
oo7: Low-overhead Defense against Spectre Attacks
via Binary Analysis

Guanhua Wang

National University of Singapore

Sudipta Chattopadhyay

Singapore Univ. of Tech. and Design

Ivan Gotovchits

Carnegie Mellon University

Tulika Mitra

National University of Singapore

Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
The Spectre vulnerability in modern processors has been reported

earlier this year (2018). The key insight in this vulnerability is that

speculative execution in processors can be misused to access secrets

speculatively. Subsequently even though the speculatively executed

states are squashed, the secret may linger in micro-architectural

data structures such as cache, and hence can be potentially accessed

by an attacker via side channels. In this report, we propose oo7, a
binary analysis framework to check and fix code snippets against

potential vulnerability to Spectre attacks. Our solution employs

control flow extraction, taint analysis and address analysis to detect

tainted conditional branches and their ability to impact memory

accesses. Fixing is achieved by selectively inserting a small num-

ber of fences, instead of inserting fences after every conditional

branch. Due to the accuracy in our analysis, oo7 suggests insert-
ing less fences, and is shown experimentally to impose acceptably

low performance overheads; less than 2% performance overhead is

observed in our experiments on GNU Core utilities. Moreover, the

accuracy of the analysis allows oo7 to effectively detect fourteen (14)
out of the fifteen (15) Spectre vulnerable code patterns proposed

by Paul Kocher [6], a feat that could not be achieved by the Spectre

mitigation in C/C++ compiler proposed by Microsoft. While oo7
is both low-overhead and effective, for large scale deployment of

our solution we need to investigate and optimize the time taken

by our compile-time analysis. Finally, we show that similar binary

analysis solutions are possible for detecting and fixing Meltdown.

1 INTRODUCTION
The Spectre [7] and Meltdown [9] vulnerabilities in modern proces-

sors were discovered in 2017 and made public in January 2018. The

attacks that exploit these vulnerabilities can potentially affect al-

most all modern processors irrespective of the vendor (Intel, AMD,

ARM) and the computer system (desktop, laptop, mobile) as long

as the processor performs out-of-order and speculative execution.

Thus these vulnerabilities have far reaching impact and received

enormous attention from both hardware and software communities.

Out-of-order and speculative execution [4] are indispensable

micro-architectural optimizations for performance enhancement,

ubiquitous in almost all modern high-performance processors ex-

cept for the simplest micro-controllers. The basic idea behind out-

of-order execution is to enable the hardware to execute the instruc-

tions in an order that is different from the program order, i.e., the

order in which the instructions appear in the program binary. While

any long-latency instruction (say instruction I) and its dependents

are waiting to complete execution, out-of-order execution enables

to get useful work done by executing in parallel the instructions

that are not dependent on I even if they are further down in the

program order. Speculative execution introduces further aggres-

sive optimization where the conditional branches are predicted

in hardware and the instructions along the predicted branch path

are executed speculatively and out-of-order w.r.t. the conditional

branch. Once the conditional branch direction is resolved and if the

branch was branch was wrongly predicted, the instructions along

the speculative execution path are squashed and the execution pro-

ceeds along the correct path. The key to these optimizations is that

the transient instructions (the out-of-order instructions and the

instructions along the speculative path) do not make any changes to

the architectural states that are visible to the programmer, namely

the registers and memory content, till all the prior instructions in

program order have completed execution and the branch outcome

is known. The temporary results during transient instructions exe-

cution are maintained in internal micro-architectural structures and

caches that cannot be accessed by software through the instruction-

set architecture — the formal and well-defined interface between

the architecture and the software. Thus these micro-architectural

optimizations are supposed to be completely transparent to the

programmer.

Both Spectre and Meltdown exploit out-of-order and speculative

execution to deliberately induce the execution of targeted transient

instructions. The transient instructions are tricked to bring in se-

cret data into the internal micro-architectural states, specifically

the cache. Of course these transient instructions are subsequently

squashed but the secret content in the cache remains. The attacker

then carefully accesses the cache content (that is supposed to be

hidden to the software) through cache side-channel attacks [12].

The mitigation of Meltdown vulnerability requires changes to the

operating system kernel code that can fix the issue completely.

Spectre, however, represents a whole class of attacks. The original

website of Spectre states that “As [Spectre] is not easy to fix, it will

haunt us for a long time." In this work, we focus our effort to identify

program binaries that are vulnerable to Spectre attack and patch

those binaries with minimal performance overhead as a mitigation

technique. We present a comprehensive solution, called oo7 , based
on binary analysis that is both accurate and scalable. As Spectre

attacks exploit speculative execution, a natural thought might be to

prevent speculative execution for every branch or a set of sensitive

branches identified by developers. We show that blindly prevent-

ing speculative execution leads to an unacceptable performance

overhead, let alone the impracticality of relying on developers to

ar
X

iv
:1

80
7.

05
84

3v
2

 [
cs

.C
R

]
 1

7
Ju

l 2
01

8

identify “sensitive" branches. Indeed, the current Spectre mitigation,

as introduced by Microsoft compiler [2], misses most (13 out of 15)

litmust tests for Spectre vulnerabilities [6].

Identifying program binaries and the exact locations in those

binaries that are susceptible to Spectre attack is challenging for mul-

tiple reasons. First, the analysis should work at binary level rather

than at the source code level. This is because the binary represents

the exact code being executed on processor micro-architecture

whose very nature is exploited by Spectre attacks. Binary analysis

remains a difficult endeavor for many reasons, including the diffi-

culty of extracting control flow from program binaries. Due to the

presence of control transfer instructions such as register indirect

jumps in binaries, re-constructing basic program structures such

as control flow graphs itself remains challenging. The recent inter-

est in Spectre and meltdown attacks have raised the prospect of

checking for Spectre vulnerabilities at the binary level. As is shown

by our work, this can be accomplished via control flow extraction,

taint analysis and address analysis at the binary level. In particular,

taint analysis is needed to compute which instructions are attacker

controlled and also for computing data dependencies across instruc-

tions. Address analysis is needed for precise computation of static

data dependencies. Furthermore, as we show in our work, via the

use of address analysis (which memory addresses are touched by

an instruction), we can also estimate the amount of leakage risked

by a Spectre code vulnerability.

Second, the analysis should detect all the different variants of

Spectre. The number of possibilities is endless at high-level pro-

gramming language level as evidenced by the vulnerable code pat-

terns detected by oo7 . This also eliminates the possibility of simple

syntax checking to detect the code patterns. We distill down these

different variants into a set of simple conditions (at binary level)

that should hold good in vulnerable code fragment for Spectre at-

tack to manifest itself. Third, we need inter-procedural analysis

including library code as the different parts of the vulnerable code

pattern can straddle across procedural boundaries. Last but not the

least, the analysis needs to model the transient instructions exe-

cution along the speculative path that has never been required in

traditional program analysis dealing with only programmer visible

execution. We have extended the binary analysis in oo7 to accu-

rately model speculative execution, which is absolutely necessary

to detect Spectre vulnerability.

