the rest is the
actual message received. Other keywords in Table I represent
the state of the a principal. For example, Verify_Cookies
represents the server state in which it is verifying the received
cookies and Require_User_Identity means the server
needs user identity information in order to proceed.

B. Modelling Facebook Login Protocol

To ease readers’ understanding of our model, we present
the overall structure of Facebook Login in Fig. 4 In the figure,
the app refers to a third party application app on Android
system; IdP C refers to Facebook Login SDK and IdP S refers
to Facebook authentication and authorization server. We use

Android System

App

IdP_S

Local Storage

IdP_C

Fig. 4: Abstract Structure of Facebook Login Protocol
typed Pi-calculus as our modeling language. Generally, a typed
Pi-calculus model consists of three main parts: declarations,
queries and processes. Declaration part is used to declare
channels, variables and functions; query part is used to specify
the properties which a secure protocol should hold and the
process part is used to model the main protocol logic. In the
following, we introduce our modeling process.

Modeling Cryptographic Primitives. We model the crypto-
graphic primitives that we use in modelling the communication
channels used by participants as follows.

1 type public_key.
2 type private_key.
3

4 (*used to model the private channel between app and idpc*)
5 free app_pvKey: private_key [private].
6 free idpc_pvKey: private_key [private].
7 free idps_pvKey: private_key [private].
8 free localStorage_pvKey: private_key [private].
9

10 fun enc(bitstring, bitstring): bitstring. (*used to encrypt

*)
11 reduc forall a: bitstring, b: bitstring;
12 dec(enc(a, b), b) = a. (*used to decrypt*)
13

14 fun get_public_key(private_key): public_key.
15 fun aenc(bitstring, public_key): bitstring. (*asymmetric

encrypt*)
16 reduc forall message: bitstring, pri: private_key;
17 adec(aenc(message, get_public_key(pri)), pri) = message.

(*asymmetric decrypt*)

First, we define the data types for public key and private key
to model the asymmetric key (line 1 and 2). Then, we define
the function that is used to generate a public key from private
key in line 14. This function here is just used to associate a
public key with a private key. It doesn’t mean how the public
key is generated in the real world scenario. In line 15 to 17, we
define the functions for asymmetric encryption and decryption.
We also define the symmetric cryptographic algorithm in line
10 and 11 used to encrypt the local variable to be tested its
secrecy. In line 4 to 8, we define the private keys for each of
the principal involved in the protocol. With these data types
and functions, we can model the asymmetric cryptography in
our model.

Modeling Protocol Participants. In our models, each princi-
ple is represented by a separated process. We also model the
Local Storage into a process because from the formal model
perspective, it also acts independently and can be access by
other apps in the system. In this case, there are totally the
following four processes defined in the protocol model.

1 (*model modified for display here*)
2 (*App Process*)
3 let app =
4 out(appAndIdpc, clickOnLogin);
5 out(appAndIdpc, email, password);
6 out(appAndIdpc, confirm_OK);
7 in(appAndIdpc, m_accessToken: bitstring);
8 out(localStorageChannel, m_accessToken); 0.

This app process takes in login, email and password as
parameters which stand for user clicking the login button,
typing in user’s email and password event. In the process’s
body, there are five steps and we omit the steps that IdP C
displays the login form and authorization form to user for
simplicity of model. appAndIdpc stands for the channel
between app and IdP C. First, app requests on behalf of user to
login. Then, user types in email and password. After that, user
clicks to confirm authorization and app receives the access
token sent back by the IdP C. 0 stands for the end of the
process.

