Shared Cache Aware Task Mapping for WCRT Minimization

Huping Ding

School of Computing

National University of Singapore
e-mail: d-huping@comp.nus.edu.sg

Abstract— The Worst-Case Response Time (WCRT) of multi-
tasking applications running on multi-cores is an important met-
ric for real-time embedded systems. The WCRT is determined by
the mapping of the tasks to the cores (which determines load bal-
ancing) and the Worst-Case Execution Time (WCET) of the tasks.
However, the WCET of a task is also influenced by the conflicts
in the shared cache from concurrently executing tasks on other
cores in a multi-core system. In other words, the mapping of the
tasks to the cores indirectly influences the WCET of the tasks,
which in turn impacts the WCRT of the entire application. Thus
the mapping of the tasks to the cores should simultaneously max-
imize workload balance and minimize shared cache interference.
We propose an integer-linear programming (ILP) formulation to
achieve this objective. Experimental evaluation shows that shared
cache aware task mapping achieves on an average 25% and 33%
WCRT reduction for real-life and synthetic applications, respec-
tively, compared to traditional approach that is agnostic to shared
cache conflicts and solely focuses on load balancing.

I. INTRODUCTION

The Worst-Case Executione Time (WCET) of an application
is an important design metric for hard real-time systems. It is
defined as the upper bound on the maximum execution time
of a program on a particular hardware platform across all the
possible inputs. To obtain a safe bound on the WCET, both the
program paths and the underlying micro-architecture features
(for example, caches, pipeline, branch predictor etc.) have to
be modeled in static WCET analysis techniques [22].

Recently, both embedded systems and general-purpose com-
puting systems have made the irreversible transition towards
multi-cores due to thermal and power constraints. Multi-
core systems, however, introduce additional challenges for the
WCET analysis. More concretely, the shared resources in the
multi-core architecture, such as the cache, suffer from interfer-
ence among the tasks concurrently executing on different cores.
Therefore, we have to take into account the interference for
shared resources from the tasks simultaneously executing on
other cores, rather than estimate the WCET in isolation.

In particular, multi-core systems often employ shared L2
cache (see Figure 1). The presence of this shared resource re-
quires the modeling of inter-core cache conflicts. For example,
consider a memory block m accessed by a task ¢ in the shared
L2 cache of a multi-core system. If task ¢ is allowed to use
the L2 cache exclusively, then static cache analysis determines
that access of m will be a guaranteed L2 cache hit. However,

Yun Liang

Center for Energy-efficient Computing and
Applications, School of EECS
Peking University
e-mail: ericlyun@pku.edu.cn

Tulika Mitra

School of Computing

National University of Singapore
e-mail: tulika@comp.nus.edu.sg

Corel Core

| L1 cache | |L1 cache |

I Shared L2 cache I

| Main memory |

Fig. 1. Multi-core architecture with shared L2 cache.

in reality, memory accesses from the tasks running on other
cores concurrently may conflict with m and evict m from the
L2 cache. Thus, the access of m may be changed to L2 cache
miss and will have longer memory access latency leading to in-
creased WCET of the task ¢. Thus, the conflicts in the L2 cache
can affect the WCET of the tasks, which in turn, can impact the
Worst-case Response Time (WCRT) of the application. WCRT
is the latest completion time of any task in the application.
There exist several efforts in WCRT estimation for multi-
core architectures with shared L2 cache [23, 18, 14]. These
WCRT estimation techniques focus on modeling the shared
cache conflicts and assume pre-determined task to core map-
ping. That is, the task mapping phase is completely agnostic to
the shared cache effects. However, task mapping significantly
influences the set of tasks that execute in parallel on different
cores and hence the amount of conflicts in the shared L2 cache.
These shared cache conflicts, in turn, impact the WCET of the
tasks and eventually the workload balance. Clearly, decoupled
task mapping and shared cache modeling solution leads to sub-
optimal WCRT for the entire system. In this paper, we pro-
pose a shared cache aware task mapping solution to minimize
the WCRT. Our task mapping approach considers the workload
balance among the cores and the shared L2 cache conflicts in
an integral fashion leading to significantly improved WCRT.
Motivating Example. Figure 2 shows the impact of task
mapping on the WCRT for a small task graph consisting of five
tasks as shown in Figure 2(a). It executes on a 2-core architec-
ture with 256 bytes of L1 cache for each core and 2KB shared
L2 cache. For this simple example, we can exhaustively enu-
merate all the 16 possible task mappings. For each task map-
ping, we show in Figure 2(b), the WCRT with shared L2 cache
modeling as will be described in section IV and the WCRT
without shared L2 cache modeling (i.e., assume cache miss
(hit) for each L2 access in the worst (best) case). Clearly, the
WCRT critically depends on the task mapping. As expected,
the estimated WCRT with L2 cache modeling is lower than
WCRT without L2 cache modeling. What is also interesting is

