
Heap Bounds Protection with Low Fat Pointers ∗

Gregory J. Duck Roland H. C. Yap
Department of Computer Science

National University of Singapore, Singapore
{gregory,ryap}@comp.nus.edu.sg

Abstract
Heap buffer overflow (underflow) errors are a common source of
security vulnerabilities. One prevention mechanism is to add ob-
ject bounds meta-information and to instrument the program with
explicit bounds checks for all memory access. The so-called “fat
pointers” approach is one method for maintaining and propagating
the meta-information where native machine pointers are replaced
with “fat” objects that explicitly store object bounds. Another
approach is “low fat pointers”, which encodes meta-information
within a native pointer itself, eliminating space overheads and also
code compatibility issues. This paper presents a new low-fat pointer
encoding that is fully compatible with existing libraries (e.g. pre-
compiled libraries unaware of the encoding) and standard hardware
(e.g. x86 64). We show that our approach has very low memory
overhead, and competitive with existing state-of-the-art bounds in-
strumentation solutions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection

Keywords memory safety, buffer overflows, low-fat pointers

1. Introduction
Low level languages such as C and C++ allow directly manipula-
tion of pointers and thus arbitrary access to memory. While this is
needed in such languages for efficiency and to provide direct ac-
cess to memory, it allows for memory bugs. Despite at least three
decades of research with numerous proposed solutions [15, 16],
memory errors continue to plague us today and it is listed as among
the top software vulnerabilities, i.e. in the CWE/SANS top 25 er-
rors list. For instance, searching in the NIST National Vulnerability
Database for “memory corruption” turns up 1,454 reported vulner-
abilities between 2012 to 2015 alone. The survey by Szekeres et al.
[15] suggests that it continues to be an arms race between offense
and defense.

∗ This research is supported in part by the National Research Foundation,
Prime Minister’s Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCR001-21) and administered by the
National Cybersecurity R&D Directorate.

Memory safety can be divided into spatial safety and tempo-
ral safety. In this paper, we focus on spatial safety. Bounds check-
ing based approaches which check whether a pointer access lies
within its object bounds, thus, enforcing spatial memory safety is
known to be among the best techniques for ensuring memory in-
tegrity [15], yet, adoption tends to be poor. The survey by Szekeres
et al. [15] identifies three main factors which influence adoption:
(i) accuracy (false positives (wrongly reported error) and false neg-
atives (missed error)) ; (ii) cost (performance and space overheads);
and (iii) compatibility which is further divided into:

Source compatibility: The source code does not need modifica-
tion to take advantage of protection.

Binary compatibility: Ability to link with unmodified libraries.
This also includes backward compatibility to support legacy
libraries.

Modularity support: Support for separate compilation. In partic-
ular, dynamic link libraries (DLLs) are required in modern op-
erating systems.

While many buffer overflow defenses give good accuracy for spa-
tial memory safety, the cost can be significant and the amount of
compatibility varies with the method. The conclusion from [15] is
that performance and compatibility are the main barriers to adop-
tion for memory error protection techniques.

In this paper, we focus on buffer overflow defenses for dynamic
memory in the heap for C programs. Our objectives are to maxi-
mize compatibility (binary and modularity)1 and provide good per-
formance (low performance and memory overheads) making the
technique more viable for practical adoption. One approach to get
good accuracy is to modify the representation of pointers to asso-
ciate the pointer with information on the bounds of the underly-
ing object. This is also called “fat pointers” since the pointer can
be thought of as being enlarged with meta-information. However,
fat pointers can interfere with compatibility since the representa-
tion of pointers and storage is affected. Furthermore, accessing the
meta-information can be costly and the space overheads can be sig-
nificant. An approach to address the compatibility and space over-
head drawbacks is the idea of low-fat pointers [7] which encodes
the meta-information into the pointer itself. Low-fat pointers were
originally proposed for hardware implementation. In this paper, we
propose a new low-fat pointer scheme suitable for software imple-
mentation on 64-bit architectures which provides bounds protection
for heap objects aimed at getting good performance, maximizing
compatibility and good accuracy. The performance overhead is low
and space overhead is very low – on the SPEC 2006 benchmarks.
Our low-fat pointer representation is transparent, thus, the pointer
value can be directly used for dereferencing. This provides both
efficiency and compatibility (binary and modularity).

1 Most buffer overflow techniques already achieve source compatibility.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CC’16, March 17–18, 2016, Barcelona, Spain
ACM. 978-1-4503-4241-4/16/03...
http://dx.doi.org/10.1145/2892208.2892212

132

In summary our main contributions are:

Low-Fat Pointers: We present a novel low-fat pointer encoding
that can support arbitrarily sized objects on the heap and is
optimized for standard 64-bit hardware (x86_64). Our low-fat
pointers can be efficiently mapped to bounds meta-information
(size + base) of the underlying object, and this information is
used to instrument programs with explicit bounds checking. We
propose several optimizations to our basic approach.

Compatibility: Low-fat pointers are also native machine pointers
and thus can be passed to, and used by, software components
that are not low-fat aware (e.g. pre-compiled external libraries).
The reverse direction is also supported, i.e. non-low-fat pointers
are compatible with code which has been instrumented with-
out performance penalty. The types, data layout, and binary
function interface of instrumented programs does not change,
meaning that our approach achieves full binary compatibility
and modularity support.

Compiler Tool: We have implemented a low-fat pointer runtime
system and a bounds instrumentation compiler pass using
clang/LLVM [8] for the GNU/Linux + x86_64 platform.

Low Cost: We demonstrate that our approach has low perfor-
mance overheads for a bounds instrumentation schema (56%
for reads+writes, 13% for writes-only) on the SPEC 2006
benchmark suite [14]. This compares very favorably with exist-
ing solutions such as AddressSanitizer [13]. We also show that
our approach has low memory overheads.

2. Background
Detection or prevention of spatial memory errors is widely recog-
nized as a critical problem for low-level programming languages
such as C and C++. As such there is a significant body of existing
literature on proposed solutions, including [1–4, 6, 10, 11, 13, 17]
amongst others. In this section we provide a brief overview of the
different approaches. We also introduce our own approach, as well
as explain how it compares to other proposed solutions.

Most bounds instrumentation systems follow the same basic
schema. Given a pointer p and an object O with base address
base and size (in bytes) size , then p is Out-Of-Bounds (OOB) with
respect to O if

(p < base) ||
(p > base+size−sizeof(*p))

(ISOOB)

By defining a macro isOOB(p, base, size) = (ISOOB) we can
instrument a program (e.g. via automatic compiler transformation)
by inserting bounds checks before every memory read or write
operation, i.e.:

if (isOOB(p, base, size))
error();

v = *p; or *p = v;

Here the instrumentation code has been highlighted, and the role
of function error() is to report the bounds error and abort the
program. The (size, base) pair is the bounds meta-information as-
sociated to objectO. The main difference between different bounds
instrumentation systems lies in the technical and implementation
details, i.e. how to determine which object O is associated to
pointer p? Or how to determine the bounds meta-information (i.e.
size and base) of object O? Several solutions have been proposed,
and are traditionally classified into two main approaches: object-
based that associate bounds meta-information with objects, and
pointer-based approaches, that associate meta-information with
each pointer. Each approach has (dis)advantages as we summarize
below.

Object-Based Approaches. Object-based approaches work by as-
sociating meta-information with each object. Examples of systems
that use the object-based approach include AddressSanitizer [13],
BaggyBounds [1], MudFlap [4], etc.

