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Abstract. In cloud computing, where clients are billed based on the consumed
resources for outsourced tasks, both the cloud providers and the clients have the
incentive to manipulate claims about resource usage. Both desire an accurate and
verifiable resource accounting system, which is neutral and can be trusted to re-
fute any disputes. In this work, we present VERICOUNT — a verifiable resource
accounting system coupled with refutable billing support for Linux container-
based applications. To protect VERICOUNT logic, we propose a novel approach
called self-accounting that combines hardware-based isolation guarantees from
trusted computing mechanisms and software fault isolation techniques. The self-
accounting engine in VERICOUNT leverages security features present in trusted
computing solutions, such as Intel SGX, to measure user CPU time, memory,
I/O bytes and network bandwidth while simultaneously detecting resource usage
inflation attacks. We claim three main results. First, VERICOUNT incurs an aver-
age performance overhead of 3.62% and 16.03% over non-accounting but SGX-
compatible applications in hardware and simulation mode respectively. Next, it
contributes only an additional 542 lines of code to the trusted computing base.
Lastly, it generates highly accurate, fine-grained resource accounting, with no
discernible difference to the resource measuring tool available with the OS.

1 Introduction

Verifiable resource accounting is a security primitive that checks whether the measured
resource accounting (e.g., CPU cycles, memory, network bandwidth, or I/O resources)
of cloud computing infrastructure is accurate for an outsourced computing task. In to-
day’s “pay-as-you-use” model of cloud computing, where clients are billed based on
the usage of the computing resources, verifiable resource accounting is increasingly de-
sirable [12]. As the accounting result determines the final bill, both a cloud provider
and a client have strong motivation to manipulate the results in favor of their economic
interests; e.g., cloud providers overcharge clients or clients try to be undercharged. This
demands for a refutable billing system where denying charges is possible based on a
decision from a neutral backdrop. In the last decade, serious concerns have been raised
? Research done when visiting National University of Singapore



about the billing problem in an untrusted cloud model [12, 15, 34, 26]. Several attacks
such as mis-attribution of resources, false accounting, tampering execution to increase
resource utilization have been demonstrated in presence of a malicious operating system
(OS) [22, 32, 38, 31]. This is particularly hazardous for widely accepted container-based
virtualization techniques, such as Docker [3] where resources are shared at finer gran-
ularity than virtual machines and thus accurate accounting is more challenging. Worse
yet, even cloud providers seem to be struggling to implement accurate fine grained ac-
counting and safe billing systems. Research has shown bugs in EC2 that lead to free
CPU time and over-charging for storage in Rackspace [18]. Given the indisputable ne-
cessity of fairness in billing, we ask whether it is to build a refutable billing system for
cloud computing that allows significant security assurance?

Currently, many OSes offer resource accounting features (e.g., cgroups); yet,
such OS-based resource accounting mechanisms in commercial clouds (e.g., Amazon
EC2 [2]) are not ideal due to their large TCB and attack surface. We discuss a class
of attacks called resource usage inflation that a malicious OS can perpetrate to over-
charge clients in Section 3.1. Research has demonstrated isolating resource accounting
from the untrusted OS [28, 13]. In particular, Alibi [13] utilizes nested virtualization and
Trusted Platform Modules (TPMs) to implement an observer placed at the hypervisor
layer. However, Alibi includes a huge TCB (entire Linux kernel and KVM) for account-
ing. In this paper, we present VERICOUNT, a verifiable resource accounting system that
accounts for four major computing resources used for executing outsourced computing
tasks within secure containers (e.g., [10, 17, 30]). These containers ensure secure exe-
cution of applications assuming trusted computing solutions. VERICOUNT guarantees
untampered resource accounting operations while allowing the clients and the cloud
providers to explicitly establish a pre-agreed policy (e.g., maximum recoveries from
crashes) for the execution and reports any violation of the policy. This eventually en-
ables a refutable billing model which is a desirable feature in today’s cloud computing.

At its core, VERICOUNT aims to implement strong isolation of the resource ac-
counting logic from both the underlying OS and the client-submitted applications. How-
ever, it is challenging because the accounting logic is easily dependent either on the OS
or the client applications based on where it is placed in the system. In VERICOUNT, we
address this system dependency problem by combining both hardware and software iso-
lation techniques. We isolate the OS and other privilege code using hardware isolation
supported by trusted computing mechanisms (such as Intel SGX [1]), and implement
sandboxing mechanisms for untrusted client applications. First, we show that a novel
system architecture, which we call self-accounting, coupled with an execution policy
enforcement provides strong independence of VERICOUNT’s accounting logic from
the underlying OS. Self-accounting lets the client application perform its own resource
accounting efficiently within the same isolated memory region during its execution and
thereby identify false accounting. Second, to ensure that the accounting logic is inde-
pendent of untrusted client applications, VERICOUNT sandboxes the client-code using
software fault isolation [33, 19, 14, 24]. A second challenge is to design an efficient yet
accurate self-accounting approach. Basic approach of generating huge execution logs
at runtime and verifying them later are expensive in terms of performance and verifi-
cation effort [16]. To address this, we investigate an alternate way to effectively detect



attacks that manipulate resource usage. We explore several trusted features that recent
SGX-enabled CPUs support and leverage them to design accurate resource accounting
system. Our solution exhibits desirable properties such as low performance overhead,
low verification effort and a small trusted computing base (TCB).
System & Results. We build a proof-of-concept implementation for our design and
evaluate it on SPEC CPUINT 2006 Benchmarks and H2O web server. Our prototype
adds 542 source lines of code (SLoC) to the TCB and is simple enough to be formally
verified later. We observe that VERICOUNT-enabled applications incur an average per-
formance overhead of 3.62% and 16.03% as compared to non-accounting SGX appli-
cations in hardware and simulation mode respectively.
Contributions. We outline our main contribution below:

– Self-Accounting - Our novel approach of self-accounting lets each application ac-
count for its own resources, while employing hardware and software isolation.