In summary, we have designed and provided a technical machin-

ery for checking the Spectre attacks, via data dependency analysis

and taint propagation. We show that oo7 is robust enough to de-

tect 14 out of the 15 variants of Spectre attacks proposed as litmus

tests by Paul Kocher [6], whereas Microsoft Visual C++ Compiler

could detect only 2 of the 15 variants [6]. We continue to employ

our checker in search for Spectre attacks in the wild. We tested

over 150 binaries from several real world projects including botan,
coreutils, darknet, gdb, php and redis. Our proposed oo7 ap-

proach analyzes these binaries within 4968 seconds on average,

with the minimum analysis time being 1 second. We note that so

far, no Spectre attacks have been found in the wild. By making

Spectre detection tools such as oo7 available in the public domain,

we hope that the search for zero day Spectre attacks in the wild,

can be substantially accelerated via community participation.

We also evaluated the repair strategies of oo7 on real world

binaries selected from coreutils [3]. Our evaluation reveals that

the runtime overhead introduced by our repair is only up to 1.78%.

This is in stark contrast to a substantial 72% runtime overhead when

speculative execution is prevented for all conditional branches via

fences.

2 BACKGROUND AND MOTIVATION
We first give an overview of the Spectre vulnerability reported

in [7].

Spectre vulnerability. The code fragment in the following ex-

hibits the basic structure of Spectre vulnerability.

void victim_function_v01(size_t x) { //CB (branch)
if (x < array1_size) {

//IM1 (access to array1)
//IM2 (access to array2)
temp &= array2[array1[x] * 256];

}
}

Typically a Spectre vulnerability involves three instructions – (i)
CB: a branch instruction dependent on untrusted input, (ii) IM1: a
memory access (load) pointing to a location of a secret, and (iii)
IM2: a memory access (load or store) where the accessed address

depends on the value of the secret pointed by IM1. The objective
of the attacker is to determine the value of a secret in the victim

function victim_function_v01.
The input x is controlled by an attacker. The key idea is to train

the branch predictor in the execution platform via input x and to

mispredict the branch when x ≥ array1_size . Most modern proces-

sors employ speculative execution as a crucial micro-architectural

feature to boost runtime performance. This means, when the con-

ditional check x ≥ array1_size is mispredicted, the execution may

still continue to execute IM1 and IM2 from the wrong path (i.e.

under the true leg of the conditional x < array1_size). Eventually,
the false outcome of the conditional x ≥ array1_size is known. As
a result, instructions IM1 and IM2 are never completed to affect the

functional state of the program, however, they affect the state of the

cache. The cache state is not flushed due to performance reasons.

This very phenomenon is exploited by an attacker to ex-filtrate the

value of array1[x], a potential secret.
IM1 and IM2 execute speculatively when the check CB fails and

x ≥ array1_size holds. As a result, the address &array1[x] points

to a location outside the bound of array1 and potentially to a secret.
We note that depending on the value of array1[x], the address
array2 + (array1[x]*256) accesses different sets of the cache.

Hence, if array2 is accessible by attacker, then she can launch a

cache side-channel attack to determine the value of array1[x] (i.e.

the secret). Specifically, assume that array2 was not cached before

the memory access IM2. The attacker writes a separate and fairly

simple attack code to access array2[y*256] for all possible values

of y from 0x00 to 0xFF. The attacker observes that array2[y*256]
will result in a cache hit if y = array1[x]. In other words, by timing

the access of array2 via the attack code, an attacker can deter-

mine the value of array1[x] (i.e. the secret) in the victim function

victim_function_v01. Finally, by controlling the value of x, the

2

attacker can point to different locations of the secret and ex-filtrate

the entire secret by cache side-channel attacks.

In this section, we discuss the technical challenges to detect

and fix Spectre vulnerabilities via simple examples. We will then

provide the key insight behind our oo7 approach.

2.1 Challenges in Detecting Spectre
From the viewpoint of software analysis and testing, the detection

of Spectre vulnerability faces the following technical challenges:

(1) More than syntax checking: Spectre vulnerability involves
code patterns whose behaviour can be controlled by un-

trusted inputs. Syntactic checks over program code are un-

likely to pinpoint which parts of the code are controlled by

untrusted inputs, potentially leading to a significant amount

of false positives.

(2) More than intra-procedural analysis: As demonstrated

by Paul Kocher [6], Spectre vulnerable code patterns may

span across multiple procedure boundaries. Restricting anal-

ysis to a single procedure may either miss Spectre vulnera-

bilities (false negatives) or introduces significant number of

false positives.

(3) More than state-of-the-art software testing: Spectre vul-
nerability exploits low-level micro-architectural features,

specifically, the speculative execution. State-of-the-art soft-

ware test execution only follows execution in the program

order. Hence, state-of-the-art software testing will skip Spec-

tre vulnerabilities, leading to false negatives.

(4) Modelingmore thanprogram semantics:As Spectre vul-
nerability exploits micro-architectural features (i.e. specula-

tive execution), it is crucial for an analysis, which is designed

to detect Spectre vulnerability, to accurately understand the

way speculative execution happens. To this end, it is impor-

tant to investigate the number of instructions that can be

executed speculatively.

In the next section, we will introduce simple code fragments

to discuss the aforementioned challenges in more detail. For the

sake of simplicity, we use examples that reflect C-language like

syntaxes. However oo7 directly operates on the binary code to take

into account all compiler optimizations and to accurately reflect

the impact of speculative execution.

2.2 Examples of Spectre Vulnerabilities
Figure 1(a) captures a code fragment of function f() with attacker-

controlled input x. Function f() calls two different functions g()
and h(), as defined in Figure 1(c). For the sake of demonstration,

we assume that neither g() nor h() were inlined by the compiler.

Function g() contains two indirect memory accesses array1[y]
(say IM1) and array2[array1[y]] (say IM2) where IM2 is data-

dependent on IM1. Hence, function g() satisfies two memory-

access-related conditions for launching a Spectre attack, given that

y can be manipulated via an attacker.

Function f’() in Figure 1(b) is similar to function f(), except
that the call to function g() is preceded by a call to function long().
We assume that long() executes a substantial number of instruc-

tions at runtime. We skip the code for long() as it is not relevant

for the rest of the discussion. In the following, we outline the tech-

nical challenges in detecting Spectre vulnerabilities in the context

of the code fragments in Figure 1(a)-(b).

Will syntax checkingwork? Anatural thought to detect Spec-

tre vulnerability might be to exploit the syntactic structure of the

code. This is to discover code patterns exhibiting a conditional

branch (say CB) that encloses both IM1 and IM2. As observed from

Figure 1(a), function f() exhibits two such code patterns for both of
its conditional branches. However, the return value of function h()
is independent of attacker controlled input x. Hence, the first condi-
tional check in f() and the enclosed call g(y), despite capturing a

Spectre-like pattern, they do not manifest any Spectre vulnerability

at runtime. This shows that a naive syntactic check may fail to

accurately detect Spectre-like vulnerabilities in arbitrary binary

code.

Will intra-procedural analysis work? Semantic analysis can

be applied both intra-procedural and inter-procedural. For intra-

procedural analysis, we might assume that any variable changed or

returned via a procedure call is untrusted. For example, in function

f(), we can assume that both variable y (returned by the procedure
call h(x,&z)) and variable z (might be updated by the procedure

call h(x,&z)) are untrusted. This leads the analysis to manifest two

Spectre vulnerabilities, one each for the conditional checks in f().
However, as observed from the definition of function h(), its return
value cannot be influenced by attacker. Hence, the aforementioned

conservative take on intra-procedural analysis raises several false
alarms.