(a) Task graph (b) Impact of task mapping on WCRT with and w/o L2 cache modeling

Bwith L2 cache modeling ~ 8w/o L2 cache modeling

12
@ Optimal WCRT mappings ~ Optimal WCRT mappings§ [§

w/o L2 cache modeling with L2 cache modeling |

‘WCRT (million cycles)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Task mappings

Fig. 2. Motivating example.

that the trends across different task mappings are very different
with and without L2 cache modeling. For example, the last two
task mappings (#15 and #16) yield the minimum WCRT with
L2 cache modeling. But these particular task mappings provide
the worst WCRT without L2 cache modeling. Hence, it is im-
perative to design a shared cache aware task mapping solution
so as to reach the optimal WCRT.

This paper contributes to the state of the art in WCRT opti-
mization for multi-core systems with shared caches as follows.

e We argue and experimentally validate the importance of
shared cache interference modeling during task mapping.

e We develop an integer linear programming (ILP) formu-
lation based task mapping solution that integrates inter-
core cache analysis and WCRT computation. Our solution
considers both workload balance and shared cache inter-
ference leading to improved WCRT.

e We demonstrate that compared to the traditional task map-
ping approach without L2 cache modeling, our shared
cache aware task mapping approach achieves on an av-
erage 25% and 33% reduction in WCRT for real-life ap-
plications and synthetic task graphs, respectively.

II. TASK MODEL AND SYSTEM ARCHITECTURE

We represent our multi-tasking application as a directed
acyclic task graph, where the nodes of the graph denote the
tasks and the edges denote the dependencies between tasks.
Formally, in a task graph 7' with M tasks {t1,ta,...,tn},
pred(t;) denotes the set of predecessors of task ¢;. Thus, task
t; is only ready to execute after the completion of all the tasks
in pred(t;). A pair of tasks ¢; and ¢; can execute in parallel on
different cores if there is no dependency between them. As for
the execution of the tasks mapped on each individual core, we
assume that the tasks are executed in a non-preemptive fashion.

The modeled multi-core architecture with shared L2 cache
modeled is shown in Figure 1. There are /N homogeneous cores
{p1,p2,-.,pn} in the system P. Each core p; has its own
private L1 cache while the L2 cache is shared among all the
cores. We consider set associative caches with Least Recently
Used (LRU) cache replacement policy. We assume no timing
anomalies caused by interaction between caches and the other
architectural features during WCET analysis. Notice that the
timing anomaly would not impact the task mapping solution;
only the WCET analysis component needs to be modified. The
L2 cache block size is assumed to be larger than or equal to the
L1 cache block size.

(a) Initial interference graph based on | (b) Task lifetimes determined in first round |(c) Interference graph after first round
of analysis

task graph of analysis

adpem
1 >@
ndes cre

Core 1 Core 2 time

minver I compressl

QOO

Fig. 3. Illustration of the iterative WCRT analysis modeling shared cache.

ITI. TASK MAPPING FRAMEWORK OVERVIEW

The goal of our task mapping solution is to achieve load
balancing among the cores and minimize the shared L2 cache
interference so as to minimize the WCRT of the task graph.
Clearly, optimal task mapping solution requires shared cache
modeling for WCRT estimation. Recently, we have pro-
posed [18] an iterative analysis framework that accurately es-
timates the WCRT of multi-tasking program running on multi-
core processor with shared cache. The iterative solution is
based on the key observation that two tasks running on differ-
ent cores do not conflict if they have disjoint execution lifetime.
Given a task mapping, we start with the worst-case task inter-
ference (i.e., a task conflicts with all the other tasks mapped
to different cores if they do not have dependencies) and itera-
tively improve the task execution lifetime and the task interfer-
ence. When the task interference does not change, the iterative
process terminates and returns the estimated WCRT. The ter-
mination of this iterative process is guaranteed [18].

Figure 3 illustrates the iterative process using the task graph
in Figure 2(a). The five tasks are mapped to two cores as shown
in Figure 3. The analysis starts with the worst-case task inter-
ference as shown in Figure 3(a). Then, task execution lifetime
is determined using WCRT estimation (described in Section
IV(B)). Figure 3(b) visualizes the execution lifetime for all the
tasks, where the duration of task execution is shown as a hor-
izontal bar. Based on this updated task execution lifetime, we
observe that it is impossible for ndes and compress to conflict
as they have disjoint lifetime. Thus, the task interference graph
is refined as shown in Figure 3(c). This process continues until
there is no change to the task interference graph.