– VERICOUNT System - VERICOUNT system consists of a compiler, a static verifier
and a post-execution analyzer to guarantee verifiable accounting and refutable billing.

– Evaluation - We evaluate our prototype of VERICOUNT for performance overhead
and accuracy of SPEC CPUINT 2006 Benchmarks and H2O web-server.

2 Problem Definition
Hosting containerized (docker-based) applications on the cloud is gaining popularity.
Securing such applications is shown to be possible using trusted computing mechanism
[10]. In this work, we support an additional primitive of verifiable resource accounting.

2.1 Threat Model
Our is the first work to consider two different adversary models simultaneously: a ma-
licious cloud provider and a malicious client. Both adversaries have strong motivation
to manipulate the resource accounting information in favor of their economic interests.
A malicious provider receives a task of executing an application A from a client and
aims to manipulate the resource usage summary RA, to increase the final bill BA of
the task; i.e., overcharging the client. We consider that the malicious provider has full
control over the operating system (OS), which allows the attacker to access any system
resource that the OS controls and break any security mechanism that rely on it (e.g.,
process isolation, access control in reference monitor, shown in Section 3.1). At the
same time, a malicious client aims to manipulate the resource usage summary RA to
decrease the bill BA; i.e., being undercharged. We consider that the malicious client has
full control over the application code that are submitted for the outsourced computation.
Both the provider and the client must trust VERICOUNT components and SGX.
Scope. We consider that the two adversaries would not collude, as they have contradic-
tory goals. Moreover, the execution of A is strictly constrained to the input provided
by the client. This restriction is necessary for verifiable accounting since it is in general
impossible to define the notion of correct resource accounting between a client and a
provider when applications expect to run with arbitrary inputs due to the undecidable
problem. We do not consider denial-of-service attacks caused by arbitrary inputs to the
application A; i.e., VERICOUNT does not detect resource usage manipulation if the
cloud provider can generate valid inputs to the application.



2.2 Problem Statement
Verifiable resource accounting has three protocol steps between a client and a provider.
First, a client and a provider agree on an execution policy φ = (p, c, t), where φ is a
tuple of three parameters: a per-resource pricing scheme (p), a crash recovery limit (c),
and the maximum OS response time (t). The per-resource pricing scheme p includes
the unit price for CPU, memory, I/O operations and network bandwidth usage. The
crash recovery limit c is an integer number that permits the cloud provider to recover a
crashed instance without informing the client. The maximum OS response time t is the
time that an OS requires to respond to a service request from the application. Second,
the client sends an application A along with an authenticated input I for the execution.

After the provider executes A, the accounting logic generates the resource usage
summary RA and the final bill BA and sends them to the client for verification. BA is
calculated with the knowledge of RA and φ. We seek the following security properties.
a) Isolation from compromised OS. A compromised OS cannot interfere with the re-
source accounting operation for any client-submitted application.
b) Isolation from malicious client application. A maliciously generated client appli-
cation cannot tamper with the resource accounting information.
c) Verifiable execution policy. At the end of outsourced computation, a client and a
provider can efficiently check any violation of the pre-agreed execution policy; i.e.,
confirm whether BA ← (φ,RA).

Moreover, our verifiable resource accounting offers three desirable properties:
1) Low performance overhead. A VERICOUNT-enabled application should incur low
performance overhead. The advantage of verifiable resource utilization should not un-
acceptably slow down as compared to the original application.
2) Low verification overhead. Verifying resource utilization should not require a client
or a cloud provider to spend large resources for either repeating the outsourced execu-
tion or accessing huge logs of execution process [16]. This is critical for clients who
outsource their computations to a remote cloud due to their insufficient local resources.
3) Small TCB. The solution should have small trusted software base, beyond that is
implied by use of SGX, to avoid bugs that are present in large software.

Assumptions. We assume cloud providers support SGX-enabled CPUs and SGX guar-
antees are preserved throughout the execution lifetime. We assume that all hardware
chip-sets are not malicious and do not contain backdoor that would violate the isolation
properties of our verifiable resource accounting [37]. We assume no side-channels in
the hardware architecture of the cloud provider. Attacks exploiting side-channels are
outside the scope of the present work [35, 29, 27, 20].

3 Baseline Approaches and Attacks
Previous solutions have proposed using an external observer for resource account-
ing [13]. We discuss a baseline with a similar approach and discuss attacks on it.

Baseline Solution. A straightforward approach for verifiable resource accounting is to
isolate the resource accounting engine from the underlying OS. Figure 1 (b) shows the
design of such a baseline approach. One can use any trusted computing mechanism
such as TPM or Intel SGX and port the resource accounting engine to a secure con-
tainer using an existing system [10, 30]. Compared to the existing resource accounting
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architecture in Figure 1 (a), where the accounting engine resides in the underlying OS,
the accounting engine in Figure 1 (b) is isolated and acts as an external observer and
accounts the resource utilization for each secure containerized application. Compromis-
ing the OS and gaining privilege access does not enable the attacker to directly tamper
with the accounting information. This baseline solution ensures accurate attribution of
resource utilization as it eliminates any direct method of attacking the accounting sys-
tem. However, we show that there still exists indirect dependency, which we call the
execution dependency, on the underlying OS. The adversary can easily influence the
execution operations to inflate the resource consumption.