From a different standpoint, we observe that the signature of

Spectre may span across multiple procedure boundaries in func-

tion f(). For example, consider the second conditional check in

function f() that indeed manifests a Spectre vulnerability during

execution. However, to detect such a vulnerability, it is crucial that

the necessary conditions for the Spectre vulnerability are checked

across procedure boundaries. The vulnerability in our example is

similar to the following Spectre litmus test, as proposed by Paul

Kocher and missed by Microsoft compiler mitigation [6].

__declspec(noinline)
void leakByteNoinlineFunction(uint8_t k) {

temp &= array2[(k)* 512];
}
void victim_function_v03(size_t x) {

if (x < array1_size)
leakByteNoinlineFunction(array1[x]);

}

It is likely that the Microsoft compiler mitigation failed to detect the

presence of Spectre vulnerability across procedure boundaries. This

litmus test is accurately detected and fixed by our oo7 approach.

Will state-of-the-art testing work? A different approach to

expose Spectre vulnerabilities will be to leverage the progress on

software testing. To this end, let us consider the use of symbolic

execution to expose Spectre vulnerabilities. Since x is controlled

by attacker, the objective is to execute the code of function f()
while x being a symbolic input. Figure 1(d) captures an excerpt

of the control flow graph (CFG) where the Spectre vulnerability

actually manifests. Along the control flow edges, we also show the

3

void f(unit8_t x) {
uint8_t z = 0;
uint8_t y = h(x, &z);

if (y >= 0 && y < array1_size)
g(y);

if (z >= 0 && z < array1_size)
g(z);

}

void f’(unit8_t x) {
uint8_t z = 0;
uint8_t y = h(x, &z);

if (y >= 0 && y < array1_size)
g(y);

if (z >= 0 && z < array1_size) {
/* very long function call */
long();
g(z);

}
}

uint8_t h(unit8_t x, uint8_t* y) {
unit8_t random;
*y += x;
/* rand() generates a random number */
random = rand() % 256;
if (random < array1_size)

return random;
return -1;

}
void g(uint8_t y) {

int t;
t += array2[array1[y]];

}

Attacker may control
*y through x

(a) (b) (c)

z >= 0 && z < array1_size

call g(z)

t += array2[array1[y]] exit

z < array1_size

z=y ⋀ z < array1_size

Speculation Window Speculation Window

z >= 0 && z < array1_size

call g(z)

t += array2[array1[y]] exit

z >= array1_size

z=y ⋀ z >= array1_size

Speculation Window

z >= 0 && z < array1_size

call long()

instr. from long()
exit

z >= array1_size

call g(z)

(d) (e) (f)

Figure 1: Analyzing Spectre vulnerabilities. ✓ captures a Spectre vulnerability whereas ✗ captures its absence. “Speculation
Window" captures the instruction bandwidth executed speculatively, i.e., after a branch instruction is executed and before
the outcome of the branch is resolved: (a) code fragment where one branch exhibits Spectre vulnerability. Functions g() and
h() are shown in Figure 1(c); (b) code fragment where none of the branches exhibit Spectre vulnerabilities, (c) highlights the
statement to show the taint propagation through attacker controlled input x, (d) since classic symbolic execution does not
model speculative execution, it does not detect the Spectre vulnerabilities in Figure 1(a); (e) invariants passed through the
control flow edges that exposes the Spectre vulnerability in Figure 1(a); (f) the number of instructions in long() goes past the
speculative window. Hence, the Spectre-like code fragment in Figure 1(b) cannot be exploited.

constraints propagated during the symbolic execution. As observed

before the memory accesses via array1 and array2, the control
flow satisfies the invariant y < array1_size . This satisfactorily
passes the array bound checks of array1 for the respective memory

access and does not expose the Spectre vulnerability.

The reason that testing overlooks Spectre vulnerabilities is that

the test execution does not take into accountmicro-architectural fea-

tures, such as speculation, which happens to be the central reason

behind Spectre vulnerabilities. The phenomenon is shown in Fig-

ure 1(e) where memory accesses via array1 and array2 take place

via speculative execution, i.e., while waiting for the false outcome of

branch condition z ≥ 0∧z < array1_size . As a result, thesememory

accesses are executed with the invarianty ≥ array1_size , as shown
alongside the respective control flow edges in Figure 1(e). This leads

to a violation of array bound checks for array1 in function g().
Such a contrived test execution strategy is, however, missing in

state-of-the-art testing tools. We note that the aforementioned ar-

gument is applicable to any testing strategy and not just in the

context of symbolic execution.

Why model micro-architectural features? As explained in

the preceding section, the memory accesses via array1 and array2
(in function g()) manifests Spectre vulnerabilities when they are

executed speculatively. Each processor can only execute a limited

number of instructions speculatively. In particular, the number

of speculatively executed instructions cannot exceed the size of

reorder buffer (ROB) of a processor. In Figure 1(d)-(f), we high-

light such limited window of speculatively executed instructions as

the “Speculation Window". This means if the memory accesses via

array1 and array2 do not fit into the speculation window, then

the Spectre vulnerability cannot occur at runtime.

Figure 1(b) captures the code fragment of function f’(). Similar

to function f(), in f’() a syntactic check will detect two Spectre

vulnerabilities, one each for the conditional checks. Without mod-

eling the speculation window, yet using inter-procedural data flow

analysis, f’() will exhibit one Spectre vulnerability, specifically,

for the second conditional check. In reality, however, this Spectre

vulnerability never occurs, as the memory accesses via array1 and

array2 fall outside the speculation window (cf. Figure 1(f)). This

example shows that it is critical to devise inter-procedural analysis

together with the specific micro-architectural features such as the

speculation window.

2.3 Challenges in Mitigating Spectre
A naive approach to fix Spectre vulnerability is to put fences (e.g.

lfence in x86) after every branch instruction. Fences perform a

serialization operation. In particular, a fence does not execute until

all instructions before it have been completed. Similarly, any in-

struction after the fence can execute only after the fence completes.

As a result, fences restrict the speculative execution (speculation

indeed executes instructions after a branch before the branch com-

pletes) and hence, the exploitation of Spectre vulnerabilities. Such

4

Performance 1

0
1
2
3
4
5
6
7
8
9
10

0

0.5

1

1.5

2

2.5

3

3.5

Th
e

ra
tio

 o
f f

en
ce

 in
st

ru
ct

io
n

(%
)

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e
Ori Fence Ratio

Figure 2: The performance overhead introduced by fence instructions.

an approach will potentially induce substantial overhead at the cost

of security. This is because, speculative execution is an essential

and fundamental technique to improve the runtime performance.

As observed from Figure 1(a), only one conditional check manifests

Spectre vulnerability, while in Figure 1(b), none of the conditional

checks manifest the vulnerability. Blindly inserting fences after a

branch will, therefore, lead to unnecessary performance overhead

in functions f() and f’() without additional security guarantees.

In essence, even though inserting fences stops the exploitation of

Spectre vulnerabilities, such insertion should be carefully guided

to avoid substantial performance overhead. In our oo7 approach,

we provide such guidance automatically via analysis results. This

keeps the runtime overhead at check, yet providing strong protec-

tion against Spectre.

Figure 2 outlines the performance overhead incurs in SPEC2006

benchmarks [5] when fences are inserted for every branch instruc-

tion. On average, the execution time increases by a factor of 1.8,

while the memory fence instructions are only 5.8% of total executed

instructions. Moreover, sjeng4 highlights the largest overhead,

capturing an increased execution time by a factor of 3.25. Our oo7
approach discovers that none of the branches in SPEC2006 bench-

mark is tainted and thus, they do not exhibit Spectre vulnerability.