A prominent implementation of an object-based approach is
AddressSanitizer [13]. AddressSanitizer works by maintaining a
separate shadow memory that tracks the state of each object (al-
located, free, etc.). Furthermore, each object is buffered by a 128-
byte poisoned red zone for the purpose of detecting OOB-errors.
AddressSanitizer achieves good software compatibility, but the
shadow memory and red-zones result in significant memory over-
heads. Another system, BaggyBounds checking [1] stores size in-
formation is a separate bounds table, which is more space efficient,
but restricts object sizes to powers-of-two (2B for some B).

One disadvantage of object-based approaches is completeness –
i.e. are all OOB-errors guaranteed to be detected by the system? For
example, a bounds error of ∗(p+129) may bypass an AddressSan-
itizer red-zone and not be detected, although such errors are less
common in practice.
Pointer-Based Approaches. Pointer-based approaches work by
associating meta-information to pointers rather than objects.

The most direct pointer-based approach is “fat-pointers” which
encapsulates the meta-information directly inside the pointer itself.
The basic idea is to transform the program (e.g. via a compiler
pass) replacing native pointers with a “fat” object that stores bounds
meta-information explicitly, e.g.

struct { void *ptr; void *base; size_t size; }

The fat-pointer objects are passed-by-copy in place of native point-
ers, at the cost of time and space overheads. Fat-pointers are used
by Safe-C [2], CCured [11] and Cyclone [6] amongst others. Since
fat-pointers replace native pointers, this generally breaks both bi-
nary compatibility and modularity support.

An alternative to fat-pointers is to pass meta-information via
separate channels. This approach taken by systems such as PAri-
Check [17] and SoftBound [9, 10]. For example, SoftBound propa-
gates meta-information using a shadow stack (for function calls) [9]
and shadow memory space (for memory), thereby improving com-
patibility compared to fat pointers. Although SoftBound provides
for compatibility, libraries that manipulate pointers and expose
such pointers to the program need either recompilation or wrappers
to update the meta-information [9].

Pointer-based approaches tend to be complete, e.g. the OOB-
error q=(p+129) will be detected, since the new pointer q inherits
the same bounds meta-information from p.

2.1 The Low-Fat Pointer Approach
In this paper, we focus on the idea of so-called “low-fat” point-
ers [7]. Low-fat pointers are conceptually similar to fat pointers in
that bounds meta-information is attached to each pointer used by
the program. However unlike fat pointers, which use “fat” objects,
low-fat pointers aim to encode the meta-information into a native
pointer directly – thus “trimming the fat”.

Example 1 (A Hypothetical Low-fat Pointer Encoding). As an ex-
ample of a simple low-fat pointer encoding, consider the following
type declaration:

union { void *ptr;
struct {uintptr_t size:10; // MSB

uintptr_t unused:54; } meta;} p;

Here the size bit-field stores the allocation size which can be
retrieved via p.meta.size. This representation is low-fat since
sizeof(p) = sizeof(void ∗). Furthermore the bit-wise rep-
resentation must be the same as a native pointer (i.e. p.ptr can
be dereferenced directly), even accounting for the value stored in

133

size. Encoding of object base can be achieved by ensuring that all
objects are size-aligned, thus base = p− (p % p.meta.size). The
enforcement all these conditions can still be challenging to imple-
ment in practice needing to fit operating systems constraints while
providing binary compatibility.

In this paper, we present a more sophisticated encoding (Section 3)
that stores the size information indirectly; rather than explicitly as
Example 1.

The fact that low-fat pointers are regular native pointers has sev-
eral advantages. Accessing a low-fat pointer is no different than
accessing any other native pointer. Unlike traditional fat pointers,
low-fat pointers can be passed to and from instrumentation-aware
code without any special conversion or marshalling. Furthermore
low-fat pointers do not change the data layout of objects used by
the program. In contrast, other bounds checking solutions, such
as [10, 13], can only preserve data layout by storing meta infor-
mation in a separate shadow heap or shadow stack; consuming ad-
ditional memory resources. Since our low-fat neither requires mar-
shalling or shadow space, our low-fat pointers achieve full compati-
bility (binary and modular) with low additional memory overheads.
These are the key advantages of our low-fat approach.

Low-fat pointers do have some trade-offs. Firstly, low-fat point-
ers are only feasible on architectures with sufficient pointer bit-
width. In practice, this means 64-bit (including 48-bit effective) ar-
chitectures such as the x86_64. We note that 64-bit systems are
nowadays quite common, so this is not a significant limitation. An-
other trade-off is that our low-fat pointer representation encodes
allocation bounds rather than precise object bounds (a bounds over-
flow violating object but not allocation bounds may not be de-
tected). As future work, it may be possible to adapt the method
from [3] to extend the protection to object rather than bounds (at
the cost of decreased performance). One final trade-off is the type
of pointers that can be protected. The low-fat pointer approach im-
plies control over the pointer value for each object of interest. This
is possible for heap allocation, where the memory allocator has full
control, but difficult for stack allocations – where pointer values are
constrained to be within the current stack frame. In this paper, we
focus on heap protection since: (a) this is the most natural fit for the
low-fat pointer approach, and (b) heap bounds errors still represent
significant security problem in their own right; hence a specialized
solution is justifiable. Extending our results to stack pointers may
be possible by (1) object migration (stack to heap), and/or (2) the
virtual configuration of [1] (Section 5.1). We leave this as future
work.

Using low-fat pointers for bounds checking requires some care-
ful design. For example, given q=(p+129), then p’s bounds meta-
information should be used when checking a dereference of pointer
q. To achieve this we propose a form of meta-information propaga-
tion similar to that of SoftBound [10] but optimized to preserve
binary compatibility.

Finally, as far as we know, no existing method can maximize all
objectives (performance, compatibility, accuracy) and each method
has its own trade-offs. Our low-fat pointer implementation aims to
provide full binary compatibility, complete heap allocation bounds
protection, low space overhead and good performance. We contrast
with the other trade-offs of some well known methods which have
good performance: (i) AddressSanitizer: good binary compatibility,
high space overhead, incomplete bounds protection for heap and
non-heap objects; (ii) BaggyBounds: good binary compatibility,
moderate space overhead, allocation bounds protection for stack
and heap objects; and (iii) SoftBound: partial binary compatibility,
high space overhead, complete bounds protection for heap and non-
heap objects.

2.2 Related Work (Low-Fat Pointers)
In addition to the bounds instrumentation systems outlined above,
there are some existing proposals that specifically relate to low-
fat pointers, including: a hardware-based solution of [7] and the
“size tagging” variant of BaggyBounds checking introduced in [1]
(Section 5.1).2

The proposal of [7] encodes bounds meta-information as vari-
ous bit-fields inside a regular machine pointer, in a similar way to
Example 1. For example, in the aligned encoding variant, pointer
bits 57–63 encode a B bit-field, and the (allocation) size of the
corresponding object is defined as 2B . The authors also present a
more complicated encoding for handling non-power-of-two sized
objects. Their focus is the design of specialized hardware to ef-
ficiently handle checks on pointer operations, such as access and
pointer arithmetic, etc. In contrast, we present a pure software-
based encoding that is optimized for standard generic hardware
such as the x86_64.

The “size tagging” variant of BaggyBounds checking [1] can
also be viewed as a low-fat pointer encoding. Here the size is
encoded as a bit-fieldB (a.k.a. the “tag”) in a similar fashion to the
proposal from [7]. One disadvantage of BaggyBounds is the power-
of-two sized object restriction, which can lead to increased memory
overheads. Our proposal is more flexible and can be configured
to allocate arbitrary sized objects. Furthermore our encoding is
extensible in that it can support other kinds of meta-information
that are useful for optimization.