1 (*IdP_C Process*)
2 let idp_c =
3 in(appAndIdpc, m_clickOnLogin: bitstring);
4 out(idpcAndIdps, initial_request);
5 in(idpcAndIdps, m_login_form: bitstring);
6 in(appAndIdpc, m_2: bitstring);
7 out(idpcAndIdps, em, ps);
8 in(idpcAndIdps, m_3: bitstring);
9 out(localStorageChannel, cookie_xs);

10 out(localStorageChannel, cookie_c_user);
11 out(idpcAndIdps,auth_request, cookie_c_user, cookie_xs);
12 in(idpcAndIdps, m_4: bitstring);
13 in(appAndIdpc, m_5: bitstring);
14 out(idpcAndIdps, cookie_c_user, cookie_xs, anti_CSRF_token

);
15 in(idpcAndIdps, m_token: bitstring);
16 out(appAndIdpc, token); 0.

IdP C process performs as a relay between the app and
IdP S. It receives user’s SSO login request and forwards it
to IdP S (line 1 and 2); after that, IdP C receives login form
from IdP S and user’s input credentials and then IdP C sends
user’s credentials to IdP S for identifying user’s identity (line
4, 5 and 5); after that, IdP C gets the cookies representing
user’s logged in status and stores them in local storage (line
8 and 9); line 10 to 13 stand for the process in which IdP C
first receives the user’s authorization confirmation and delivers
the confirmation to IdP S, and then receives the access token
back from Idp S; finally, line 14 and 15 represent that IdP C
delivers the access token to the app.

1 (*IdP_S Process*)
2 let idp_s =
3 in(idpcAndIdps, ms_1: bitstring);
4 out(idpcAndIdps, generated_login_form);
5 in(idpcAndIdps, ms_3: bitstring);
6 let (=user_email, =user_password, dumb:bitstring) = adec(

ms_3, idps_pvKey) in
7 let xs = make_xs(c_user) in
8 out(idpcAndIdps, xs);
9 in(idpcAndIdps, ms_4: bitstring);

10 let (=auth_request, =c_user, =xs) = adec(ms_4, idps_pvKey)
in

11 out(idpcAndIdps, confirm_form);
12 in(idpcAndIdps, ms_5: bitstring);
13 let (=c_user, =xs, =antiCSRFToken) = adec(ms_5, idps_pvKey

) in
14 let token = make_token(c_user) in
15 out(idpcAndIdps, token); 0.

IdP S process first receives user’s login request and replies
the login form asking for user’s credentials (line 2 and 3); in
line 4 to 7, after receiving and verifying user’s identity, IdP S
generates the cookie representing user’s logged in status and
sends it back to IdP C; later in line 8 to 12, IdP S verifies
the user’s identity by the cookie xs and asks user to confirm
authorization; finally in line 13 and 14, IdP S generates the
access token and sends it back to IdP C.

1 (*Local Storage Process*)
2 let localStorage =

3 in(localStorageChannel, sd_cookie_xs:bitstring);
4 in(localStorageChannel, sd_cookie_c_user:bitstring);
5 in(localStorageChannel, sd_accessToken:bitstring);0.

localStorage process mainly receives and saves the creden-
tials from app process and IdP C process in local storage.

Modeling Communication Channels. We use the in/out
channels in typed Pi-calculus to model the communication
channels. However, during our modelling, we meet a major
challenge. Proverif doesn’t stop verifying a model for a very
long time if we use private channel to model the commu-
nication channels. Later we find a solution to it which is
modelling the channels as public channels instead of private
channels. However, this introduces another problem that breaks
our second assumption in section III. Because the channels
are public, the attackers can get the plain text in this case.
Therefore, we need to encrypt the content which is sent
through the public channel just like in real world case of https
channel.

We create for each principle a public key and a private key.
Before one principle wants to communicate with another, it
first encrypts the message with public key of the other principle
it wants to communicate with. Then when the other principle
receives the message, it decrypts the message using its own
private key.

We model all the three communication channels in our
model using public encrypted channel. The following code
shows the channels and the functions used to encrypt and
decrypt the messages.

1 free appAndIdpc: channel. (*channel between app and
idp_client*)

2 free idpcAndIdps: channel. (*channel between idp_c and idp_s

*)
3 free localStorageChannel: channel.