This result further motivates the requirement of systematic analysis

methods to detect and fix Spectre vulnerabilities.

3 OO7 APPROACH AT A GLANCE
Our proposed oo7 approach broadly revolves around two stages:

(i) Analysis stage, which checks the binary code and discover po-

tential code regions susceptible to Spectre attacks. (ii) Fixing stage,

which automatically synthesizes fences to patch the binary. This is

accomplished via the guidance from the analysis stage.

The analysis stage involves the following steps to detect potential

code regions with Spectre vulnerability:

(1) Detecting CB: We perform an inter-procedural taint analy-

sis where each input arriving from an untrusted source (e.g.

network, file or console commands) is tainted. The propa-

gation of all such taints are tracked as they go through the

different program statements. For instance, in Figure 1(a),

variable x is untrusted and its taint is propagated to param-

eter y in function h() defined in Figure 1(c). This taint is

further propagated to variable z in function f(). The objec-
tive of this stage is to identify the set of branch instructions

CB whose outcome depend on untrusted variable. To this

end, we check whether a branch condition involves tainted

variables. Both in Figure 1(a) and in Figure 1(b), only the sec-

ond conditional check involves tainted variable z. Therefore,
CB contains the second conditional check for function f()
and f’().

(2) Detecting IM1: For a branch instruction br ∈ CB, we check
the reachability of a memory instruction IM1 that depends on
tainted variable. To this end, we launch a depth-first search,

up to the depth bounded by the speculationwindow, to locate

IM1 in a program path reachable from br . Since the search
is bounded by speculation window, it substantially reduces

the possibility to consider IM1 that can never be executed

speculatively. For example, in Figure 1(e), the search from the

conditional branch will go past all instructions in function

g(). This, in turn, locates array1[y] as IM1, as the taint

from the untrusted source x was propagated to variable z in

function f(). This taint, then was propagated to parameter

y of function g(). In contrast, for Figure 1(f), the bounded

search from the conditional check stops before the call to

function g(). Hence, our analyzer does not identify any

instruction as IM1.
(3) Detecting IM2: In the last step, we search for a memory

instruction IM2, which refers to an address depending on the

value accessed by IM1. To this end, we perform a data depen-

dency analysis during the depth-first search from a branch

condition br ∈ CB, as explained in the preceding paragraph.

Specifically, during the depth-first search, if IM1 is identi-
fied, then we check any memory instruction IM2 where the
accessed address is data-dependent on IM1. Moreover, we

check whether such an instruction IM2 is reachable within
the speculation window. For example, in Figure 1(e), the ad-

dress accessed via array2 depends on the value array1[y].
Since array1[y]was identified as IM1, we identify the mem-

ory access via array2 as IM2. Thus, we locate both IM1 and

5

IM2 reachable from the second conditional check in f(), as
identified CB. This triggers a Spectre vulnerability.

In the fixing stage, we walk through the branch instructions

identified in the analysis stage and automatically insert fences only
before these branch instructions. For example, in function f() and

function f’(), our analysis identifies only the second conditional

check in f() to be amenable to Spectre vulnerability. Thus, our

fixing stage inserts only one fence instruction. This is in contrast to

four fences for a naive solution inserting fences after every branch

instruction.

4 METHODOLOGY
In this section, we describe our oo7 approach in detail.

4.1 Foundation
To describe our analysis process, we use the notations in Table 1

for the rest of the paper.

Table 1: Symbols used in describing oo7

Symbol Interpretation
br (inst) true if and only if inst is a branch in-

struction

mem(inst) true if and only if inst is a memory ac-

cess instruction

load(inst) true if and only if inst is a load instruc-

tion

τ (inst) true if and only if instruction inst is

tainted

∆(inst1, inst2) minimum no. of instructions exe-

cuted to reach inst2 from inst1. If

inst2 is unreachable from inst1, then
∆(inst1, inst2) = ∞.

Dep(inst1, inst2) true if and only if instruction inst2 is

data-dependent on inst1

val(X) value located at memory address X

SEW Speculation window for the targeted

platform

We say that an instruction is tainted, i.e., τ (inst) is true, if and
only if the instruction operates on some tainted operands. For

example, in the operation “inst : y := x + z", if either x or z is

tainted, then the instruction inst is tainted and τ (inst) holds.

4.2 Our Approach oo7

In the following, we first formally introduce the Spectre vulnera-

bility checking condition. Then, we will describe the core program

analysis embodied within the oo7 approach to check the satisfia-

bility of such condition.

4.2.1 Checking Condition. For a given target program, our

oo7 approach analyzes the program to detect Spectre vulnerabilities.

To this end, oo7 aims to locate instructions CB, IM1 and IM2 such

that the following condition Φspectre is satisfied:

Φspectre ≡ br (CB) ∧ load(IM1) ∧mem(IM2)∧
τ (CB) ∧ τ (IM1) ∧ τ (IM2)∧

(∆(CB, IM1) ≤ SEW) ∧ (∆(CB, IM2) ≤ SEW) ∧
Dep(CB, IM1) ∧ Dep(IM1, IM2)

(1)

Intuitively, the first two lines of Φspectre capture the presence of
tainted branch instructions CB and tainted memory-access instruc-

tions IM1 and IM2. The last two lines show that IM1 and IM2 are
located within the speculation window of the branch instruction

CB, and they are data-dependent.

4.2.2 Taint Analysis. We use taint analysis [1] to determine

whether conditional branch instructions (e.g. CB) and the memory-

access instructions (e.g. IM1 and IM2) can be controlled via un-

trusted inputs. In the following, we outline the taint propagation

policies used to detect Spectre vulnerabilities.

Default Taint Policies. The default taint propagation policy con-

siders the value-to-value taint propagation. Concretely the following
rules are followed while propagating value taints:

• Computation instruction e.g. op(X, y, z): The operation
“op" works on X , y and finally computes the output z. If X is

tainted, then the taint is directly propagated to z.
• Load instruction e.g. Load(X, y): The operation load fetches
the value from memory address X to register y. If val(X) is
tainted, then the register y is tainted.

• Store instruction e.g. Store(y, X): The operation store
transfers the value in register X into memory address y. If
X is tainted, then val(y) is tainted.

Pointer to Value Taint Propagation. After discovering the tainted

branch instruction i.e., IB, we temporarily enable pointer to value

taint propagation. This is to locate IM1 and IM2. For instance, con-
sider the load operation Load(X, y), which loads the value val(X)
to a register y. If the address X is tainted, then we temporarily

enable the taint propagation from address X to register y. We ter-

minate the address to value taint propagation if IM1 and IM2 are
not located within the speculation window SEW . We note that it is

sufficient to track value taints for detecting CB. This is because, the
purpose of Spectre attack is to control the branch outcome of CB
via untrusted input(s). Thus, the propagation of value taints from

the untrusted inputs will detect the presence of CB.

4.2.3 ProgramAnalysis toCheckΦspectre . Algorithm 1 out-

lines our approach to detect Spectre vulnerabilities in arbitrary bi-

nary programs. In particular, we aim to find the set of triplets of the

form ⟨CB, IM1, IM2⟩ that satisfy the condition Φspectre for Spectre

vulnerability (cf. Equation 1). While analyzing the program, the

variable step monitors the satisfiability status of Φspectre . Once the
checker finds instances of CB, IM1 and IM2, it records the presence
of Spectre vulnerability into Φ.