3. Runtime Environment
Our low-fat pointer implementation is based on a low-fat memory
allocator that uses a special memory layout that exploits the large
virtual address space to encode low-fat pointers. The low-fat allo-
cator is designed to be a drop-in replacement for the standard libc
malloc and related family of functions (realloc, memalign,
etc.). In this section we give an overview of the allocator, as well
as how the bounds meta-information can be reconstructed from
low-fat pointers to heap objects.

3.1 Low-Fat Pointer Memory Allocator
The low-fat pointer memory allocator (or low-fat memory allocator
for short) relies on a special region-based memory layout that is
summarized in Figure 1. Here, the program’s virtual address space
is evenly divided into several different large regions of equal size.
Our description assumes a region size of 4GB, although other sizes
may be reasonable. The regions are organized according to the
following layout:
• Special region #0 contains the standard program text and data

segments;
• Regions #1–#M , for some pre-defined maximum M , contain

sub-heaps for the low-fat memory allocator; and
• Special region #stack contains the program stack.

The special region #0 spans the first 4GB of memory (addresses
0x0–0xffffffff), and contains all of the standard Linux process
memory segments, including the text, data, and bss segments,
in their usual position. As with normal processes, the size of the
data segment is extensible using the sbrk() and mmap() system
calls, and is therefore compatible with libc’s malloc.3 Further-
more, a special #stack region spans addresses 0x7fff00000000–
0x800000000000 and contains the program’s stack. Importantly,
the size, position, and layout of the program’s standard memory

2 The work of [1] does not use the terminology “low-fat pointer”.
3 The low-fat memory allocator can co-exist with the standard libc malloc
allocator.

134

... ...

stack

...

region #stack

0x80000000000016GB

region #3 region #M

M×4GB

.data

.bss

.text

brk

region #0

4GB

region #1

8GB 12GB

region #2

subheap #1 subheap #3subheap #2 subheap #M

Figure 1. Program memory layout illustration.

segments (text/data/stack) is the same as any other standard x86_64
Linux process, minimizing potential compatibility problems.

Regions #1–#M are reserved for the special low-fat memory
allocator. Unlike traditional implementations of malloc that use
a single contiguous heap (sbrk’ed memory), the low-fat memory
allocator instead allocates from M sub-heaps, where each region
contains exactly one corresponding sub-heap. Each region has a
fixed size of 4GB, and a base address that is a multiple of 4GB.
For example, region #1 has the base address of 0x100000000
(4GB), region #2 has 0x200000000 (2×4GB), etc. Each sub-heap
is confined to the corresponding region, meaning that a maximum
of 4GB can be allocated out from any given region.

In order to implement low-fat pointers, the low-fat allocator
enforces the following critical requirements:
• (Region) all objects of a given size must be allocated from the

same memory region; and
• (Alignment) all objects must be allocation size-aligned.

The aim of the (Region) and (Alignment) requirements is to es-
tablish a direct relationship between the value of a pointer and the
corresponding object size and base pointer of the object. For ex-
ample, if p points to an object contained within region #i, then by
the (Region) requirement, the object size for p is the correspond-
ing object size associated to region #i. Likewise, the (Alignment)
requirement ensures that the base pointer of the object for p is p
rounded down to the nearest size-aligned boundary, similar to Ex-
ample 1. A more detailed discussion of the size and base calculation
will be presented in Section 3.2.

Regions #1–#M occupy virtual address space that would oth-
erwise be unused by most standard programs, again minimizing
compatibility problems. Even accounting for large M values, sig-
nificant portions of the virtual address space remain empty between
regions #M and #stack. This empty address space can be used by
the program for future mappings (e.g. mmap or loading of dynamic
libraries).

3.1.1 Size Configuration
The low-fat allocator restricts the possible allocation sizes to a fixed
finite set.4 Arbitrary object sizes are rounded up to the nearest sup-
ported allocation size if necessary. We define the size configuration
Sizes to be the sequence (indexed from 1) of all possible allocation
sizes supported by the low-fat allocator:

Sizes = 〈size1, size2, · · · , sizeM 〉
Here the sequence is arranged such that region #i corresponds to
sizei. We also define M = |Sizes| to be the maximum region
number.

The exact size configuration (Sizes) is flexible, and can be left
to the implementation.5 Our prototype implementation uses the

4 This is also common practice for memory allocation algorithms.
5 If the sizes needed by a program are known, they can be used to configure
Sizes.

following size configuration by default:

Sizes = 〈16B, 32B, 48B, 64B, ..,
8KB , 16KB , 32KB , 64KB , .., 1GB〉 (SIZES)

such that size1 = 16B is the smallest allocation size, and sizeM =
1GB is the maximum supported allocation size. The maximum
region number is therefore M = 530 heap regions (excluding
the special non-heap region #0). This configuration is designed to
minimize memory overheads as discussed below.

3.1.2 Low-Level Considerations
Memory regions #1–#M are created during program initialization
using the mmap system call with the MAP_NORESERVE flag. This
prevents the operating system from creating competing mappings
for the same region of virtual address space. Furthermore, the
MAP_NORESERVE flag instructs the operating system not to reserve
physical memory resources (i.e. RAM or swap) for any of the
regions when the mapping is created. Instead, physical memory is
reserved “on demand” when the corresponding virtual addresses
are allocated and actually used by the program.

The exact memory allocation algorithm used within each re-
gion is left as an implementation detail. Our prototype implemen-
tation uses a simple combination of a free-list (for previously deal-
located objects) or allocates from fresh space within the region
should the free-list be empty. Initially the fresh space is inacces-
sible with memory protection PROT_NONE. The allocator ensures
that fresh objects are made accessible before being returned to the
program. Other memory allocation algorithms are compatible pos-
sible, provided they respect the size and alignment requirements.
Our implementation is also thread-safe and applicable to parallel
programs.

The size and number of memory regions is also configurable.
Our prototype implementation assumes a region size of 4GB , en-
suring that the memory region layout is compatible with the stan-
dard program text, data and stack segments, as illustrated in Fig-
ure 1. Other region sizes may also be reasonable. Technically, re-
gions need not be contiguous nor the same size, however, these
assumptions help simplify the implementation.

The size configuration given by (SIZES) is designed to mini-
mize memory overheads introduced by allocation size rounding.
For small (< 8KB) allocations, the allocation size is rounded up to
the nearest multiple of 16 bytes. For large (≥ 8KB) allocations, the
allocation size is rounded up to the nearest power-of-two size, up
to a maximum allocation size of 1GB . Small objects waste a max-
imum of 15B of memory after rounding, and large objects waste a
maximum of 4KB−1B bytes after rounding, assuming a page size
of 4KB . Note that for large multi-paged objects, the physical mem-
ory overhead is always bounded by the page size, as any unused
pages at the end of the object will remain unmapped and therefore
do not consume physical memory resources. Furthermore, the al-
locator ensures that unused pages are inaccessible (i.e. have mem-
ory protection PROT_NONE). The unused pages serve as “guards”

135

and provide additional protection against overflows in addition to
bounds instrumentation.

The allocator does not store any explicit metadata information
between objects, i.e. objects are “tightly packed” with no gaps.
This makes it trivial to satisfy the size-alignment requirement,
by ensuring that the boundaries between objects are always size-
aligned.

3.1.3 Incompatible Allocations
One issue is how to deal with allocation requests that cannot be
serviced by the low-fat memory allocator. For example, very large
(> 1GB) allocations, or if the corresponding memory region has
run out of free space (e.g. ≥ 4GB of allocations of the same size).
No matter the configuration of the low-fat allocator (i.e. region size,
allocation sizes, etc.), such limits can never be removed completely,
and can always be reached by a sufficiently demanding program.