These are the public channels defined for the commu-
nications among the principals. By using the asymmetric
cryptographic primitives defined earlier, we model the public
encrypted channels.

C. Modeling Attackers

After we get the basic model, we add the attackers into
the basic model and create three attacker models, under the
assumptions and scope aforementioned in section III. We con-
sider the attackers to exist in different parts of the path through
which credentials are transmitted. They are summarized below.

Network Attacker. The circle Z represents the adversary
in real world. In this model, the attacker eavesdrops on
the channel between IdP C and IdP S. And this model is
similar to Man-in-the-Middle attacker model. The adversary
can intercept, drop and replay the network messages on the
channel. This attacker model is shown in Fig. 5a. To model
this attacker, we send out a private global variable encrypted
with the corresponding credential to a public channel where
the adversary can get the messages.

Malicious SP C Attacker. The circle represents the Malicious
App in this attacker model. In this model, the attacker can
communicate with IdP C as normal app. It can access the local
storage and access whatever data that belongs to it. But it can
not intercept on the communication channel between IdP C

TABLE I: Abstracted Protocol for App, IdP C and IdP S

App Protocol IdP C Protocol IdP S Protocol
Send(Idpc, login) Rec(App, command)

Send(Idps, auth req) Rec(Idpc, req)
Require User Identity

Rec(Idps, redirect, intention) Send(Idpc, redirect, login)
Send(Idps, login) Rec(Idpc, command)
Rec(Idps, loginForm) Send(Idpc, loginForm)

Rec(Idpc, loginForm) Send(App, loginForm)
Send(Idpc, userCredential) Rec(App, userCredential)

Send(Idps, userCredential) Rec(Idpc, userCredential)
Verify User Credential

Rec(Idps, redirect, intention) Send(Idpc, redirect, authr)
Send(Idps, authr) Rec(Idpc, authr)

Verify Cookies
Rec(Idps, authrForm) Send(Idpc, authrForm)

Rec(Idpc, authrForm) Send(App, authrForm)
Send(Idpc, userConsent) Rec(App, userConsent)

Send(Idps, userConsent) Rec(Idpc, userConsent)
Verify Cookies

Rec(Idps, access token) Send(Idpc, access token)
Rec(Idpc, access token) Send(App, access token)

and IdP S. This attacker model is shown in Fig. 5b. To model
this attacker, we send out whatever credentials the SP C app
receives to the public channel. And to the end of the model, we
also send the credentials in local storage to that public channel
in order to model the malicious SP C communicates with and
sends back the credentials to the attacker.

Malicious App in System. This attacker model is shown in
Fig. 5c. Z represents a malicious app that user installed in the
system. It can communicate with the benign app. This attacker
model can be further divided into two sub models:

• App with root privilege. In this model, Z can access
to the local storage and access to all the data including
app’s data. But since the system is still benign, it can
not change the system’s behavior.

• App without root privilege. In this model, Z can also
access to Local Storage, but it can only access to its
own data in it.

In the actual modelling, we model these two scenarios ex-
plicitly into two separated models. For convenient illustration,
Fig. 5c represents these two scenarios. Due to the length limits,
we are not going to show the source code of our models here
but release our source code online [21].

D. Security Properties

The next step is to identify the security properties for the
protocol. Security properties include three kinds of properties.
The first kind is the authentication properties; the second is
the authorization properties and the third is secrecy properties.

Authentication Property. Authentication means that the two
interlocutors communicating to each other are sure about the
identity of one another that they are talking to [22]. It can be
achieved if principal A finished a protocol with principal B
and A believes that it has finished the protocol with B which
indeed it is (vice versa) [13].