The checker maintains the program state into GS after interpret-
ing an instruction inst . The program state is further used to prop-

agate the taints according to the policy described in Section 4.2.2.

For each tainted instruction inst , i.e., when τ (inst) holds, our anal-
ysis invokes oo7.check . This is to check whether Φspectre can be

6

Algorithm 1 Spectre Detection Algorithm

Input: P : Program binary

Output: Φ: A set of triplets of the form ⟨CB, IM1, IM2⟩ capturing Spectre vulnera-
bilities

1: Φ← ∅;
2: TS.policy ← VtoV ▷ Taint policy set value-to-value

3: step← None ▷ Initialize Spectre detection stage

4: Let inst be the first instruction of P
5: while inst , exit do
6: GS← Interpreter.exe(inst) ▷ GS: Global State

7: TaintEngine.taint(inst, GS) ▷ propagate taints

8: if τ (inst) then ▷ oo7 is invoked only for tainted instruction

9: DS← oo7.check(inst) ▷ DS: Detector State

10: end if
11: inst← P .next() ▷ fetch next instruction

12: end while
13: procedure oo7 .check(inst)
14: step← DS.step() ▷ Checks the stage of detection

15: if br (inst) then ▷ check for CB
16: DS← DS.setCB(inst) ▷ recognize that inst might capture CB
17: step← STEP_CB ▷ progress the detection stage to CB
18: TS.policy← PtoV ▷ enable pointer-to-value taint

19: end if
20: if (load(inst) ∧ step = STEP_CB) then
21: cb← DS.CB() ▷ get CB from detection state

22: if (Dep(cb, inst) ∧ ∆(cb, inst) ≤ SEW) then ▷ check for IM1
23: DS← DS.setIM1(inst) ▷ recognize that inst might capture IM1
24: step← STEP_IM1 ▷ progress the detection stage IM1
25: end if
26: end if
27: if (mem(inst) ∧ step = STEP_IM1) then
28: DS← DS.setCB(inst) ▷ get CB from detection state

29: if (Dep(cb, inst) ∧ ∆(cb, inst) ≤ SEW) then ▷ check for IM2
30: DS← DS.setIM2(inst) ▷ recognize that inst might capture IM2
31: Φ ∪ = ⟨DS.CB(), DS.IM1(), DS.IM2()⟩ ▷ catch Spectre

32: step← None ▷ reset checker

33: TS.policy← VtoV ▷ disable pointer-to-value taint

34: end if
35: end if
36: if (step = STEP_CB ∧ ∆ (DS.CB(), inst) > SEW) then ▷ Outside SEW
37: step← None ▷ Reset detection beyond speculation window

38: TS.policy← VtoV
39: end if
40: if (step = STEP_IM1 ∧ ∆ (DS.CB(), inst) > SEW) then ▷ Outside SEW
41: step← None ▷ Reset detection beyond speculation window

42: TS.policy← VtoV
43: end if
44: return DS
45: end procedure

satisfied. As shown in Algorithm 1, the procedure oo7.check in-

volves first three conditional blocks to check the presence of CB,
IM1 and IM2, respectively. Within the third conditional block, if

the presence of IM2 is detected, then Φspectre is satisfied. This, in

turn, captures the presence of Spectre vulnerability. The checker is

then reset (i.e. step is assigned to None) to continue hunting more

Spectre vulnerabilities.

The last two conditional blocks in oo7.check reflect scenarios

where IM1 or IM2 are not discovered within the speculation window
of branch CB. Hence, in such scenarios, the checking stage is reset

(i.e. step is assigned toNone) and oo7.check progresses the checking

stage only when another tainted branch is detected in its first

conditional block.

Figure 3 highlights how Spectre vulnerability is detected via

Algorithm 1. As observed from Figure 3(c), despite the presence

of tainted branch b1, there is no spectre vulnerability surround-

ing b1. This is because of the absence of respective IM1 and IM2
that are necessary for Φspectre to be satisfiable. Finally, from the

(a).	 Normal	 instruc0on	 sequence	

(b).	 Instruc0on	 sequence	 aHer	 taint	

(c).	 Instruc0on	 sequence	 with	 specula0ve	 execu0on	

SEW	 SEW	 SEW	

i0	 b0	 m0	 i1	 i2	 i3	 b1	 b2	 i4	 i5	 i6	 i7	 m1	 m2	 m3	 m4	

i0	 b0	 m0	 i1	 i2	 i3	 b1	 b2	 i4	 i5	 i6	 i7	 m1	 m2	 m3	 m4	

i0	 b0	 m0	 i1	 i2	 i3	 b1	 b2	 i4	 i5	 i6	 i7	 m1	 m2	 m3	 m4	

Specula0ve	 execu0on	 window:	 SEW=3	

Memory	 access	 branch	 Others	

Figure 3: Workflow of Spectre detection. (a) an arbitrary se-
quence of instructions, (b) tainted instructions shown via
dark blocks, (c) Spectre vulnerability is detected with specu-
lation window SEW=3

tainted branch b2, we can locate memory accesses m3 and m4within
the speculation window SEW . Moreover, b2, m3 and m4 satisfy the

checks for CB, IM1 and IM2, respectively, in the context of Φspectre .
Hence, the sequence ⟨b2,m3,m4⟩ triggers a Spectre vulnerability.

4.2.4 Detecting variants of Spectre vulnerability. In the

preceding section, we discussed the detection of the basic version of

Spectre vulnerability. As discussed by the inventors of Spectre, the

vulnerability can also be exploited via indirect branch instructions.
For example, in indirect branches, the branch target address may

reside in a register or memory. Hence, such branches may lead the

program control to reach multiple destinations at runtime. If the

branch predictor is trained with attacker preferred addresses, then

during speculation, the control may reach to the attacker preferred

address. This might force the program to execute an attacker code.

This is a powerful attack, yet we can easily catch such Spectre

vulnerability within our oo7 framework. In particular, for each

indirect branch in the binary code, we check whether it is tainted.
A tainted indirect branch reflects that the attacker can control the

target of the branch instruction, leading to the potential execution

of malicious code during speculation.

Our implementation of oo7 considers both variants of Spectre

vulnerabilities, i.e., spectre vulnerabilities exhibiting the sequence

⟨CB, IM1, IM2⟩ and spectre vulnerabilities via indirect branches.

Hence, oo7 is capable to detect both these variants during the

binary analysis.

4.2.5 Quantifying the Leakage. oo7 not only detects Spectre
vulnerabilities, but also quantifies the potential leakage of informa-

tion caused by each detected vulnerability. To this end, we observe

that the index of memory access IM1 (i.e. the index of array1 in a

typical Spectre vulnerability) is used to point to secret bytes. Hence,

if we can compute the range of values such an index can hold over

different program executions, then we can quantify the potential

leakage of information.

As an example, consider the Listing 1 where the function victim
exhibits a typical Spectre vulnerability. Let us assume that set of

7

values possessed by the parameter x is Valuex . Thus, |Valuex | −
array1_size captures the amount of memory that can be read by an

attacker who exploits a Spectre vulnerability in function victim.
Let us assume that we abstract the set of values of a variable

by a set of intervals. Considering Listing 1, we observe that vari-

able b holds values {(100, 200], [20, 20]} before the function call

victim(b). Similarly, variable c holds values {(50, 100]} before the
function call victim(c). Since, function victim is called from dif-

ferent contexts, values of parameter x must take into account both

these calling contexts. To this end, values of x can be computed as

a set union of values arriving via all calling contexts. Therefore, we

can abstract away the set of values of x via {(100, 200], [20, 20]} ∪
{(50, 100]} = {(50, 200], [20, 20]}. This means an attacker can read

at most 151 bytes via x.