As a fall-back, our implementation reverts to using the libc
malloc should the low-fat allocator be unable to service a given
allocation request. This ensures that all allocation requests will
always be serviced. As will be discussed later, the libc malloc
is compatible with (and can co-exist with) the low-fat memory
allocator. Pointers returned by libc malloc will not be “low-fat”,
and therefore will not afforded the same protections against object
bounds overflows.

3.2 Reconstructing Meta-information
The aim of a low-fat pointer representation is make it possible to
efficiently calculate bounds meta-information (size and base) based
on the pointer’s value. In this section we describe the implementa-
tion in more detail.

3.2.1 Calculating Index
A useful operation is to map pointers to the corresponding memory
region index for which the object is contained.

Assuming a region size of 232 = 4GB and the memory layout
of Section 3.1, then a pointer p can be mapped to the memory
region index using the index operation defined as follows:

index (p) = p >> 32 (INDEX)

The index operation compiles down into a single shift right (logi-
cal) instruction.

3.2.2 Calculating Size
The size operation is defined as size(p) = Sizes[index (p)], where
Sizes is the size configuration defined in Section 3.1.

To efficiently implement the size operation, the runtime system
stores the Sizes sequence in a metadata table TABLE as follows:

TABLE[i].size = Sizes[i] for all i ∈ 1..M

size(p) = TABLE[index (p)].size (SIZE)

Here M is the max region size, and TABLE is currently undefined
for other regions.

In our implementation, the metadata table is stored in an
mmap’ed file that is loaded to a fixed location during program ini-
tialization. The metadata table is both constant (read-only with
PROT_READ) and small (2 pages for size-only meta-information).
Later, we extend TABLE to include additional information.

For example, suppose that p = 0x180000000 is a pointer to a
object allocated by the low-fat allocator. We see that index (p) = 1.
Assuming the size configuration Sizes defined in Section 3.1, then

size(p) = TABLE[1].size = Sizes[1] = 16B

Therefore p points to an object of size 16 bytes.
The size operation compiles down into a single memory lookup

operation (from TABLE). Note that the TABLE itself is small (8-byte

size per 4GB region) and read-only. These factors are favorable
regarding CPU cache behavior.

Our approach is also different from Example 1 and related
work [1, 7] that encode the size directly into the bit representation
of the pointer. Instead, our approach is indirect, i.e. the size is stored
in a separate metadata table TABLE. Our approach is both flexible
(arbitrary Sizes configurations are supported) and extensible (we
insert additional meta-information later).

3.2.3 Calculating Base
Pointers can point to the interior rather than the base of objects,
e.g. if p=malloc(100) then q=(p+50) is an interior pointer. For
bounds checking, we need to map (possibly) interior pointers to the
corresponding base pointer for the object.

The low-fat allocator ensures that all heap objects are allocation-
size aligned. We can exploit this alignment to map an interior
pointer p to base pointers as follows:

base(p) = (p / size(p)) * size(p) (BASE)

Here (/) and (*) are standard C 64-bit unsigned integer division and
multiplication respectively. The combination of integer division
and multiplication has the affect of rounding p down to the nearest
size(p)-aligned boundary, which is the base address.

For example, suppose that p = 0x180000005 points to a heap
allocated object. Then index (p) = 1 and size(p) = 16. We can
calculate the base pointer as follows:

base(p) = (p / 16) * 16 = 0x18000000

The base operation compiles down to a two-instruction se-
quence: a division followed by a multiplication instruction. An al-
ternative definition for (BASE) that uses 64-bit integer modulus (%)
instead of division is base(p) = p - (p % size(p)). Both division
and modulus are relatively expensive CPU operations. In Section 5
we shall present an optimized definition.

Using alignment to calculate the base address is used by other
systems, such as BaggyBounds [1]. However, unlike [1], allocation
sizes need not be powers-of-two.

3.3 Handling Non-fat Pointers
So far our method for reconstructing bounds meta-information as-
sumes the pointer is low-fat, i.e. compliant with the memory lay-
out and alignment requirements specified in Section 3.1. However,
not all pointers used by a given program will be low-fat – for ex-
ample, pointers to global variables, the stack, or were created via
calls to mmap or sbrk memory; or from calls to the standard libc’s
malloc; or even the NULL pointer. Furthermore, whether a pointer
is low-fat or not can be ambiguous at compile-time. For example, a
pointer argument p to f may or may not be low-fat:

extern int f(int *p) { return *p; }

For brevity, we refer to non-low-fat pointers as non-fat pointers.
Our aim is to extend the meta-information reconstruction to

handle non-fat pointers. Unlike low-fat pointers, there is no require-
ment for non-fat pointers to be bounds checked. That said, for ef-
ficiency reasons it is important not to treat non-fat pointers as a
special case, i.e. by introducing separate paths for low-fat vs. non-
fat in the instrumented code. Instead, our approach is to extend the
definitions of size and base to return “wide bounds” for all non-fat
pointers, thereby, ensuring any subsequent bounds check will never
fail and result in a spurious error.

First, we extend the definition of size by adding extra entries to
the metadata table TABLE (Section 3.2) for regions corresponding

136

p = NULL;
p_size = UINT64_MAX;
p_base = 0;

(a) p is the NULL pointer

p = malloc(n);
p_size = n;
p_base = p;

(b) p allocated from heap

p = q + c;
p_size = q_size;
p_base = q_base;

(c) p created by pointer arithmetic

p = (type *)q;
p_size = q_size;
p_base = q_base;

(d) p cast from a pointer

p = (type *)i;
p_size = size(p);
p_base = base(p);

(e) p cast from an integer

p = *q;
p_size = size(p);
p_base = base(p);

(f) p loaded from memory

p = f(· · ·);
p_size = size(p);
p_base = base(p);

(g) p returned by a function

basic_block: p = Φ q1, · · ·, qn;
p_size = Φ q_size1, · · ·, q_sizen;
p_base = Φ q_base1, · · ·, q_basen;

(h) p created by a Φ-node (PHI-node)

type f(type *p) { · · ·
p_size = size(p);
p_base = base(p);

(i) p is a function argument

type p[];
p_size = UINT64_MAX;
p_base = 0;

(j) p is a global or stack pointer

Figure 2. Schema for size and base meta-information propagation.

to non-fat pointers as follows:

TABLE[i].size = UINT64 MAX for all i 6∈ 1..M

size(p) = TABLE[index (p)].size

That is, if p is non-fat, then index (p) 6∈ 1..M , i.e. not in the
index range 1..M is covered by the low-fat-memory allocator. For
such pointers p, the size(p) operation will therefore evaluate to
UINT64 MAX, i.e. the maximum possible unsigned 64-bit number.

Conveniently, we see that

base(p) = (p / UINT64 MAX) * UINT64 MAX = 0

for all p using Definition (BASE). Thus, given an non-fat pointer p,
the base address will always evaluate to zero (the null address).

Under the extended definitions, we have size(p) = UINT64 MAX
and base(p) = 0 for all non-fat pointers p. For example, consider
the pointer p = 0x400000 (the start of the text segment in a
standard Linux process). We see that index (p) = 0 6∈ 1..M and
therefore p is non-fat. Furthermore:

size(p) = TABLE[0].size = UINT64 MAX

base(p) = (p / UINT64 MAX) * UINT64 MAX = 0

Accessing the pointer p can never generate a spurious error since:

p ≥ 0 ∧ p ≤ 0 + UINT64 MAX

Extending the metadata table to cover the entire 48-bit x86_64
address space requires 65536 entries. Most entries correspond to
non-fat pointers and contain the same data. Our implementation
maps these duplicate entries to the same physical page and thus
minimizes physical memory usage (3 pages for size-only meta-
information).