Authorization Property. Since Facebook Login adds autho-
rization feature to third party app to access user’s account
in its implementation which is not specified by traditional
SSO protocol, we have to consider the authorization properties

Android System

App

IdP_S

Local Storage
Z

IdP_C

(a) Network Attacker

Android System

Malicious App

IdP_S

Local Storage

IdP_C

(b) Malicious SP C

Android System

App

IdP_S

Local Storage

Z IdP_C

(c) Malicious App
Fig. 5: Three Attacker Models

in this protocol. Particularly, authorization refers to if the
user thinks he has authorized an app to access his Facebook
account, he has really done so (vice versa).

Secrecy Property. Secrecy should also be achieved in Face-
book Login protocol and the credentials should not be available
to adversary. Otherwise, adversary can abuse the credentials
and destroy the authentication properties. In Proverif, secrecy
is checked with query attacker(secret). As shown
in Table II that the secrecies of email, password, xs and
access_token are checked in our model.

Authentication and authorization in Facebook Login proto-
col are similar as they are both initiated by user (user provide
credentials to login and user provide consents to authorize,
server return credentials), they can be checked in similar
method. Because there are two phases in Facebook Login
protocol, one is the authentication phase, the other is the
authorization phase, in order to check mutual authentication
and authorization, we need 8 events for it (4 each for a mutual
authentication and an authorization). The 8 events are shown in
Fig. 3 with triangles indicating the occurrences of them. They
are used to indicate the beginning and end of the authentication
and authorization processes as their names indicate. The first 4
events are for checking authentication properties: clientStart-
Login event indicates client starts the login procedure just
before he sends message 8 out; serverAcceptLogin indicates
the server accepts the login request after receiving message 8
and before sending out message 9; clientFinishLogin indicates
that client finishes the login process after receiving message
9 but before sending out message 10 and serverFinishLogin
event indicates server finishes user logging in procedure after
receiving message 10. While the later 4 events are for checking
authorization properties and their meaning are very similar to
the authentication events and it should be easy to understand.

With these eight events, we define 4 queries for mutual
authentication in login phase and authorization phase. They
are summarized in Table II. Queries 6 and 7 are not injective
queries because a server can accept login or authorization
requests from multiple clients at the same time. Therefore their
relationships are not one-to-one mapping, while the rest two
queries should be in one-to-one manner.

VI. CHECKING AND RESULT ANALYSIS

In this step, we use Proverif to check the protocol model
against the specified attacker models to analyze the satis-
fiability of the properties. Proverif generates a verification
report after each checking. If any violation is reported, we
manually examine the report and apply our domain knowledge
to construct a concrete attack. Then we confirm the attack

by dynamically testing the server and check whether it is
a true positive or not. In this way, we have successfully
identified a major vulnerability in the model built and we have
successfully reproduced the vulnerability in real world device.
In this section, we illustrate the details of our checking.

A. Checking against Network Attack

The verification results are shown in Table II on the fourth
column. All of the secrecy properties for network attacker
are proved to be true which means although the attacker can
obtain and manipulate the network traffic, he can’t decrypt the
message of the traffic to get the credentials. User’s credentials
are secure using Facebook Login under the network attacker.

As for the authentication and authorization properties, we
can see from the table that in all the scenarios, the verifi-
cation results are the same. The falsities of the sixth and
seventh properties mean that for every clientFinishLogin or
clientFinishAuthr event that happens, there are might be no
serverAcceptLogin or serverAcceptAuthr event that happened
previously. This implies there exists a replay attack vulnera-
bility in this protocol.

However, after carefully analyzing the verification result,
we regard it as a false positive because of the channel we
use in our model. In the model, we use an encrypted public
channel and thus the communication can be intercepted by
the attacker. Moreover, the attacker in this model can pretend
to be the Facebook server which responses the requests from
IdP C. However, the https communication protocol in real
world guarantees that the adversary can not eavesdrop on the
channel or steal the messages in it and the attacker can’t
pretend to be somebody else. Nevertheless, this is the best
choice for modelling the channel and if not using public
encrypted channel, the model verification process does not
terminate within a reasonable amount of time.