3.1 Resource Usage Inflation Attacks
Although the baseline places the accounting engine within a secure container, the adver-
sary can increase the resource usage of containers in the absence of support for refuting
spurious charges. We discuss these resource usage inflation (RUI) attacks below.
Invoking Multiple Container Instances. The underlying OS is responsible for launch-
ing the container with the application on request from a client. Although the client
requests to launch a single instance of the application, the OS can execute multiple in-
stances of the same container. This results in inflated resource consumption correspond-
ing to client’s container. The accounting system incorrectly attributes the resources uti-
lized by the unrequested instances to the client. In the absence of verifiable accounting,
the client and the cloud provider have no way to refute disputed claims.
Replaying Inputs. The OS can replay the given input and increase the utilization of
resources for the particular container. Note that the adversary cannot generate new set
of valid inputs and hence is limited to replaying existing inputs arbitrary number of
times. This inflates the resource consumption causing overcharging.
Arbitrary Halts. The application may experience unexpected crashes during its exe-
cution and the client is supposed to be informed about it so that she can request for
starting a new execution. The malicious OS can exploit this property to silently crash
an instance and restart it arbitrary number of times. The OS can forcefully halt the exe-
cution of the container before completion. The accounting engine being unaware of the
malicious OS intention accounts the resources utilized for all the crashed instances and
bills the client for the inflated resource usage.



Slowing Down OS Service. The application depends on the OS for several services like
system calls, interrupts and others. If the user is charged based on the total time that the
container is up and running then the OS may maliciously delay to execute the requested
service. Thus, increasing the amount of time utilized by the particular container [22].

3.2 Towards Self-Accounting

All these RUI attacks demonstrate that the malicious OS has several ways to increase
resource consumption even when the accounting engine is isolated as shown in Fig-
ure 1 (b). Note that the baseline approach places the accounting engine outside every
application and thus cannot detect such malicious execution strategies by the OS. One
can consider establishing inter-container communication channels between applications
and the isolated accounting engine to address the RUI attacks; e.g., every I/O operation,
user-kernel context switch or network usage is performed via the isolated resource ac-
counting engine. Such an approach would incur prohibitively large overhead due to
continuous IPC involved. Thus, we propose a novel self-accounting approach where
each accounting engine runs alongside the client application within the container as
shown in Figure 1 (c). That is, the accounting engine is tied with the atomic execution
unit, which is the application itself, removing the execution dependency on the OS. The
operation of the accounting engine is always executed with its application and thus the
malicious execution strategies presented above cannot be effective. Thus, shifting the
accounting engine from Ring O to Ring 3 removes the execution dependency from the
OS and provides protection against an adversary perpetrating RUI attacks.
Client-Code Dependency Attacks. The self accounting design choice, however, cre-
ates another system dependency, which we call the client-code dependency. It makes
the trusted accounting logic susceptible to attacks from a malicious client trying to
undercharge itself. First, the client may not use the prescribed procedure for enabling
verifiable resource accounting and hence result in undercharging. Second, the client can
embed subtle vulnerabilities to exploit during runtime and tamper the accounting en-
gine data. Since the accounting engine and client-code share the same memory space
(see Figure 1 (c)), the malicious application can tamper the accounting data to decrease
its resource consumption. This demands isolating the accounting engine from client’s
application as well. To protect against dynamic attacks during runtime, we sandbox the
untrusted application (explained in detail in Section 5.2). To address the compile-time
threat, we statically verify the correctness of the client application.

3.3 Basic Self-Accounting Approach
One way to realize the self-accounting approach is to let the accounting engine log
sufficient information related to each run of the application. First, to prevent execution
replays or invocation of multiple instances, the accounting engine calculates and records
a measurement or hash of the executing application before initiating its execution. Note
that same application generates same measurement every time. Thus observing the fre-
quency with which the same measurement appears in the resource consumption logs
lets us detect execution replays. Next, to detect spurious executions due to input replay,
the accounting engine records the hash of all the inputs of the application. Observing all
the records of hashed inputs along with the application measurement helps in detecting



executions with replayed inputs. Further, to detect arbitrary crashes, the logs are gener-
ated on the fly throughout the execution. Any arbitrary crash results in partial records
of the hashed inputs. Presence of such partial records in resource logs lets us detect
whether the same application is halted more than the pre-agreed crash recovery limit.
A simple post-execution analyzer running in trusted environment either at the client
or cloud provider side can perform analysis of these logs and detect the occurrence of
RUI attacks [16]. The post-execution analyzer can further generate valid bill based on
legitimate resource utilization and pre-agreed policy.

Inefficiency. Although the above basic solution detects RUI attacks, it demands con-
tinuous hashing and logging operations, thus making it highly inefficient. The account-
ing engine computes a hash of every input and invokes a system call to write it to
the resource consumption logs. The accounting engine easily becomes a bottleneck for
the executing application and incurs a non-negligible performance overhead. Our ex-
perimental evaluation confirm that performance overhead of an application is directly
proportional to the number of system calls performed during its execution (see Sec-
tion 6.1). Moreover, it generates huge logs that need to be processed at either the client
or the cloud provider. This violates our desirable property of low verification overhead.
In this work, we investigate the problem of designing a significantly more efficient ver-
ifiable accounting system than the basic approach. To this end, we advocate the novel
use of SGX features to design an efficient solution thwarting RUI attacks.