3.3.1 Binary Compatibility
The extended definitions make bounds checking compatible with
all program pointers, whether they be low-fat or non-fat. However,
only low-fat pointers will be explicitly protected against bounds
errors (consistent with the aims of this paper).

The extended definitions are essential for binary compatibility,
as not all software components (e.g. external libraries) are low-fat-
pointer aware. Since low-fat pointers are regular machine point-
ers, they are automatically compatible with the majority of exter-
nal software components. In the reverse direction, non-fat pointers
created by external software components are compatible with the
bounds checking instrumentation in the sense they can never gen-
erate spurious errors. Importantly, this achieves full binary compat-
ibility.6

Another consequence is that the low-fat-allocator is compatible
with, and can co-exist with, the standard libc malloc. Software
libraries that use malloc can continue to do so. Furthermore the
low-fat allocator can use malloc as a “fall back” should any allo-
cation request be unserviceable, e.g. if a memory region becomes
full.

4. Compiling Bounds Checking
Utilizing the runtime environment of Section 3, a compiler trans-
formation modifies the program in two ways: (1) metadata propa-
gation aims to propagate bounds meta-information (size and base)
for each pointer, and (2) bounds instrumentation inserts protection
against out-of-bounds memory access.

4.1 Meta-Information Propagation
In order to check the bounds for pointer p dereference, the size and
base meta-information of the object pointed to by p must be known.
We apply a simple program transformation that associates each
pointer variable p (in the program code) with an explicit p_size
(of type size_t) and p_base (of type void *) pair of variables
that store the size and base respectively. This meta-information
propagates according to the schema shown in Figure 2. Here, each
schema rule comprises a program statement or declaration that
creates a new pointer p. The program is then modified to include

6 Binary compatibility is critical when the binary component itself is using
and creating pointers which are passed also to instrumented code.

137

the corresponding statements (highlighted) for meta-information
propagation using variables p_size and p_base.

The schema considers three main special cases:
1. p is unambiguously not a heap pointer;
2. p is created by a heap allocation; or
3. p is derived from another pointer q.

For everything else the schema resorts to calculating the bounds
meta-information with explicit calls to size and base .

Figure 2(a)(j) handle the special case where p is unambiguously
not a heap pointer, i.e. when p is the NULL pointer, stack allocated,
or a pointer to a global variable. Such pointers inherit the “wide
bounds” of p base = NULL = 0 and p size = UINT64 MAX.

Figure 2(b) handles the special case when p is the result of a
heap allocation (assuming the low-fat allocator). Here p base = p
and p size = n.

Figure 2(c)(d) handles the special case where p is derived from
another pointer q, namely pointer arithmetic and pointer casts. In
these cases the derived pointer p inherits the size and base meta
information of the parent pointer q. Note that pointer arithmetic
also includes the address-of (&) operator. For example &p[n] is
equivalent to p+ n, and &p->val is equivalent to p+ offset where
field val is offset bytes from the start of the object. Both array
access and field access are treated as pointer arithmetic followed
by a memory access operation, e.g. (p[3] = 4) is equivalent to
(*(p+3) = 4).

Figure 2(h) handles the case where p is constructed by a Φ-
node joining two or more basic blocks. Φ-nodes are implicit in-
structions inserted by the compiler in order to transform the pro-
gram into Single Static Assignment (SSA) form. In this case,
p_size and p_base are Φ-nodes of the corresponding bounds
meta-information for each origin pointer qi.

Figure 2(e)(f)(g)(i) handles all other cases. Namely, where p is
cast from an integer, loaded from memory, returned from a function
call or passed into the current function as a parameter. Here the
schema calculates the size and base information explicitly using
the size(p) and base(p) operations defined in Section 3.2.

Metadata propagation does not need to be inserted for all point-
ers. The propagation can be omitted for pointers that are never
dereferenced or are otherwise never used in a bounds check. Fur-
thermore, the propagation code can be optimized by using vari-
able substitution rather than inserting explicit assignments for rules
Figure 2(b)(c)(d). For example, for rule Figure 2(c), we can avoid
adding superfluous by aliasing p base = q base and p size =
q size. For our examples, we use explicit assignments for read-
ability.

Example 2 (Metadata Propagation). Consider the following func-
tion that calculates the length of a linked-list.

int list_length(Node *list) {
int len = 0;
while (list != NULL)

{ len++; list = list->next; }
return len; }

The function takes as a parameter list with a pointer type
(Node *). In the body of the loop, the program implicitly creates
the pointer &list->next, i.e. the body of the loop is equivalent to:

len++; Node **next = &list->next; list = *next;

The instrumented version is shown in Figure 3. Since list is a
parameter, the size and base are calculated explicitly using rule
Figure 2(i) (lines 4–5). Likewise, after a new value for list is
read from memory in the loop body (line 14), the size and base
are recalculated using rule Figure 2(f) (lines 15–16). Pointer next
inherits the size and base of list using rule Figure 2(c) (lines 10–
11). For readability our example does not use SSA form, so rule

1 int list_length(Node *list)
2 {
3 int len = 0;
4 void *list_base = base(list);
5 size_t list_size = size(list);
6 while (list != NULL)
7 {
8 len ++;
9 Node **next = &list ->next;

10 void *next_base = list_base;
11 size_t next_size = list_size;
12 if (isOOB(next , next_base , next_size))
13 error();
14 list = *next;
15 list_base = base(list);
16 list_size = size(list);
17 }
18 return len;
19 }

Figure 3. Fully instrumented version of the list length function
from Example 2.

Figure 2(h) for pointer list is left implicit. Lines 12–13 contain
the bounds check which is explained in the next section.

Our meta-information propagation schema is related to that
used by SoftBound [10] with some differences. For example, we
do not add additional parameters to functions, e.g. both versions of
list_length have exactly the same interface, i.e. the same num-
ber of parameters, same return value, and use the same types. This
is also important for binary and modular compatibility. Another dif-
ference is that, for efficiency reasons, we only aim to preserve al-
location bounds and not sub-object bounds. The latter is a possible
extension for future work.

4.2 Bounds Checking
In existing literature, there are two main approaches to bounds
check instrumentation:
1. instrument memory load/store operations (e.g. [1, 10, 13]); or
2. instrument pointer arithmetic operations (e.g. PAriCheck [17]).

The former prevents OOB-pointer dereference, and the latter pre-
vents the creation of OOB-pointers altogether. Low-fat pointers can
be used for either approach. However, for completeness7 (i.e. guar-
antee all heap bounds errors will be detected), a combination of
both approaches is required. For example, consider the following
simple example:

q = p + 100; x = list_length(q);

Here q (of type Node *) is an OOB-pointer. Since the instrumented
version of list_length (Figure 3) maintains the same binary in-
terface as the non-instrumented version (Example 2), the bounds
meta-information for the parameter list is reconstructed on func-
tion entry (lines 4–5) using the size and base operations from Sec-
tion 3.2. However, if list_length is passed an already OOB-
pointer, as is the case with q above, then lines 4–5 construct the
meta-information for whatever object q happens to point to, rather
than the original object pointed to by p. This means that the bounds
error (line 14) will not be detected, i.e. the bounds instrumenta-
tion is incomplete. Here we say that the OOB-pointer q has been
passed into a different context, i.e. from the callee to the function
list_length.

For completeness, we propose a combination of both load/store
and pointer-arithmetic bounds instrumentation described in this

7 Completeness is with respect to heap pointers only

138

section. The purpose of the latter is to prevent OOB-pointers from
being passed between contexts as with the example above.

4.2.1 Load/Store Instrumentation
The load/store instrumentation follows the basic schema outlined in
Section 2. For this we insert a bounds check before each load/store
operation as follows:

if (isOOB(p, p base, p size))
error();

v = *p; or *p = v;

An example is shown in Figure 3, lines 12–13, for the dereferenced
pointer next.