For the rest of two queries, although the first one can
not be proved either true or false, but Proverif dose give
us report that inj-event(serverFinishLogin) ==>
event(clientStartLogin) which is not the one-to-one
relationship is instead can be proved to be true indicating that
Facebook server would not be cheated to login a fake user as
it does need a real user to start login process in advance for it
to finish the login process with a user.

The one-to-one relationship that for every server finishes
authorization event, there is a client started authorization event
is proved to be true as in the last correspondence query. It is
reasonable because the final authorization is protected by an
anti CSRF token in the previous responded user confirmation

TABLE II: Queries and results summary. N.A. Res. represents for network attacker results; M SPC Res. represents for
malicious SP C results; M.A.N. Res. represents for malicious app without root privilege results; M.A.R. Res. represents for

malicious app with root privilege results;and Cn.P. represents for can’t be proved.

No. Query N.A. Res. M SPC Res. M.A.N. Res. M.A.R. Res.
1

Secrecy

not attacker(email) True False True True
2 not attacker(password) True False True True
3 not attacker(xs) True False True False
4 not attacker(access_token) True False True False
5 Authentication inj-event(serverFinishLogin) ==>

inj-event(clientStartLogin)
Cn.P. Cn.P. Cn.P. Cn.P.

6 inj-event(clientFinishLogin) ==>
event(serverAcceptLogin)

False False False False

7 Authorization inj-event(clientFinishAuthr) ==>
event(serverAcceptAuthr)

False False False False

8 inj-event(serverFinishAuthr) ==>
inj-event(clientStartAuthr)

True True True True

form. Moreover, the server also requires user’s cookie for
the authorization step. We also notice that if the email and
password of user are known by the adversary, then he can
pretend to be the client and finish authorization process with
server which will violate the third query as the login process
is not protected like in the authorization process. However, it
is shown in the first two reachability queries in Table II that
if the user uses his credentials correctly, it is not possible for
the adversary to know the user’s credentials.

B. Checking against a Malicious SP C App

The fifth column of Table II shows the results of malicious
SP C attacker model. Different from the network attacker
model, the secrecy queries of this model are all proved to
be false, which indicates that if an app is malicious, all the
data a user enters and saves in that app is not safe. This is
actually true in real world. If a user enters his credentials in
the malicious app, his credentials entered can be recorded and
be sent to the attacker. After stealing the credentials, the app
functions as a normal app and uses user’s credentials to login
to Facebook. If the credentials are correct, the malicious app
can then record the cookie returned from Facebook.

To one’s surprise, the Authentication properties of this
attacker model are proved exactly the same as in the network
attacker model. One might think that if the user’s credentials
are compromised, then the attacker can pretend to be the user
and he can log in to Facebook. Therefore all the authentication
properties should proved to be false. However, the falsity of
the sixth and the seventh queries are because of the problem
of modelling channel and even if the attacker have the user’s
credentials, the event of for every serverFinishAuthr, there is
a previous event clientStartAuthr that happens is also true.
Because the authorization process are protected by an anti-
CSRF token and even the attacker abuses the user’s credentials
to login and authorize, these two events are also in one-to-one
manner and Facebook server thinks the attacker is the user.

Again, Proverif can’t prove the query for every serverFin-
ishLogin, there is a previous event clientStartLogin happened
to be either true or false but instead can prove for every
serverFinishLogin, there is at least one clientStartLogin event
happened previously to be true. Even the attacker has user’s
credentials, it won’t change the outcome of this query because
if the attacker wants a serverFinishLogin event to happen, he
must pretend to be the user and initiates a clientStartLogin
event unless he also compromises Facebook server.

C. Checking against a Malicious App

This model consists of two sub-models as whether the
malicious app has root privilege or not.

Malicious App without Root Privilege. The verification
results for the sub-model are the same as in the results of
network attacker model. This is not a surprise as is compared
to the network attacker model, the information attacker can
obtain is even less than in network attacker model. Because
attacker in this model can not access the local storage which
contains user’s credentials and he can not intercept and decrypt
the message sent from IdP C to IdP S.