4 Our Design

VERICOUNT comprises of three components: a compiler, a static verifier, and a post-
execution analyzer. Figure 2 shows the workflow of our VERICOUNT system. The
hatched components (verifier and analyzer) run in an untampered environment.

4.1 Overview

Compiler. VERICOUNT provides its own compiler that transforms client’s applica-
tion to support resource accounting based on our accounting library that executes with
the application. The compiler inserts APIs in the application to invoke the account-
ing engine. This VERICOUNT-enabled application generates encrypted and integrity-
protected resource consumption logs at the end of the execution. To eliminate client-
code dependency and isolate the accounting engine from the client’s application, VERI-
COUNT compiler sandboxes the application and protects the accounting engine data.
Further, to remove trust from the underlying OS, the transformed application executes
in a trusted execution environment in the cloud. Note that the compiler itself is executed
in a potentially-malicious (thus untrusted) client platform.

Static Verifier. Clients may not use prescribed compiler with the intention to reduce
charges. To detect against such static compile-time misbehavior, the verifier runs in a
trusted environment and lets the cloud provider validate the correctness of the client-
submitted, transformed application. On successful verification, the provider launches
the application; otherwise, the execution is aborted. It verifies these properties:
a) Correctness - The VERICOUNT-enabled application has all the API calls to the ac-
counting engine at appropriate interfaces in the application.



b) Safety - The application code does not access the memory region of the accounting
engine; i.e., it verifies the sandboxing of the application code.
c) Integrity - It verifies the accounting engine integrity embedded in the application.
Post-Execution Analyzer. The trusted post-execution analyzer takes the resource con-
sumption logs, pre-agreed execution policy φ = (p, c, t), and the cloud provider gen-
erated bill BA as inputs and verifies whether the bill BA adheres to the execution policy
φ. The analyzer outputs a yes if the bill correctly reflects the resource consumption as
per φ. Otherwise, it outputs no along with a discrepancy report in the bill.

4.2 Background on SGX
Intel SGX supports creating hardware isolated execution environment called enclaves
that execute at Ring 3. Such execution is termed as enclaved-execution. Enclave code
and data pages reside in a hardware protected memory region during execution called
Enclaved Page Cache (EPC). The hardware protects a compromised OS or any other
process from tampering pages in EPC. For more details, readers can refer to Intel SGX
Manual [1]. SGX introduces OCALLs to call functions that reside outside the enclave
from within an enclave and ECALLs for vice versa. Hence, to invoke OS services, ex-
isting system perform OCALLs to access filesystem, network and I/O services [30]. We
describe the important primitives supported in the SGX platform.
1) Remote attestation - SGX allows to attest enclave code such that any remote entity
can verify the integrity of the code and authenticity of the executing hardware.
2) True random number - In SGX, the use of rand and srand functions in the C/C++
library within an enclave is disabled as these are susceptible to bias. Instead, SGX sup-
ports sgx read rand API that generates a true random number using the RDRAND
instruction directly from the hardware and returns it to the enclave.
3) Monotonic counter - SGX supports creating a limited number of monotonic counters
(MC) for each enclave. Monotonic counters are shared among enclaves that have the
same code. On creating a MC, it gets written to the non-volatile memory in the plat-
form. The sgx create monotonic counter returns a UUID and a value.
4) Trusted elapsed time - The function call to sgx get trusted time returns the
current time from a reference point. The difference between the returned time of two
calls gives the trusted elapsed time between two events from the same reference point.

4.3 Protection against Malicious Provider
Self-Accounting. VERICOUNT places the resource accounting engine alongside a se-
cure enclaved application that guarantees tamper-resistant accounting of resources used
within the enclave against a compromised OS. Self-accounting enables fine-grained
accounting of resources utilized during the application execution. Moreover, it offers
transparent method to report to clients about exact operations and executions invoked
by the underlying OS. Along with enclaved execution, remote attestation allows client
to verify correct execution of their application on the cloud provider’s platform. En-
claved execution combined with remote-attestation enables VERICOUNT to move the
accounting engine from Ring 0 to Ring 3.
Preventing Replay Attacks. After remote attestation of enclaved application, the client
establishes a secure channel with the enclave to provision encrypted and integrity pro-
tected inputs [10, 1]. To prevent replays, instead of hashing and logging every input to



the application, we utilize the support for creating monotonic counters and true ran-
dom number in SGX. In VERICOUNT system, the accounting engine registers a UUID
corresponding to a monotonic counter using sgx create monotonic counter
API for the application. This UUID is sent to the client over the secure channel and
acts as a hardware identity of the enclave. If the client legitimately wants to create
multiple instances of the same enclaved application, she requests for multiple UUIDs.
VERICOUNT appends these UUIDs and there value in the final bill, thereby allowing
the client to validate the resource consumption details. Since the UUID is accessible
only from within the enclave and is securely transferred to the client, an adversary can-
not learn this value. Moreover, since all enclaves with the same measurement share
common set of monotonic counters on same machine, different instances of the same
application cannot have the same UUID. Therefore, invocation of an unrequested ap-
plication instance results in a new UUID which is unknown to the client. Thus, the
client can match the registered UUID of its application enclave with the UUID present
in the final bill to detect execution replay attacks. As monotonic counters are writ-
ten to non-volatile memory, they provide rollback protection from platform reboots as
well. VERICOUNT can benefit from any additional security from recent solutions (e.g.,
ROTE [23]), however, we do not encapsulate them in our current design. Along with the
UUID, the enclaved container uses the trusted randomness primitive to generate a ran-
dom nonce corresponding to this enclave. This random nonce is sent to the client along
with the UUID. To ensure the freshness of data, the client is enforced to append this
random nonce to every authenticated-and-encrypted input data. To legitimately send
multiple copies of the same input, the client increments the random nonce each time
and appends with the input. Since this random value is generated from hardware and
kept secret, the adversary cannot learn it. This prevents the attacker from generating
copies of the input to inflate resource usage.