Listing 1: An example for VSA.
/ ∗ a S p e c t r e v u l n e r a b i l i t y f u n c t i o n ∗ /
void v i c t im (in t x) {

i f (x < a r r a y 1 _ s i z e)

temp = a r r ay2 [a r r ay1 [x]] ;

}

void foo (in t a) {

in t b , c ;

i f (a > 1 0 0) {

b = a ;

} e l se {

c = a ; b = 2 0 ;

}

i f (b <= 200) v i c t im (b) ;

i f (c > 5 0) v i c t im (c) ;

}

We use value set analysis [11] on binary code to quantify the

leakage as described in the preceding paragraph.

4.2.6 Code repair. In the following, we present three different
repair strategies to automatically fix Spectre vulnerabilities.

Memory fence. The first and simplest repair strategy is to inject

serializing instructions (e.g memory fences) after the conditional

branch CB. The original article describing Spectre attacks [7] sug-
gests to insert memory fences following each conditional branch

and its destination. Thanks to our analysis, we have the exact se-

quence ⟨CB, IM1, IM2⟩ vulnerable to Spectre attacks. As a result,

we can accurately locate the program point where the memory

fence should be inserted. In particular, we insert memory fences

following CB instruction and immediately before the execution of

IM1. This prevents execution from loading the secret value into the

cache speculatively. Nevertheless, inserting memory fences may

affect the overall program performance. However, we note that

oo7 inserts memory fences only for the branches identified as CB
(via Algorithm 1), instead of inserting fences after each conditional

branch. We show empirically that such a strategy has acceptable

performance overhead.

Inserting NOP instructions. Our second repair strategy is to insert
NOP instructions between CB and IM1. For instance, consider the
example shown in Figure 4(a). As observed in Figure 4(b), we can

insert four NOP instructions to make the distance between CB and

CB IM1 IM2

CB IM1 IM2nop nop nopnop

SEW

Distance: 4

(a)

(b)

Figure 4: Use NOP instruction to fix Spectre vulnerabilities.

redundant	 data	
A]ack	 range	

Secret	

array1	

array1	 +	 x	

Figure 5: Padding redundant data to prevent an attacker ac-
cessing the secret

IM1 going beyond the speculation window (i.e. SEW). This results in

a Spectre vulnerability that cannot be exploited for an architecture

with speculation window SEW . In general, for each detected CB,
we insert SEW − ∆(CB, IM1) number of NOP instructions to fix the

respective Spectre vulnerability.

Padding redundant data. Both repair strategies, as mentioned

in the preceding paragraphs, negatively affect the performance

of the victim program. It is, however, possible to repair Spectre

vulnerability without any performance overhead. In particular, oo7
quantifies the leakage (cf. Section 4.2.5) to investigate the range of

memory touched by an attacker. We leverage this information to

pad some redundant data in such a fashion that the attacker is never

able to access the secret value. This is outlined in Figure 5. The

green area is the base array used to access the secret (i.e. array1 in
Spectre vulnerability) and the red area contains the secret data. The

redundant data is padded between array1 and the sensitive area

holding the secret. We note that the attack range computed by oo7
is an over-approximation. As a result, the padded data guarantees

that the attacker is never able to access the secret. Nevertheless, the

downside of this repair strategy is the associated memory overhead.

Moreover, the location of the base array cannot be automatically

identified in the source code. Hence, this repair strategy can only

be performed manually.

8

Taint
analysis

Taint
Sources
list

BAP

Spectre
Detector

Code
repair

Angr LLVM

Leakage
evaluation

CB , IM1, IM2

Weakness
code
fragments

AST

A B

+

Taint source
matcher

Taint sources

Binary

VSA

*.asm with
embedded
source code

Weakneess
Code

extraction
Objdump

Attack range

Repair
Strategies

New
BinaryCompiler

Source
code

Report

Figure 6: Overview of oo7 framework.

5 IMPLEMENTATION
Figure 6 provides an overview of oo7 framework. oo7 contains

three main modules: a Spectre detection module for detecting the

Spectre vulnerability, a leakage evaluation module for quantifying

the information leakage. This provides a metric for selecting the

repair strategy in the code repair module. Finally, the code repair

module fixes the Spectre vulnerabilities in the source code given

the source code is available.

We adopt BAP [1] as our primary taint analysis platform (cf.

Section 4.2.2). BAP provides a toolkit for implementing automated

static binary analysis and it supports multiple architectures such as

x86, x86-64, ARM and etc. In our oo7 framework, BAP first takes a

binary program and the taint sources as inputs. The taint sources

are a subset of the taint source list. The list of taint sources is filtered

by the taint source matcher according to the symbol table of the

input binary. A taint source is an API that imports the data from an

untrusted channel such as network, user input and the file reader

interface.

Interpreter

Global States

Observations

Local
states

Taint engine

Local
states

Spectre
Detector

Local
states

Other Obs
….

…

BAP Primus

Interpreter events

Figure 7: The architecture of the Spectre detection module.

The detailed architecture of the Spectre detection module (cf.

Section 4.2.3) is outlined in Figure 7. Primus is a micro-execution

framework in BAP that can be used to interpret a program. The

core component of Primus is the Interpreter. It emulates the ex-

ecution of a program and provides several interfaces to extract

crucial information during the interpretation. Such interfaces use

a publish/subscriber architecture to watch the interpreter events.

The subscribers are allowed to listen to arbitrary changes in the

interpreter state (i.e. Global states). The subscriber also has its own

local states that can be shared with other subscribers.

BAP propagates the taints by considering all possible execu-

tion scenarios. Loops are unrolled up to a certain depth and might

introduce a source of unsoundness in oo7 if the unrolling depth

is optimistic. However, with correctly provided loop bounds, this

source of unsoundness can be easily eliminated. During the static

analysis, BAP wakes up the specific subscriber when analyzing the

events registered by the subscriber. For example, the taint engine

is invoked by the analysis when it completes the interpretation of

an instruction (post-execution event). When the subscriber of taint

engine is invoked, it checks the taint data from the taint source

and propagates it if the instruction satisfies the taint policy (cf.

Section 4.2.2). The Spectre detector module is invoked by BAP inter-

preter after the post-execution branch and post-execution-memory

events. Spectre detector checks the state of the interpreted instruc-

tion in the light of satisfying the condition Φspectre explained in

Equation 1.

The leakage evaluation module (cf. Section 4.2.5) is implemented

on the Angr [11]. Angr is a python-based framework combining

both static and dynamic symbolic analysis for themulti-architecture

binary.

Our Spectre detection directly works the binary code. Once a

vulnerable code fragment is detected in the binary, we locate the

corresponding source code fragment for repair. To this end, we

compile the binary with debug option (e.g “-g" in gcc compiler).