Malicious App with Root Privilege. Different from the
results in app without root privilege sub-model, the email
and password of the user are safe while the credentials xs
and access_token can be obtained by the attacker which
are indicated from results of the latter two secrecy queries.
After careful inspection on the counterexample, we think this
indicates a serious flaw in model. In this attacker model, the
IdP C would store the credentials in the local storage including
the cookies and access token. Although the access token is
reasonable to be stored locally, it is not correct for the cookies
to be stored locally. Because the cookies belong to Facebook
SDK which should not be accessed by a third party app and
this violates SOP. With root privilege, an third party app can
have access to other app’s private storage and when the cookies
belong to Facebook are stored in local storage without being
encrypted, it is possible for an attacker to get this credential
and have access to user’s Facebook account.

Identified Vulnerability. The verification result of cookie xs
in malicious app attacker model shows that the cookies can be
known by the adversary. Based on our domain knowledge,
this is a vulnerability as the browser uses cookie xs as a
proof to show to server an authenticated session of a user.
If this cookie is stolen by the adversary, he can use it to
login to user’s Facebook account. The access_token is
also shown to be known by the adversary when a malicious
app has root privilege which enables the adversary to use the
access_token to access to whatever the user has authorized
the third party app to access.

Attack Confirmation. We reconstruct the attack on a real
device and we confirm that it is possible for a malicious
app to steal these two sensitive credentials from the
storage in the mobile phone. Firstly, we build a dummy
app using the Facebook Login and we authorize the

app with public profile permission. Then we used adb
tool kit with root privilege to access to storage of the
mobile phone. We successfully locate the cookies c_user
and xs as well as the credential access_token. The
cookies are stored in an sqlite database in mobile phone’s
storage at path /data/data/<Apps package name>
/databases/webviewCookiesChromium.db
and the access_token is stored in an xml file
at path /data/data/<App’s package name>
/com.facebook.AuthorizationClient.
WebViewAuthHandler.TOKEN_STORE_KEY.xml.

Using the cookies, we successfully login to user’s Facebook
account on a browser and browse through the victim’s posts.
With access_token obtained, we manually craft a request
using our proxy to Facebook server asking for the resource that
user has granted. Facebook server returned with user’s public
profile the user granted which shows the access_token
stolen by adversary would render user’s data in danger.

VII. RELATED WORK

Most of the prior research focused on SSO on desktop
or in web-based browser environment, few did research to
the SSO implementation on mobile environment. To our best
knowledge, we are the first to perform formal analysis to SSO
implementation on mobile platform.

SSO Analysis. In Wang et al.’s paper [6], they stud-
ied about different SSO implementations mainly on desktop
browser environment. But different from our work, they didn’t
perform formal analysis to the implementation and they were
not on mobile platform. The most related work was done by
Chen et al. in this paper [23]. They analyzed OAuth from
a mobile developer’s perspective and found flaws in OAuth
protocol. However, the most different between our work and
theirs is we performed formal analysis while they mainly study
the applications manually.

Formal Analysis. In Wang et al.’s another paper [7],
through formally analyzing the implementations of different
SDKs, they summarized the assumptions of using these SDKs.
When overlook these assumptions, there might be security
issues for adversaries to exploit. However, they mainly per-
formed the formal analysis to the desktop or web SDKs but
not the SDKs for mobile environment. In Bai et al.’s work
[17], they took one step further and try to build a platform
tool to perform an automatically protocol extraction from raw
network traffic. Nevertheless, different from this work, their
work focuses more on the platform tool building and protocol
extracting process but didn’t formally analyze protocols on
mobile platform.