Preventing Arbitrary-halt Attacks. Every time the enclave halts or exits, the ac-
counting engine seals the monotonic counter UUID and value using sgx seal -
data [1]. On invoking the enclave instance again, it unseals the monotonic counter
UUID and value using sgx unseal data and verifies the value using sgx read -
monotonic counter. On successful verification, it increments the value using sgx -
increment monotonic counter. Thus, if the adversary tries to arbitrarily halt
and restart the execution to inflate resource usage, the counter corresponding to the
UUID value increases and the final value is reported in the bill. Based on the mono-
tonic counter value, the client can detect whether the application is invoked for more
than the requested number of executions. The c value in φ specifies an upper bound for
recovery of crashed instances allowed to the provider. This also applies to crashes that
occur due to bugs in client’s application and are required to be restarted legitimately.
The policy agreement between the client and cloud provider captures both these cases.
Thus, the use of monotonic counters helps in designing a simple solution and brings
transparency with respect to the enclave invocations. Note that a forced system shut-
down that does not allow a clean enclave exit results in an incomplete resource log.
Such incomplete logs allows us to detect if an enclave process is killed arbitrarily.

Detecting Slow-OS Attacks. A malicious OS can slowdown the kernel mode of opera-
tion to overcharge clients. VERICOUNT enables fine grained accounting by measuring



the CPU time spent in an enclave and outside the enclave separately. The sgx get -
trusted time API is invoked just before switching from enclave to non-enclave
mode and when it switches back. Hence, we support specifying an upper bound for
time spent outside the enclave necessary for replying to any system level request from
the user. If the OS exceeds this time, then it indicates that the adversary intentionally
delays the response to increase the total time and thereby overcharging client. In VERI-
COUNT, we use t value in φ as the upper bound for delay in OS response for all system
calls. Ideally, the billing model should charge the container for only CPU time within
an enclave and provide a fixed charge for OS services. VERICOUNT supports both these
models and can be decided in the execution policy between a client and a cloud provider.

4.4 Protection Against Malicious Client

Self-accounting allows a client-submitted application to run in the same enclave and
thus the client application may overwrite the accounting engine’s data at runtime. To
remove this client-code runtime dependency, VERICOUNT compiler sandboxes the ap-
plication from the trusted accounting engine. Worse yet, a client may not use the pre-
scribed protection mechanism or modify the compiler to ignore the sandboxing and
API insertion logic entirely. The client’s code may exclude executing APIs which in-
voke the resource accounting engine. There are three possible approaches to address
this: (1) To enforce the clients to submit their source codes and compile them in a
trusted environment; (2) To assume all the clients are equipped with a hardware-based
trusted execution environment (e.g., SGX) to compile their applications in their local
machine; and (3) To statically verify the client-compiled, sandboxed applications in a
trusted environment at the cloud provider. Although all these approaches are technically
feasible, we choose the third approach as the former two approaches impose too strong
requirements for the clients in practice. VERICOUNT’s trusted static verifier checks that
the client-application satisfies a set of rules correctly to perform accurate resource ac-
counting. The static verifier is responsible for ensuring correct sandboxing of unsafe
instructions, appropriate API insertion and integrity of accounting engine. The cloud
provider rejects the execution of the application if the verifier fails.

4.5 Measuring Resources

CPU Elapsed Time. The billing metric for CPU differ for every cloud provider. While
Amazon EC2 charges in hours, Google Compute Engine is moving towards a more
granular accounting and charges per minute. VERICOUNT measures the time at the fine
granularity of per second [4, 2]. To perform fine-grained accounting at Ring 3, we use
the trusted elapsed time feature of SGX hardware that supports calculating time with a
precision of seconds. The accounting engine invokes sgx get trusted time func-
tion on a switch from enclave mode to non-enclave mode and vice versa. Finally, before
exiting the enclave, the engine records final value at the end of the execution. As per
VERICOUNT design, the user time corresponds to the time spent for execution within
the enclaved region. The execution time spend in untrusted region outside enclave at
the user level and in the OS are accounted towards service time. We consider this as a
valid design since a compromised OS can always tamper the execution of non-isolated
application code executing outside the enclaved environment to delay the execution.



Memory. For SGX CPUs, BIOS allocates a certain region called processor reserved
memory (PRM) of sizes of 32, 64 or 128 MB [1]. The underlying CPU reserves a part
of this PRM as EPC memory. Enclave pages are loaded in EPC which is a hardware pro-
tected memory region. Thus, the billing of memory resource is restricted to the allowed
physical memory region by SGX. VERICOUNT currently does not calculate the allo-
cated memory from within the enclave. However, SGX2 instructions support reporting
page faults to the enclave [25]. VERICOUNT can utilize this feature to correctly report
the number of page faults during the execution of an application.