4.2.2 Pointer Arithmetic Instrumentation
To address incompleteness we additionally instrument all pointer
arithmetic p=q+k in cases where the resulting pointer p can be
passed to different context. These cases include:
(a) casting p to an integer (i = (int)p);
(b) storing p to memory (*r = p);
(c) passing p to a function (f(p)); and
(d) returning p from a function (return p);
Here cases (a)–(d) correspond to the schema rules in Figure 2(e)-
(f)(g)(i) respectively. The bounds check is inserted in between the
pointer arithmetic and the operation (a)–(d):

p = q + k;
if (isOOB(p, q base, q size))

error();
i=(int)p; or *r=p; or f(p); or return p;

Note that the instrumentation only affects pointers that are the
result of pointer arithmetic. Many common cases are not affected.
For example, consider the code fragment:

q = p->next; x = list_length(q);

Here q is the result of a memory load rather than arithmetic, and
therefore will not be instrumented before the function call. Note
that q cannot be an OOB-pointer under rule (b) above, i.e. q would
be bounds checked before it was stored in field p->next.

Some incompleteness may remain if the compiler cannot iden-
tify all forms of pointer arithmetic, e.g. if pointers are cast to and
from integers by the programmer. This problem affects all bounds
instrumentation systems and is not specific to our approach.

The pointer-arithmetic instrumentation is optional and can be
omitted if completeness is not desired. Not all bounds instrumen-
tation systems are complete, e.g. object-based approaches such
as AddressSanitizer [13]. Pointer-arithmetic based instrumentation
may lead to spurious bounds errors if the programmer intentionally
creates OOB-pointers (although this technically violates the C stan-
dard). This is a known problem for pointer-arithmetic based instru-
mentation. However, unlike other systems, we only check the spe-
cific case where OOB-pointers are passed between contexts, rather
than preventing OOB-pointers from being created altogether. The
former is less common [1, 12], which helps software compatibility.

4.2.3 Standard Library Functions
In addition to instrumentation, we also replace the standard library
calls memcpy, memmove, memset with efficient safe equivalents that
perform bounds checking.

5. Optimizations
The basic low-fat pointer representation and bounds checking
scheme is, thus far, not designed to be efficient. In this section, we
shall present various optimizations designed to minimize runtime

overheads to make the overall scheme practical. Some of the op-
timizations are specific to our approach, whereas others are more
general and apply to other bounds checking systems (as will be
noted).

5.1 Fast Division
To calculate the base pointer base(p) for a given pointer p using
Definition BASE requires a 64-bit division operation.8 Division is
a relatively expensive operation even on modern CPUs; a single
x86_64 div instruction can have a latency of 32-123 cycles [5]
compared to 1 cycle for add and 3–4 cycles for mul. Our experi-
ments show that overhead introduced by division is significant.

A faster alternative is to replace expensive division (p / size)
with a cheaper multiplication (p∗(1/size)) by using fixed-point
arithmetic. This approach is feasible size the set of allocation sizes
(Sizes) is constant, and thus the set of allocation size reciprocals
{1/size | size ∈ Sizes} can be pre-calculated and stored in a
lookup table.

We formalize the implementation as follows: First the metadata
table TABLE is extended to include an extra 64-bit invSize field
that will store the pre-calculated reciprocal of the allocation size.
This is defined as follows:

invSizeInit(size) = UINT64 MAX / size + epsilon

TABLE[i].invSize = invSizeInit(Sizes[i]) for all i ∈ 1..M

TABLE[i].invSize = 0 for all i 6∈ 1..M

Here, the invSizeInit(size) function calculates an approximation
of the fixed-point representation of (1/size) assuming an 128-bit
representation with a radix point of 64-bits. The epsilon = 1 is
added for error control and will be explained below. For non-fat
pointers, the corresponding value for invSize is set to zero.

Given a pointer p, the base pointer for p can now be calculated
as ((p∗(1/size))*size) using fixed-point arithmetic. Assuming our
128-bit fixed-point representation, the base operation can be im-
plemented as follows:

invSize(p) = (uint128 t)TABLE[index (p)].invSize

base(p) = (((uint128 t)p * invSize(p)) >> 64) * size(p)
(FASTBASE)

Note that the inner (*)-operation is a 128-bit multiplication. The
purpose of the shift operation is to truncate the 128-bit fixed-point
result back into a 64-bit integer representation of (p∗(1/size)).
This integer is then multiplied by the size to derive the base pointer.

Note that the 128-bit multiplication and 64-bit shift can conve-
niently be implemented as a single imul instruction on the x86_64
platform. Definition (FASTBASE) effectively replaces the 92-cycle
division operation with a 4-cycle combined multiplication and
memory load from TABLE.

Example 3 (Fast Base). Consider the pointer p = 0x380000045
which points to an object allocated from region #3. Assuming that
region #3 is for objects of size 48 bytes, then
invSize(p) = UINT64 MAX / 48 + 1 = 384307168202282327

base(p) = ((0x380000045 * 384307168202282327) >> 64)) * 48

= (5777053543182302580540702835 >> 64) * 48

= 313174700 * 48 = 15032385600 = 0x380000040

Therefore the base address of p is 0x380000040, as expected.

For non-fat pointers p, we see that invSize(p) = 0 and therefore
base(p) = 0 as per the original definition.

8 Alternatively a 64-bit modulus operation can be used. However, both divi-
sion and modulus are implemented using the same x86 64 div instruction,
thus have similar poor performance.

139

In addition to fixed-point arithmetic, we also experimented with
an alternative encoding that uses floating-point arithmetic. For this,
we change the type of the table’s invSize field to be a floating
point value and redefine:

invSizeInit(size) = 1.0 / size

invSize(p) = TABLE[index (p)].invSize

base(p) = (unint64 t)(p * invSize(p)) * size(p)

In our experience, this definition is inferior thanks to the extra
conversion instructions required (i.e. pointer/integer to double and
back again). This is not a problem for the fixed-point representation
that exclusively uses integers.

5.1.1 Precision Errors
Fixed-point arithmetic can suffer from precision errors, meaning
that (FASTBASE) can return the wrong result for some addresses.
Such errors may lead to false negatives during bounds checking for
large (>2MB) allocation sizes, which is clearly not acceptable. By
using epsilon = 1, we can ensure that the precision errors only
affect the end of objects. That is, given p = malloc(size), then
Definition (FASTBASE) will return the correct result for addresses
p, .., p+size−δ for some δ < size .

Numerical analysis can be used to determine the maximum
possible value for δ. However, we adopted a simpler approach: find
the maximum δ using an exhaustive search over all possible heap
addresses (i.e. within regions #1-#M). The exhaustive search yields
the following information:

- δ = 0 for size ≤ 2MB ; and
- δ ≤ 4KB for 2MB < size ≤ 1GB (max size)

To account for precision errors we therefore pad all large (>2MB)
allocations by a value of 4KB . This ensures that any address po-
tentially affected by a precision error will reside within the padding
and not within the object itself. For example, an allocation of size
4MB will be treated as an allocation size of 4MB + 4KB , ensur-
ing that all pointers within the range p..p + 4MB (where p is the
returned pointer) will not be affected by precision errors. This ap-
proach slightly increases the overall space overhead of the allocator
by a maximum of 4KB/2MB = ∼0.2%.