Hence, the disassembled binary code is embedded with the source

code fragments. The source code fragments surrounding the Spec-

tre vulnerable code is extracted. For matching these code fragments

and automatically repair them in the source code, we implement a

9

method on top of LLVM [8] compiler infrastructure. In particular,

we construct an abstract syntax tree (AST) for both the victim pro-

gram code and the extracted code fragments capturing the detected

Spectre vulnerability (via Algorithm 1). We locate the branch in-

struction involving Spectre (i.e. CB) by matching the AST of the

Spectre code with the AST of the victim program code. The AST of

the victim code is then modified directly by inserting lfence or nop
instructions to repair the Spectre vulnerability (cf. Section 4.2.6).

6 EVALUATION
This section presents detailed evaluation of oo7 . We also discuss

our experiences in finding Spectre vulnerabilities in the wild.

Experimental setup. In Section 4, we proposed an accurate

checking condition Φspectre (cf. Equation 1) for detecting Spectre

attacks that use the CPU cache as a covert channel. In particular, the

memory access IM2 uses the cache convert channel to ex-filtrate

the secret. However, as hinted by Paul Kocher [6], there might

exists covert channels other than caches. This means, it might be

possible to ex-filtrate the secret via other covert channels even

in the presence of only the tainted conditional branch CB and a

tainted memory access IM1 located within the speculation window

of CB. Formally, this is captured as a weaker variant Φweak
spectre of

our original condition Φspectre as follows:

Φweak
spectre ≡ br (CB) ∧ load(IM1)∧

τ (CB) ∧ τ (IM1)∧
(∆(CB, IM1) ≤ SEW) ∧

Dep(CB, IM1)

(2)

In our evaluation, we aim to detect Φweak
spectre to broaden the hori-

zon of potential Spectre vulnerabilities. We note that the number

of fixes generated with Φweak
spectre is certainly bounded by the fixes

generated with Φspectre . Consequently, the runtime overhead due

to oo7 fixes is an upper bound on the runtime overhead to prevent

Spectre attacks launched using cache covert channels.

We evaluated oo7 on an execution platform embedded with a

Sandy bridge Macro-Architecture CPU E2620. This CPU has 168

reorder buffer (ROB) entries. The ROB entries are shared by all

hardware threads except that eight entries are reserved for non-

speculative execution. Hence, during the evaluation of oo7 , we set
the speculation window (i.e. SEW) to 160.

Research questions. Specifically, our evaluation of oo7 inves-

tigates the following research questions:

(1) RQ1: How effective is oo7 in detecting Spectre vulnerabili-

ties in binary code?

(2) RQ2:How efficient is the repair strategy introduced by oo7?
(3) RQ3:What is the time taken by oo7 to detect and fix Spectre

vulnerabilities?

6.1 RQ1: Effectiveness
The latest Microsoft Visual C++ compiler [2] has integrated a

/Qspectre switch for mitigating a limited set of potentially vulner-

able coding patterns related to the Spectre vulnerabilities. Specifi-

cally, after compiling an application with /Qspectre enabled, the

Visual C++ compiler attempts to insert an lfence upon detecting

Spectre code patterns.

Paul Kocher [6] has evaluated the Visual C++ compiler by us-

ing Spectre example code from the original publication describing

Spectre [7] and 14 other variants. The evaluation shows that only

two of the Spectre vulnerable examples are identified and repaired

by the Visual C++ compiler.

For testing the effectiveness of oo7 , we also run the 15 Spectre

vulnerable examples created by inventors of Spectre. Our evaluation
reveals that 14 out of 15 examples are identified by oo7 as Spectre
vulnerabilities. In the following, we will discuss a few such examples

that are accurately detected by our oo7 approach and missed by

the Visual C++ compiler.

The following example (example v03 [6]) involves Spectre code

involving a procedure call:

__declspec(noinline)
void leakByteNoinlineFunction(uint8_t k) {

temp &= array2[(k)* 512];
}
void victim_function_v03(size_t x) {

if (x < array1_size)
leakByteNoinlineFunction(array1[x]);

}

Our oo7 approach identifies that both the conditional branch and

the argument to leakByteNoinlineFunction are tainted. Conse-
quently, the vulnerability is exposed by oo7 .

Another example (example v04 [6]) uses an array1 index data-
dependent on untrusted input x:

void victim_function_v04(size_t x) {
if (x < array1_size)

temp &= array2[array1[x << 1] * 512];
}

This example differs from the original Spectre code [7] that it uses

an index x << 1 instead of using x directly. However, due to our

taint analysis, x << 1 is accurately identified to be tainted. This

makes both the conditional branch and array1[x << 1] to be

tainted, leading to a Spectre vulnerability.

The undetected example (example v13 [6]) contains code pat-

terns that exhibit control dependency between tainted data and

untainted code as follows:

__inline int is_x_safe(size_t x) {
if (x < array1_size)

return 1;
return 0;

}
void victim_function_v13(size_t x) {

if (is_x_safe(x))
temp &= array2[array1[x] * 512];

}

In this example, the conditional branch in the victim function

victim_function_v13 should be tainted, as the return value of

is_x_safe(x) is controlled via untrusted input x. However, this
is a special case, as the return value is not data-dependent on x.
Instead, the return value is manipulated via the control dependency

10

Table 2: Program characteristics

Program

Binary

Size (Byte)

Analysis

time (s)

Conditional

Branches

Tainted

⟨CB, IM1⟩
Max NOP

inserted

cat 101200 82 66 2 156

cksum 93848 56 20 4 152

head 115040 198 107 5 154

touch 186264 336 37 3 136

tac 109240 162 62 13 142

factor 178632 272 147 15 155

ptx 169272 486 124 17 153

on x. Our current implementation does not support taint propaga-

tion via control dependency. As a result, we are unable to reveal

the Spectre vulnerability in this example. This, however, does not

significantly limit the application of oo7 , as a precise control de-
pendency tracking will automatically enhance the effectiveness of

oo7 for detecting Spectre vulnerabilities.

6.2 RQ2: Performance Overheads
To stress test the repair strategies of oo7 , we evaluate it with real

world applications. Specifically, we selected several binaries from

project coreutils [3] to compare the runtime performance of our

repair strategies with respect to the runtime performance of insert-

ing fences after all branches. Table 2 outlines some salient features

of the selected binaries for our evaluation. In particular, we list the

number of conditional branches, as well as the number ⟨CB, IM1⟩
pairs that are tainted. As observed, the number of tainted ⟨CB, IM1⟩
pairs is substantially lower than the number of conditional branches.

We also note that the tainted ⟨CB, IM1⟩ pairs are not true positives.
However, to check the runtime overhead of our mitigation, we

employ our repair strategies for any potential Spectre vulnerability

detected by oo7 . Specifically, we employ the insertion of lfence
and NOP instructions, as discussed in Section 4.2.6. Table 2 also out-

lines the maximum number of NOP instructions inserted over any

tainted ⟨CB, IM1⟩ pairs. Since we did not identify any secret data

in the chosen subject binaries, we did not use our repair strategy

that involves the padding of redundant data (cf. Figure 5).

Figure 8 demonstrates the normalized execution time for various

repair strategies employed by oo7 . As observed from Figure 8, the

average runtime overhead is 72% when fences are inserted at all

conditional branches. In contrast, the repair strategy of oo7 only

incurs 1.57% and 1.78% performance overhead on average for repair

strategies inserting lfence and NOP instructions, respectively. We

also count the number of executed lfence instructions. To this

end, we use pin tool [10]. The marker lines in Figure 8 captures

the number of executed lfence instructions with respect to the

total number of instructions executed. When lfence is inserted

after each conditional branch, we observe that the average ratio

of executed lfence is 2.1% with respect to the total number of

executed instructions. With our oo7 approach, however, this ratio

is a negligible 0.001%.