Network Bandwidth. Cloud providers charge bandwidth usage based on the amount
of bytes transferred over the network. To calculate network bandwidth, VERICOUNT
records the inputs and outputs from the enclave via network system calls. All the data
that is sent over the network is accounted towards the bandwidth utilization for the
application. As the accounting is performed within the enclave, it ensures that the band-
width accounting is correctly attributed to the application and avoids mis-accounting.

I/O Resources. VERICOUNT records the I/O bytes that are read/written using system
calls. Due to the restriction of SGX on direct invocation of system calls, applications
use OCALLs to request I/O service from the underlying OS. A VERICOUNT-enabled
application invokes the accounting engine to account the I/O bytes after every such
OCALL. The engine considers only the actual data passed as arguments to these system
calls. Hence, if the OS responds with fewer or more bytes than requested, VERICOUNT
fairly charges for the actual I/O bytes read / written. This design guarantees that only
the I/O operations made from within the enclave are accounted to the particular enclave.

5 Implementation

VERICOUNT consists of library, a compiler, a static verifier and a post-execution ana-
lyzer. It relies on existing proposals to port legacy applications to enclaves [10, 30].

5.1 VERICOUNT Library

VERICOUNT library contains functions to compute resources utilized during appli-
cation execution. It accounts for user and service time, I/O bytes, total I/O calls and
network bandwidth. We implement the VERICOUNT accounting engine as a statically
linkable C library libvericount.a. The application, accounting library and SGX
libraries are linked together to create the trusted enclave file. The accounting library in-
vokes the sgx create pse session function to start the trusted platform service
at the start of enclave execution. Once a session is started, the library invokes appropri-
ate calls to the trusted runtime functions to get elapsed time and monotonic counter.

API Insertion. We implement our VERICOUNT compiler as a pass in LLVM v3.8.1.
The compiler inserts APIs to invoke resource accounting logic in VERICOUNT library.
At the entry of an Ecall function inside an enclave, it inserts vericount init -
user time() which starts the counter for accounting user time. The compiler in-
serts vericount init service time() before every Ocall from within the
enclave which essentially stops the user time counter and starts the counter for service



time. After return of every Ocall, vericount end service time() API is in-
serted which stops the service time counter and starts the user time counter again. Fi-
nally, before end of every Ecall function in the enclaved application, the compiler in-
serts vericount end user time() which calculates the final user time. All these
APIs invoke the trusted time function to account for elapsed time and add them to
corresponding counter value. For accounting I/O bytes and network bandwidth, the
VERICOUNT compiler inserts vericount io bytes() and vericount net -
bytes() APIs after the return of every Ocall to libc function related to I/O such
as fread, fwrite, fgets, fputs, and others and network, such as send,
recv. The library accounts the total usage based on their arguments and return values.
Output Logs. A simple way to log resource consumption is to ensure every API invoca-
tion logs the usage to the output. However, this incurs overhead since a write operation
requires an Ocall that performs context switch from trusted to untrusted region. Thus,
in our implementation, we choose to begin accounting on enclave entry and write re-
source consumption logs only before the enclave executes the EEXIT instruction. The
vericount init user time() API logs the enclave UUID to the output file and
marks the start of the accounting procedure and the vericount end user time()
API logs the accounted usage to the output. The total enclave memory required to hold
the accounting information is as small as storing 4 counters (user time, service time,
io bytes and net bytes). We enable a provision for cloud provider’s to send a user signal
to fetch the resource consumption logs on demand or at a timer expiration.

5.2 Sandboxing within Enclaves

While sandboxing is not a new idea, implementing it in enclaves involves a number
of non-trivial challenges. For e.g., enclaved applications have specific limitations about
execution, such as no system calls making use of existing sandboxing tools impossible
for enclaved applications [36]. Hence, we implement our sandbox logic compatible with
Linux SGX SDK based on standard SFI techniques [33, 19].
Fault Domain Isolation. We divide the enclave virtual address space into two regions:
application memory and VERICOUNT memory. The VERICOUNT memory is the region
that contains the code and data of the accounting library and SDK trusted libraries. The
application memory is a shadow memory or SFI section that is created to confine the
application’s code and data. We use portable SFI techniques to implement the applica-
tion memory [19]. We add our own malloc function alongside the malloc function
in SDK to create a separate heap in SFI section for application variables. The VERI-
COUNT compiler instruments all malloc calls in the application to invoke our added
malloc function. The library code continues to use the SDK malloc that allocates
memory in the default section. We add sandboxing instructions to all unsafe instructions
in the application memory as per standard SFI sandboxing rules [33].
Static Verifier. The VERICOUNT static verifier checks a set of rules in a disassembled
executable of a VERICOUNT-enabled application to ensure its correctness, safety, and
integrity before executing it. We include all standard SFI checks to ensure instruction
safety, control flow and trusted memory protection against attacks that exploit indirect
jumps, code-reuse attacks and others [24, 14]. In addition, all call instructions to sgx -
ocall are immediately followed by VERICOUNT APIs and there are no jump instruc-



tions between them. This ensures that the client-code cannot bypass the accounting
logic when invoking an Ocall. Moreover, the call to vericount init user -
time() and vericount init end time() are the first and last instructions of
every Ecall function in the enclave.

Post-Execution Analyzer. The post-execution analyzer executes within an enclave and
takes the execution policy φ, resource consumption logs, and the bill from the cloud
provider. The post-execution analyzer first checks that every UUID entry and its value
is followed by resource consumption details in the output log. Next, the analyzer com-
putes charges based on resource consumed and φ = (p, c, t) and compares it with the
cloud provider’s bill. The analyzer outputs the difference, if any, between VERICOUNT
computed and cloud provider’s bill. The enclaved post-execution analyzer cryptograph-
ically signs this final bill to be verified by the client. The client can refute provider’s
charges based on the output of VERICOUNT.