5.2 Power-of-Two Object Sizes
An alternative to the (FASTBASE) approach is to restrict object
sizes to powers-of-two, namely by redefining:

Sizes = 〈16B, 32B, 64B, ..., 1GB〉
This allows for the base operation to be implemented as a simple
bit-mask, eliminating the need for expensive division or fixed-point
arithmetic. Assuming power-of-two object sizes and the standard
region layout, we extend the metadata table TABLE to include a
mask field and define:

TABLE[i].mask = UINT64 MAX << (i+ 3) for all i ∈ 1..M

TABLE[i].mask = 0 for all i 6∈ 1..M

base(p) = p & TABLE[index (p)].mask (POW2BASE)

The metadata table accounts for non-low-fat pointers by setting the
corresponding mask to zero.

Power-of-two sized objects represent a time versus space trade-
off. Such objects are less granular leading to potentially higher
space overheads for sub-page (< 4KB) sized objects. For multi-
page objects, space wastage is less of a problem since unused pages
will remain unmapped.

Definition (POW2BASE) can seemingly be improved further by
calculating the bit-mask at runtime:

base(p) = p & (UINT64 MAX << index (p) + 3)

However, this new definition does not work for non-fat pointers.
Using power-of-two sized objects is a common optimization. It

is used in systems such as BaggyBounds [1].

5.3 Other Optimizations
We now summarize some common optimizations for bounds
checking instrumentation. These optimizations are not specific to
our approach, and some have been implemented in other systems.

5.3.1 A Faster Check
An alternative definition of isOOB is:

isOOB(p, pBase, pSize) =
((uintptr t)p− (uintptr t)pBase ≥ pSize)

This version uses unsigned integer underflow to simultaneously
test the upper and lower object bounds using a single comparison.
That is, for the case where p < pBase , the operation p − pBase
underflows, resulting in a large integer that is (≥ pSize). This is a
common optimization (used by [1, 10, 13]).

5.3.2 Removing Redundant Checks
Some other common optimizations for bounds checkers include
removing redundant bounds checks. For example, consider the
statement (*p = *p + 1), which will be instrumented as follows:

if (isOOB(p, p base, p size)) error();
int tmp = *p;
if (isOOB(p, p base, p size)) error();
*p = tmp + 1;

The second bounds check is redundant and can be removed. Since
the {p, p base, p size} values are unchanged, this optimization
is automatic for modern compilers (e.g. clang). Similar optimiza-
tions exist in other systems, e.g. AddressSanitizer [13]. However,
AddressSanitizer uses a different encoding so the optimization is
not automatic.

5.3.3 Restricting Checks
Another common optimization is to restrict the bounds instrumen-
tation to specific subsets of operations, such as memory writes
only, at the expense of completeness. Such optimizations are im-
plemented by most bounds checking systems.

6. Experiments
We have implemented a prototype low-fat pointer and bounds
checking system (LowFatPtr) as two components: (1) a library
implementing the runtime environment described in Section 3, and
(2) an LLVM [8] plugin implementing the metadata and bounds
check instrumentation described in Section 4. The system supports
all of the optimizations described in Section 5. Each optimization
can be enabled or disabled using a suitable compiler flag.

We have evaluated the performance of the system against the
C/C++ subset of the SPEC 2006 benchmark suite [14]. We used a
dual quad-core Intel Xeon E5540 (clocked at 2.53GHz) with 48GB
of RAM as the test machine. We used the clang-3.5 compiler,
and all programs (both instrumented and uninstrumented) were
compiled using the (-O2) compiler optimization level flag. For our
experiments we test both timings and memory usage.

To evaluate the performance of system, we compare against
non-instrumented binaries compiled using standard libc malloc.
We also compare against binaries compiled with AddressSani-
tizer [13] enabled (by passing the -fsanitize=address flag to

140

Orig LowFatPtr + BoundsCheck AddressSanitizer
Bench. base base +fdiv +pow2 +w.o. base +w.o.

perlbench 468 1042 716 653 532 1572 1144
bzip2 603 1303 982 948 704 1049 726
gcc 390 1276 827 770 663 814 684
mcf 339 546 517 476 356 485 349
gobmk 562 888 701 667 619 1089 683
hmmer 499 1306 1178 1133 586 1139 547
sjeng 604 840 681 663 639 1292 757
libquantum 484 2058 756 659 520 663 502
h264ref 724 2575 1459 1312 829 1697 1030
omnetpp 388 903 537 529 432 CE CE
astar 520 1432 824 790 577 858 597
xalancbmk 304 792 481 437 270 620 395
milc 463 889 709 685 502 735 574
namd 477 893 826 833 517 798 523
dealII 372 1399 796 716 473 757 532
soplex 309 865 505 464 338 495 370
povray 263 861 506 458 312 544 366
lbm 342 404 405 405 361 445 381
sphinx3 640 1642 1209 1141 699 1273 697
Total 8751 250% 167% 156% 113% 195% 130%

(a) Timings (s)

Orig LowFatPtr ASAN
Bench. base base +pow2 base
perlbench 679 633 732 2484
bzip2 871 868 868 946
gcc 906 894 892 3059
mcf 1717 1717 1717 1980
gobmk 29 29 29 466
hmmer 26 31 26 665
sjeng 180 180 180 230
libquantum 99 99 99 442
h264ref 66 66 72 448
omnetpp 173 166 221 CE
astar 335 348 569 1166
xalancbmk 429 496 618 1835
milc 696 704 704 1053
namd 47 49 49 149
dealII 812 839 1042 2257
soplex 442 614 614 1027
povray 5 6 6 424
lbm 419 420 420 514
sphinx3 46 46 46 616
Total 7977 103% 111% 253%

(b) Memory usage (MB)

Figure 4. Experimental results for the SPEC2006 benchmark suite.

clang-3.5). To help keep the comparison as fair as possible,9

we configure AddressSanitizer to only protect against heap over-
flow errors by disabling stack instrumentation, global instrumen-
tation, alloc/dealloc mismatch detection and leak detection. We
choose to compare against AddressSanitizer for several reasons,
namely: prominence (actively used in large projects such as Google
Chrome [13] and Mozilla Firefox), stability, accessibility (already
“built-in” to clang [8]), and works “out-of-the-box” on the SPEC
2006 benchmark suite.

6.1 Results
The experimental results are shown in Figures 4(a) and 4(b).

Our LowFatPtr implementation detected several 23 OOB viola-
tions in 4 of the 19 SPEC 2006 benchmark programs, including 3
functions from perlbench, 17 from gcc, 1 from namd and 2 from
soplex. All of these violations were caused by the programmer in-
tentionally creating OOB-pointers that are passed between contexts
(technically undefined behavior under the C standard), and are de-
tected by the pointer arithmetic instrumentation of Section 4.2. The
OOB-pointers include: using base−1 as a sentinel (perlbench),
accessing arrays via offsets (e.g. using (a−k)[k] to access a[0])
(gcc), and copying objects via pointer difference (soplex). Over-
all we found that such problematic idioms are rare, with only a few
functions affected. For the sake of testing, we disable instrumen-
tation (via blacklisting) for these 23 functions for both LowFatPtr
and AddressSanitizer.

Neither LowFatPtr nor AddressSanitizer detected a read/write
outside of an heap object bounds. This result is in line with ex-
pectations – although some memory errors for SPEC 2006 are
known [13], none correspond to spatial heap errors outside of al-
location bounds.

For AddressSanitizer, the compilation of the omnetpp bench-
mark failed because of a known but as yet unfixed bug.10 This is

9 By default AddressSanitizer protects against multiple types of memory
error, including stack/global overflows, and some temporal memory errors
such as double-free.
10 LLVM Bug #19660.

marked by CE (Compiler Error) in Figure 4. We exclude omnetpp
when comparing results against AddressSanitizer.