6.3 RQ3: Analysis and Fixing Time in oo7

The time taken by our analysis engine depends on the size and

complexity of the binary. In the selected programs (cf. Table 2), ptx
consumes the longest time (486s). This is due to its large binary

size (169272 bytes). Moreover, ptx contains several complex loop

structures that further introduces overhead to our analysis. Table 2

also outlines the time taken to generate the mitigation code using

lfence and NOP instructions. We observed that the generation of

repair code is efficient and it always finishes within 10 seconds.

To further evaluate the scalability of our analysis method, we

have chosen 150 binaries in project botan, darknet, gdb, php and
redis from the Google oss-fuzz project. We have not yet found

any real Spectre vulnerabilities in these projects. To analyze these

binaries for detecting Φweak
spectre , our oo7 approach took an average

of 4968 seconds, with a maximum and minimum detection time of

30 hours and 1 seconds, respectively.

7 THREATS TO VALIDITY
The effectiveness of oo7 depends on the following crucial factors:

(1) The current implementation of oo7 does not accurately track
the control dependency. As a result, we might miss some

Spectre vulnerabilities, as observed during our evaluation.

We consider this threat to be attributed to the coverage and

precision of taint analysis. In future, a more accurate taint

analysis engine will automatically benefit our proposed oo7
approach.

(2) oo7 relies on BAP, which, in turn incorporates a taint analy-

sis engine. The taint analysis statically interprets the code

by unrolling loops up to a certain depth. For optimistic loop

unrolling, therefore, our oo7 approach might introduce false

negatives. However, with correct or pessimistic loop bound

supplied to BAP, such a threat to our approach can be elimi-

nated.

(3) oo7 needs to set the speculation window SEW for analy-

sis. We note that SEW depends on the execution platform.

Hence, incorrect configuration of SEW may result in both

false positive and false negatives. In our experiments, we

set SEW to be the maximum length of speculation window

(bounded by the size of reorder buffer) in commodity x86
processors.

(4) Our repair strategy works on modifying the source code.

To this end, we need to map the binary code with the re-

spective source code fragments. In the absence of source

code, oo7 will not be able to fix the Spectre vulnerabilities.

Nevertheless, it will still be able to detect the vulnerabilities

for arbitrary binary code. This can be used to send reports

to the developers when source code is unavailable.

8 COMBATTING MELTDOWN
Meltdown is a recently discovered vulnerability which can exploit

the side effects of out-of-order-execution [9]. Meltdown does not

rely on the software vulnerabilities and it can be launched directly

from the attacker code. Although the primary objective of oo7 is to

detect Spectre vulnerability, we can easily adapt to detect meltdown

signatures in potentially attack code.

For launching Meltdown, the attacker aims to load value from

a kernel address ka. This, of course, would result in an exception.

However, exploiting the out-of-order paradigm of execution, the

value from the address ka might already be brought into the cache

11

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

cat cksum head touch tac factor ptx AVG

Ra
tio

 o
f f

en
ce

 in
st

ru
ct

io
ns

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

Ori ALL SF FN AFR SFR

Figure 8: Comparing the runtime overhead due to mitigation introduced by oo7. Ori=Original program, ALL=inserting fences
after all conditional branches, SF=inserting fences after Spectre branches, FN=inserting NOP instructions after Spectre branches,
AFR= the ratio of fence instructions in execution of ALL, SFR=the ratio of fence instructions in execution of SF.

before the exception is raised. This cached value, then, can be ex-

filtrated via standard cache side-channel attacks (e.g. using a probe

array array2 in the Spectre code).

Let us assume that KA captures the set of sensitive addresses

that the attacker does not have permission to access. For example,

KAmight capture the set of kernel memory addresses. A meltdown

signature is detected if a load instruction L1 points to an address in

KA and a memory access IM1 is data-dependent on L1. Specifically,
the detection of Meltdown is captured via the condition Φmeltdown

Φmeltdown ≡ load(L1) ∧mem(IM1)∧
addresss(L1) ∩ KA , ∅∧

Dep(IM1, L1)
(3)

where addresss(L1) captures the set of addresses accessed by load

instruction L1. We use value set analysis [11] to detect the set

of values/addresses accessed by an instruction. This computes a

sound over-approximation of addresss(L1). If any kernel address

belongs to the set addresss(L1), then the program dependency graph

is checked to discover IM1 dependent on L1.
We note that the original meltdown code involves flush instruc-

tion (to flush the probe array from the cache) and RETSC instruction
(to time the access of probe array during IM1 access). Detecting the
presence of these instructions is straightforward and we remove it

from Φmeltdown for brevity.

9 CONCLUSION
In this report, we have designed, developed and evaluated oo7
for detecting Spectre vulnerabilities in arbitrary binary code. Our

approach is employed post-compilation to take into account all

compiler optimizations. We envision that a systematic analysis is

crucial both for detecting Spectre vulnerabilities and to repair them

with minimal performance overhead.

For detecting Spectre vulnerabilities in the wild and promote

further research in the area, we have made our Spectre vulnerability

detection code accessible via the following password protected

web-site (password to access the website is available on request).

http://www.comp.nus.edu.sg/~abhik/ftp/oo7/

ACKNOWLEDGMENTS
This research is supported in part by the National Research Foun-

dation, Prime Minister’s Office, Singapore under its National Cy-

bersecurity R&D Program (Award No. NRF2014NCR-NCR001-21)

and administered by the National Cybersecurity R&D Directorate.

The research is also partially supported by SUTD research grant

no. SRIS17123.

REFERENCES
[1] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. BAP:

A binary analysis platform. In International Conference on Computer Aided
Verification, pages 463–469. Springer, 2011.

[2] Microsoft community. C++ developer guidance for speculative exe-

cution side channels. https://docs.microsoft.com/en-us/cpp/security/

developer-guidance-speculative-execution, 2018.

[3] GNU. Coreutils. https://github.com/coreutils/coreutils, 2018.

[4] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2017.

[5] John L Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[6] Paul Kocher. Spectre mitigations in microsoft’s C/C++ compiler. https://www.

paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html.

[7] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In

40th IEEE Symposium on Security and Privacy (S&P’19), 2019.
[8] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization,
page 75. IEEE Computer Society, 2004.

[9] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.

In 27th USENIX Security Symposium (USENIX Security 18), 2018.
[10] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[11] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in

Binary Analysis. In IEEE Symposium on Security and Privacy, 2016.
[12] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low noise,

L3 cache side-channel attack. In USENIX Security Symposium, volume 1, pages

22–25, 2014.

12

http://www.comp.nus.edu.sg/~abhik/ftp/oo7/
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://github.com/coreutils/coreutils
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges in Detecting Spectre
	2.2 Examples of Spectre Vulnerabilities
	2.3 Challenges in Mitigating Spectre

	3 oo7 Approach at a Glance
	4 Methodology
	4.1 Foundation
	4.2 Our Approach oo7

	5 Implementation
	6 Evaluation
	6.1 RQ1: Effectiveness
	6.2 RQ2: Performance Overheads
	6.3 RQ3: Analysis and Fixing Time in oo7

	7 Threats to validity
	8 Combatting Meltdown
	9 Conclusion
	References