TCB Size. We measure the size of our TCB that includes the accounting engine, the
verifier, the analyzer and trusted libraries from Intel SGX SDK using CLOC tool. The
application code along with glibc libraries are not a part of our TCB. Our VERICOUNT
compiler consists of 872 SLoC, which is outside of our TCB well. The accounting
engine library consists of 230 lines of C code. The verifier and the analyzer contribute
180 and 132 SLoC respectively. Thus, VERICOUNT contributes only 542 SLoC to the
total TCB beyond the trusted SDK libraries of 80 K SLoC. The total TCB is orders of
magnitude smaller than any privileged software which consists of millions of LoC.

6 Evaluation

We evaluate our system on a Lenovo Thinkpad T460s with Ubuntu Desktop-14.04-LTS
64bits and Intel Core i7-6600U CPU running at 2.60GHz × 4 with 4 MB cache and 12
GB of RAM. We use open source version of Intel SGX SDKv1.8 available for Linux
systems [6]. We perform our evaluation with two goals a) To evaluate the performance
overhead of VERICOUNT application as compared to non-accounting secure (enclaved)
applications b) To evaluate the accuracy of VERICOUNT accounting engine.

Selection of Benchmark. To evaluate the effectiveness of VERICOUNT, we select stan-
dard SPEC CPUINT 2006 v1.2 benchmarks [9] and H2O web server which is an opti-
mized HTTP server [5]. We do not claim contribution in porting our benchmarks to ex-
ecute on SGX CPUs, which by itself is a hard problem [11, 10, 30]. At present, support
for creating secure enclaved containers and the corresponding libraries is not available
for public use. Hence, we use a recently proposed and open source Panoply system that
supports executing legacy applications on SGX-enabled CPUs [8]. Yet, VERICOUNT
system is general and compatible with any other enclaved execution system.

Evaluation Methodology. VERICOUNT system extends the guarantees of enclaved ap-
plications to support verifiable accounting. We use enclaved application executed using
Panoply libraries as our base for comparison throughout our evaluation. We calculate
the overall execution time of our benchmarks using time command in Linux. Each
measurement is averaged over 5 runs. All benchmarks are compiled using Clang v3.8.1.
We do not include time for compiling and verifying our applications as these are offline
operations and do not incur any overhead. We divide our experiments into three sets.



Benchmarks User Time (s) Service Time (s) VeriCount I/O Operations VeriCount
Total OcallsOS VeriCount OS VeriCount I/O Bytes I/O Ocalls

mcf 20.05 20 1.01 0 2360827 192458 192462
bzip2 31.83 31 1.00 0 653190 32 34
astar 77.99 78 0.99 0 3146654 68 92

hmmer 127.31 127 1.02 0 16633 766 1265
h264ref 11.96 11 1.02 1 969975 360 1646052

libquantum 5.15 5 1.03 0 261 7 8
sjeng 229.40 229 1.00 0 17211 1601 4587

gobmk 0.91 0 1.10 0 11876 10024 10412
gcc 18.21 17 1.04 1 1744658 827474 827494

H2O (10000 req.)
file size=10 KB 16.12 5 0.81 13 102400000 10000 122073

Table 1: Table reporting OS and VERICOUNT accounted user and service time, VERICOUNT accounted I/O bytes, no. of I/O
Ocalls and total no. of Ocalls for our benchmarks.
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1) Simulation Mode. We first evaluate all benchmarks in simulation mode to observe
the performance overhead due to VERICOUNT design and implementation. To under-
stand the overhead breakdown, we measure the overall execution time for enclaved
only, VERICOUNT without sandbox, and VERICOUNT with sandbox applications.

2) Hardware Mode. Further, to understand the overhead of using SGX, we perform
experiments in hardware mode. We compare the execution time of VERICOUNT and
non-VERICOUNT enclaved applications in hardware mode.

3) Resource Measurements. To evaluate the accuracy of our accounting engine, we
measure the user time, service time, I/O bytes, and network bandwidth using VERI-
COUNT and compare them to resource accounting tools from the OS.

6.1 Performance Overhead
Simulation Mode Overhead. Figure 4 shows the execution time of VERICOUNT with-
out and with sandbox for our benchmarks as compared to enclaved benchmarks in sim-
ulation mode. We observe that VERICOUNT without sandbox benchmarks incur an
average overhead of only 2.28% as compared to non-accountable enclaved applica-
tions. Thus, the accounting engine contributes a small overhead to perform resource
accounting. This relatively small overhead of VERICOUNT’s resource accounting en-
gine (without sandbox) suggests that a trusted application (which does not tamper with
the accounting engine) can exclude the sandbox logic and enjoy the low performance
overhead. The maximum overhead in VERICOUNT applications without sandbox is for
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applications with large number of Ocalls, thereby causing higher number of invoca-
tions to accounting engine. Figure 5 shows the performance overhead where h264ref
benchmark invokes 1.6×105 Ocalls and hence incurs maximum overhead of 12.3%.
We observe that VERICOUNT with sandbox benchmarks incur an average overhead of
16.03%. This shows that the sandboxing logic in VERICOUNT contributes to major
portion of the overall overhead. The overhead is directly proportional to the number of
sandboxing instructions added to the application. Applications with higher number of
sandboxing instructions (e.g., sjeng) show a higher overhead.