VIII. CONCLUSION

We perform a formal analysis to Facebook’s implemen-
tation of its SSO service, Facebook Login SSO service, for
Android. Through this formal analysis, we identify a major
vulnerability in it and later successfully reconstruct an attack
in a real device. We also point out explicitly that it is suitable
to carry out a formal analysis to existing SSO implementations
for mobile. Although our research is derived from Android, we
believe that the method used in this paper can also be easily
applied to other mobile platforms.

ACKNOWLEDGEMENT

This research is partially supported by the National Re-
search Foundation, Prime Minister’s Office, Singapore un-
der its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-21) and administered by the National
Cybersecurity R&D Directorate.

REFERENCES

[1] “Single sign-on,” Apr 2015. [Online]. Available: http://goo.gl/i362Qt
[2] “Security risk as people use same password on all websites,” Sep

2009. [Online]. Available: http://goo.gl/OJO7eK
[3] B. Darwell, “Facebook platform supports more than 42 million

pages and 9 million apps,” Apr 2012. [Online]. Available: http:
//goo.gl/pqSKPZ

[4] D. Cohen, “Login with facebook update: Apps must now separately
request permission to post on behalf of users,” Aug 2013. [Online].
Available: http://goo.gl/3AVzJ9

[5] “Facebook login overview,” Apr 2015. [Online]. Available: https:
//goo.gl/WeLrBV

[6] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of com-
mercially deployed single-sign-on web services,” in S&P, 2012.

[7] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating sdks: Uncovering assumptions underlying secure authen-
tication and authorization.” in USENIX Security, 2013.

[8] C. Bansal, K. Bhargavan, and S. Maffeis, “Discovering concrete attacks
on website authorization by formal analysis,” in CSF, 2012.

[9] A. Barth, “The web origin concept,” RFC 6454, Dec 2011. [Online].
Available: http://goo.gl/bldZ9Q

[10] M. Zelwski, Browser Security Handbook, part 2, 2011. [Online].
Available: https://goo.gl/Vi3dGO

[11] G. Bai, J. Sun, J. Wu, Q. Ye, L. Li, J. S. Dong, and S. Guo, “All your
sessions are belong to us: Investigating authenticator leakage through
backup channels on android,” in ICECCS, 2015.

[12] M. D. Ryan and B. Smyth, “Applied pi calculus,” in Formal Models and
Techniques for Analyzing Security Protocols, V. Cortier and S. Kremer,
Eds. IOS Press, 2011. [Online]. Available: http://goo.gl/acRXtl

[13] B. Blanchet, B. Smyth, and V. Cheval, “Proverif 1.86: Automatic
cryptographic protocol verifier, user manual and tutorial,” INRIA Paris-
Rocquencourt, LSV, ENS Cachan & CNRS & INRIA Saclay IIle-de-
France, Paris, France, 2013.

[14] “Android and ios squeeze the competition, swelling to 96.3% of
the smartphone operating system market for both 4q14 and cy14,
according to idc,” Feb 2015. [Online]. Available: http://goo.gl/HsfU8z

[15] J. Oberheide and F. Jahanian, “When mobile is harder than fixed (and
vice versa): demystifying security challenges in mobile environments,”
in ACM HotMobile, 2010.

[16] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “Detection of design
flaws in the android permission protocol through bounded verification,”
in FM, 2015.

[17] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu,
and J. S. Dong, “Authscan: Automatic extraction of web authentication
protocols from implementations.” in NDSS, 2013.

[18] “Proverif: Cryptographic protocol verifier in the formal model,” Jul
2015. [Online]. Available: http://goo.gl/eqjSPX

[19] “Intents and intent filters,” Apr 2015. [Online]. Available: http:
//goo.gl/uuyY5z

[20] “<data>,” Oct 2015. [Online]. Available: http://goo.gl/dY8o3w
[21] “Android sso model,” May 2015. [Online]. Available: https://goo.gl/

3Lb5xm
[22] “User authentication with oauth 2.0,” Apr 2015. [Online]. Available:

http://goo.gl/1CljVW
[23] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth

demystified for mobile application developers,” in CCS, 2014.