The shared cache modeling technique [18] produces accu-
rate WCRT for a given task mapping. Thus, exhaustively enu-
merating all task mappings for the WCRT estimation frame-
work can help us find the optimal task mapping. However, this
may not be computationally feasible as the number of possible
task mappings is exponential (in number of tasks) and the it-
erative WCRT estimation may have long runtime specially for
large task graphs. Meanwhile, the inter-dependency between
task mapping and task execution time (due to the shared cache)
introduces significant complexity to the problem. Given a task,
its execution time depends on the shared L2 cache conflicts
caused by the tasks executing in parallel on the other cores,
which in turn depends on task mapping.

Instead, we propose an integer linear programming (ILP)
formulation that integrates the dual objective of maximizing
workload balance and minimizing shared cache conflict for
task mapping. We consider the impact of task mapping on
shared cache interference and consequently on the WCRT. In

order to make the modeling computationally tractable, we ap-
proximate the new WCET of a task (in the presence of interfer-
ence) in the ILP formulation by ignoring the possible change
on the worst-case path within the task. This introduces sub-
optimality in our solution. However, as we will show in the
experimental evaluation, the task mapping returned by our ap-
proach is either optimal or very close to the optimal in practice.
Finally, as the WCRT estimated by our ILP formulation for the
chosen task mapping may not be accurate, we call the iterative
framework developed in [18] with the chosen task mapping to
derive the actual WCRT. In the next section, we introduce our
shared cache aware task mapping in details.

IV. COMPONENTS OF THE TASK MAPPING FRAMEWORK

Our shared cache aware task mapping framework consists
of three phases: intra-task cache analysis, task mapping with
shared cache modeling, and iterative WCRT computation. In
this section, we first provide a quick overview of the intra-task
cache analysis and the WCRT computation. Then, we present
the details of our ILP formulation for the task mapping prob-
lem, which is the main contribution of this paper.

A. Intra-Task Cache Analysis

We employ the multi-level non-inclusive cache analysis pro-
posed in [14]. Each task in the task graph is analyzed indepen-
dently. Similar analysis is performed for each cache level (L1
and L2 cache) separately based on abstract interpretation [21].
Virtual unrolling is also applied [20, 21]. For each level of
cache, we perform must and may analysis. Each analysis gen-
erates an abstract cache state at each program point. The ab-
stract cache state of must analysis contains the memory blocks
that are guaranteed to be in the cache, while the abstract cache
state of may analysis identifies the memory blocks that may be
present in the cache at that particular program point. A mem-
ory access can be classified into the following categories based
on the two abstract cache states (must and may):

e Always Hit (AH): The memory block is present in the ab-
stract cache state of must analysis and hence its references
will always result in cache hits.

e Always Miss (AM): The memory block is not present in
the abstract cache state of may analysis and hence its ref-
erences are guaranteed to be cache misses.

e Non-Classified (NC): The memory block cannot be clas-
sified as either always miss or always hit.

Once the memory blocks have been classified at L1 cache
level, we proceed to analyze them at L2 cache level. Note that
the memory references that are L1 cache hits will not reach
the shared L2 cache. Therefore, we need to eliminate these
references from further consideration by applying a filter func-
tion [14]. The intra-task L2 cache analysis is identical to L1
cache analysis for the unfiltered accesses. The reader may re-
fer to [14] for further details of intra-task cache analysis.

B. WCRT Estimation

We employ our WCRT estimation framework modeling
shared cache conflicts in multi-cores [18]. The intra-task cache
analysis classifies each possible L2 cache access as Always Hit,
Always Miss, or Non-Classified. Due to the possible L2 cache
conflicts from tasks concurrently executing on other cores, the
L2 cache access classification may change. We will describe
this modeling in detail in our ILP formulation in the next sub-
section. Once the classification for each memory reference is
known, we can determine the access latency in the best case and
the worst case. These access latencies are plugged into the tim-
ing analysis to estimate the best-case execution time (BCET)
and the worst-case execution time (WCET) of each task.

For each task ¢, FarliestReady;, FEarliestFinishy,
Latest Ready; and Latest Finish; are used to represent its ex-
ecution interval. Earliest Ready, (Latest Ready;) represents
the earliest (latest) time when all the predecessors of task ¢ have
completed execution. Farliest Finish; (LatestFinish;) rep-
resents the earliest (latest) time when task ¢ completes its ex-
ecution. The time interval [Farliest Ready;, Latest Finish;]
indicates the lifetime of task ¢.

Two tasks ¢ and ¢’ interfere with each other in the L2 cache
only when they are mapped to different cores and their life-
times overlap. Two tasks ¢ and ¢’ are called peers when they
are mapped to the same core and their lifetimes overlap. Two
tasks with dependency between them can neither interfere with
each other in the L2 cache nor be peers on the same core, as
they can never overlap. In a non-preemptive execution,

FEarliestReady: = max FarliestFinish,,

uEpredy

EarliestFinishy = Earliest Ready, + BCET;

LatestReady: = max LatestFinish,, 1

u€Epred(t)
LatestFinish, = LatestReady, + WCET, + Y WCET,
t' €peer(t)
@)
where pred(t) is the set of predecessors of task ¢ and peer(t)
is the set of peers of task ¢. Finally, the WCRT is calculated as

WCRT = max Latest Finishy 3)

where 7' is the set of tasks.