Hardware Mode Overhead. To get the estimate of VERICOUNT overhead in hardware
mode, we compare the execution time of VERICOUNT and enclaved only applications
(shown in Figure 6). VERICOUNT-enabled applications incur an average overhead of
3.62% as compared to enclaved only applications in hardware mode. 3.62% approxi-
mately captures the overall overhead (i.e., sandboxing and accounting engine) of VERI-
COUNT design in hardware mode. Thus, we observe that the performance overhead
due to VERICOUNT is less in hardware mode than in simulation mode. Figure 4 and
Figure 6 show that porting enclaved applications from simulation to hardware mode
increases the execution time by a large margin which essentially hides the overhead due
to VERICOUNT. Since enclaved application in HW mode take longer to finish than in
simulation mode (the denominator increases), it reduces the overall overhead.

6.2 Resource Utilization Measurement

User-Service Time. The time command provides user and kernel time along with the
overall execution time. We compare the user time measured by VERICOUNT with that
of the OS service. Column 2 in Table 1 shows that the VERICOUNT calculated user time
differs from the OS user time within a fraction of second for the SPEC CPUINT 2006
benchmarks. One exception is the H2O web server, where the VERICOUNT user time
does not match the OS time. This is because the web server spends most of its time wait-
ing for requests in the untrusted library outside the enclave while VERICOUNT guaran-
tees are scoped only within the enclaved applications. Column 3 in Table 1 shows the
difference between VERICOUNT service time and OS accounted kernel time. VERI-
COUNT’s service time includes the kernel time and waiting time of untrusted library
residing outside the enclave. This results in a difference between OS kernel time and



VERICOUNT’s service time. Arguably, service time should not be considered when ac-
counting the user resources. Or, if client and cloud provider agree, they can decide an
upper bound of t in policy φ or use fixed pricing for service time.

I/O operations. VERICOUNT calculates the I/O bytes, I/O calls and total number of
Ocalls invoked by the application (shown in Column 4, 5, and 6 in Table 1). As
there is no precise OS supported tool to measure I/O operations executed within the
enclave, we confirm the correctness of our accounting engine using the strace and
ltrace commands. We use ltrace command to verify the number of I/O Ocalls
and total number of Ocalls which invoke the glibc library functions in the untrusted
region. We use the strace command to calculate total bytes read & written after
open(app.signed.so) call i.e., once the control switches to the enclave. We ob-
serve that VERICOUNT accurately accounts the I/O bytes for all our benchmarks. For
eg., the I/O bytes and Ocalls for H2O web server is exactly 102400000 Bytes and
10000 for 10000 requests of 10 KB file size. As all the values match, we do not report
the OS generated values in Table 1.

Network Bandwidth. We calculate the data transferred over the network by VERICOUNT-
enabled H2O web server and compare it to NetHogs tool available in most Linux
distributions [7]. We observe that VERICOUNT accounted network bytes differ from
NetHogs results on an average by 0.66% (shown in Figure 3). We were unable to deter-
mine the cause for the extra data traffic accounted by NetHogs but speculate it to be due
to TLS handshakes before the actual response is sent over the network. We use h2load
performance measurement tool to generate workload of 10000 requests for static web
pages of size of 1 KB, 10 KB and 100 KB.

7 Related Work

Issues in Cloud Accounting and Billing. Previous work like Bouchenak et.al [12], Fer-
nandes et. al [15], Xiao et.al [34] have discussed the importance of verifying resource
consumption, accountability and billing. The key message is that users benefit from the
ability to reason about the operations at the server. VERICOUNT realizes this idea and
provides a refutable billing model for both users and cloud providers. Jellinek et.al [18]
perform a study of billing systems in current cloud systems such as Amazon EC2,
Google Compute Engine, Rackspace and others. Their results show that cloud billing
systems have bugs that cause over-charging or free CPU time for users. VERICOUNT
solve this issue with a verifiable accounting engine and a refutable billing primitive.

Solutions for Verifiable Resource Accounting. Sekar and Maniatis proposed the first
practical design for resource accounting based on nested virtualization and TPMs [28].
They propose the idea of an observer placed at the hypervisor layer which accounts for
the resources utilized by guest virtual machines. Alibi is a system based on this solution
extending Turtles nested virtualization framework [13]. In contrast to this, VERICOUNT
uses a self-accounting approach ensuring effective protection from resource usage in-
flation attacks. Moreover, their implementation based on Linux kernel and KVM incurs
a huge TCB which we avoid in our solution. A second line of research uses execution
logs but suffers from similar inefficiency problems as in our baseline approach. Haer-
berlen et.al propose accountable virtual machines that generate logs during execution



that are sent to user [16]. A user can replay a “good” known execution and identify dis-
crepancies in the server logs to detect maliciousness. This solution is hard to use where
resource-constrained clients do not have enough bandwidth to download huge logs.
Combining Trusted Computing and Sandboxing. Previous work has proposed the
idea of two-way protection using trusted computing and sandboxing approaches for
different reasons. MiniBox [21] provides the first sandbox mechanism for native code
in platform-as-a-service cloud computing. Though MiniBox uses TrustVisor and NaCl,
the core idea applies to SGX as well. Ryoan uses a similar idea to create distributed
sandbox for computing on secret data[17]. In VERICOUNT we use this idea to protect
the execution of accounting engine from both the client-code and the underlying OS.

8 Conclusion
VERICOUNT achieves a verifiable resource accounting with a refutable billing mecha-
nism for Linux containerized applications with Intel SGX support with low overhead.
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