6.1.1 Timings
The results (timings) are shown in Figure 4(a). Here, Orig is the
uninstrumented program (using standard libc malloc), Low-
FatPtr+BoundsCheck is the program compiled with the low-fat
allocator and with bounds check instrumentation, and is the pro-
gram compiled using AddressSanitizer. The original timing and the
best instrumented timing are highlighted in bold. For LowFatPtr,
we enable various optimizations (where applicable), including:
• +fdiv the fast division described in Section 5.1;
• +pow2 the power-of-two sized objects described in Section 5.2;
• +w.o. enables writes-only instrumentation described in Sec-

tion 5.3.
The optimizations, where applicable, are cumulative left-to-right.
The fast check and redundant check removal (Section 5.3) are
always enabled for all versions. Only the +w.o. optimization is
supported by AddressSanitizer.

The results highlight the importance of the +fdiv optimization
that replaces slow native division with a fast fix-point arithmetic
alternative (Section 5.1). Without this optimization, our low-fat
pointer representation would be too slow to be practical for many
applications with 150% overall overhead. There is no disadvantage
to the +fdiv optimization and so it is enabled by default.

An alternative to +fdiv is the +pow2 optimization that restricts
object sizes to powers of two. The +pow2 optimization reduces
the overall overhead by a further 11%. However, since the set of
allocation sizes is less granular, the +pow2 has the potential to
increase the overall memory usage of the program (see below). The
writes only (+w.o.) optimization results in a significant reduction
in overhead at the cost of making the bounds protection incomplete.
With all optimizations enabled, the overall overhead is just 13%,
which is low enough to be used in production code.

Our results compare favorably against AddressSanitizer – with
an overall 95% slowdown for the base instrumentation (compared
to 67% for +fdiv) and a 30% slowdown for the (+w.o.) optimiza-
tion. For some benchmarks (e.g. mcf) AddressSanitizer is slightly
better, whereas for others (e.g. perlbench, sjeng) AddressSani-

141

tizer is significantly worse (up to two times slower). These results
show that the low-fat pointer approach, with +fdiv , is viable and
competitive with existing state-of-the-art bounds checking instru-
mentation systems.

6.1.2 Memory Usage
For these experiments, we measure the memory overheads of the
LowFatPtr implementation. For this, we measure the peak resident
set size (RSS), the same method as used in [13]. The rationale
is measure memory actually accessed, rather than virtual address
space which is reserved. We compare against the stdlib malloc
and AddressSanitizer. We note that our test machine uses 48GB of
RAM and therefore has low memory pressure for the SPEC 2006
benchmark suite.

The results (memory) are shown in Figure 4(b). Here we see
that the average memory usage overhead of the base LowFatPtr
implementation is minimal 3% compared to the significant 153%
introduced by AddressSanitizer (ASAN). In the case of gcc, ASAN
takes more than three times the memory of LowFatPtr. The low
memory overhead is explained by several factors, namely:

- Bounds meta-information does not need to be explicitly stored
(hence “low-fat” pointers);

- There are no “poisoned” red-zones appended to allocated ob-
jects. The exception is “guard pages” for large objects, however
these do not consume physical memory resources; and

- The TABLE lookup-table is small (4 physical pages).11

The memory usage under the low-fat allocator is sometimes
better than standard malloc (e.g. for perlbench, omnetpp, etc.)
and sometimes worse (e.g. for astar, soplex, etc.). The reason
is because each allocator has different types of memory overheads.
For example, the low-fat allocator does not need to explicitly store
the allocation size which saves space. On the other hand, standard
malloc can pack different sized objects on to the same physical
pages. As a result, the low-fat allocator tends to favor programs that
allocate many same-sized objects, and may be worse otherwise.
The “best” allocator is program/benchmark specific. One possible
direction for future work is to use memory profiling to specialize
a size configuration Sizes to a specific program, further reducing
overheads.

In addition to the default size configuration, we additionally test
the memory overheads of the +pow2 optimization. As expected,
the less granular allocation sizes leads to an overall increase of
the memory overheads, from 3% to 11%. Some benchmarks were
affected more than others, depending on the allocation pattern of
the tested program. The astar benchmark was worst affected, with
a 64% increase in overall memory usage. The +pow2 optimization
also uses a smaller size configuration Sizes, which can lead to
reduced overheads on some benchmarks (gcc, hmner). Overall the
+pow2 optimization is a classic time versus space trade-off, but
may be worthwhile depending on the application.

Overall we see that the low-fat pointer approach has a minimal
impact on memory usage, and is directly comparable to stdlib
C’s native malloc. In addition to saving memory resources, a
low memory overhead can translate to faster execution times for
systems with high memory pressure.

7. Conclusion
In this paper, we presented a novel low-fat pointer encoding for
heap objects that is optimized for 64-bit architectures (x86_64).
Such pointers can be efficiently mapped to the bounds meta-
information of the corresponding object. We presented a compiler
transform (implemented in LLVM) for bounds check instrumenta-

11 Including the invSize (Section 5.1) or mask (Section 5.2) meta-
information.

tion using our low-fat pointer approach. Experimental results show
our scheme has good performance and low memory usage impact
for the SPEC 2006 benchmark suite.

In addition to performance our low-fat pointer representation
achieves full binary compatibility and modularity support. Our
result is based on two main factors:

- low-fat pointers are regular pointers, and do not change the
types (unlike “fat” pointers) nor the data layout used by the
program; and

- the binary interface of functions does not change.
Furthermore, with careful design, non-fat pointers are compatible
with the instrumented code albeit lacking bounds overflow protec-
tion. Binary compatibility is crucial in practice, where it is not un-
common for real-world code to rely on external dependencies (li-
braries) that are difficult or impossible (for closed-source) to re-
compile.

References
[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds

Checking: An Efficient and Backwards-Compatible Defense Against
Out-of-Bounds Errors. In USENIX Security. USENIX, 2009.

[2] T. Austin, S. Breach, and G. Sohi. Efficient Detection of All Pointer
and Array Access Errors. In Programming Language Design and
Implementation. ACM, 1994.

[3] B. Ding, Y. He, Y. Wu, A. Miller, and J. Criswell. Baggy Bounds with
Accurate Checking. In Software Reliability Engineering Workshops,
2012.

[4] F. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC
Developerś Summit, 2003.

[5] Intel Corporation. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2016.

[6] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A Safe Dialect of C. In Annual Technical Conference.
USENIX, 2002.

[7] A. Kwon, U. Dhawan, J. Smith, T. Knight, and A. DeHon. Low-fat
Pointers: Compact Encoding and Efficient Gate-level Implementation
of Fat Pointers for Spatial Safety and Capability-based Security. In
Computer and Communications Security. ACM, 2013.

[8] LLVM. http://llvm.org, 2016.

[9] S. Nagarakatte. Practical Low-overhead Enforcement of Memory
Safety for C Programs. PhD thesis, 2012.

[10] S. Nagarakatte, Z. Santosh, M. Jianzhou, M. Milo, and S. Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Memory Safety
for C. In Programming Language Design and Implementation. ACM,
2009.

[11] G. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured:
Type-safe Retrofitting of Legacy Software. Transactions on Program-
ming Languages and Systems, 27(3), 2005.

[12] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow
Detector. In Network and Distributed System Security, 2004.

[13] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A Fast Address Sanity Checker. In Annual Technical Con-
ference. USENIX, 2012.

[14] SPEC. https://www.spec.org/cpu2006/, 2016.

[15] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in
Memory. In Security and Privacy, 2013.

[16] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos. Memory
Errors: The Past, the Present, and the Future. In Research in Attacks,
Intrusions, and Defenses. Springer, 2012.

[17] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen. PAriCheck: An Efficient Pointer Arithmetic Checker for C
Programs. In Information, Computer and Communications Security.
ACM, 2010.

142