C. ILP Formulation for Task Mapping

First, we define a 0-1 decision variable M;;, which indicates
if task ¢; is mapped to core p;.

0< M;; <1, where0 <i< Mand0 < j < N.

Each task can only be mapped to one core. Thus

> oMy =1

0<j<N

In the following, we present the ILP formulation for the task
interference and peer relationship, shared cache modeling and
WCRT computation.

C.1 Task Interference and Peer Relationship

For tasks ¢; and t;, we define a 0-1 decision variable S;; . to
indicate whether task ?; and ¢; are mapped to the same core py,

1
Sijk = { 0

We linearize the above equation as follows.

’Lf Mik = 1and M]'k =1
otherwise

My + Mj — Sije <1

My + My, —2 x Sij >0

For tasks t; and ¢, we define another 0-1 decision variable .S;;
to indicate whether task ¢; and ¢; are mapped to the same core.

1
Si]‘:{ 0

We linearize the above equation as follows.

Zf Jk s.t. Sljk =1
otherwise

Sij > ka (Vk’, 0<k< N)

Sij < Z Sij.k

0<k<N

As previously mentioned,we use an iterative process in [18]
to derive the WCRT in the presence of shared cache conflicts.
To avoid this fixed point computation in the ILP formulation,
we assume that two tasks interfere with each other in the shared
cache if there is no dependency between them and they are
mapped to different cores. In order to model the interference
relationship between two tasks ¢; and ¢;, we define a 0-1 deci-
sion variable int f;;. Similarly, a 0-1 decision variable peer;;
is also introduced to represent the peer relationship between
tasks ¢; and ¢;. If tasks ¢; and ¢; have dependency between
them, their execution lifetime will never overlap. Therefore,
they will neither interfere with each other nor be peers. Thus

intfi; = 0 and peer;; =0

If there is no dependency between tasks ¢; and t;, then we
assume they interfere with each other when mapped to different
cores and are peers when mapped to the same core. Thus,

(1 ifSy=0
ntfi; = { 0 otherwise

(1 ifS; =1
peeriy = { 0 otherwise

We linearize the above equations as follows.

’L‘Tltfij =1- Sij and peeri; = Sij

C.2 Shared Cache Modeling

Recall that we first perform intra-task cache analysis for each
task before task mapping, where the interference in shared L2
cache is not considered. For a task ¢;, we define its initial
WCET as W;, which is computed based on the hit/miss clas-
sification of memory accesses after intra-task cache analysis.
This W; is less than the actual WCET as it does not consider
the L2 cache conflicts. As a by-product, we also obtain the age
in L2 abstract cache states of must analysis for all the memory
accesses classified as L2 hits. Meanwhile, we also compute the

WCET path for each task and collect the execution frequency
of each basic block along the worse-case path.

For each task, detailed path modeling can help us obtain
an accurate WCET estimate. However, it introduces a large
number of variables to the ILP formulation, which leads to a
long solving time, especially in the presence of complex con-
trol flow in the tasks. We ignore WCET path changes within
a task in our ILP modeling for faster solving time even though
it may introduce sub-optimal choice of task mapping. When
the L2 cache conflicts are considered, some of L2 hits may be
downgraded to L2 misses. We combine this extra penalty with
the initial WCET to approximate the new WCET. Our exper-
imental evaluation confirms that this approximation can still
produce optimal or near optimal task mapping.

Let us define M; as the set of memory blocks classified as L.2
hits in the worst case path of task ¢; as mentioned above. For
each memory block m € M, its new hit/miss classification
depends on the interference from the other tasks. Suppose m is
mapped to set s in the L2 cache. Meanwhile, age,, is defined
as the age of m in the abstract cache state of must analysis in
the L2 cache. 0 < age,, < A, if access to m is classified as
Always Hit. Then, the classification of memory reference m
changes from Always Hit to Non-Classified in the L2 cache if

(agem + Z

0<j<MAi#j

(confi x intfij)> > A “4)

where con f; is the number memory blocks mapped to cache
set s (in the L2 cache) in task ¢; and are accessed in the L2
cache. The memory blocks from task ¢; can conflict with m
only if ¢nt f;; = 1. The conflicts from other tasks can increase
the age of m. Therefore, when the total number of conflicts
from other tasks added to age,,, exceeds the associativity of the
L2 cache (A), access to m becomes Non-Classified.

We define a 0-1 variable C),, to indicate whether there is any
change in classification of memory reference m due to con-
flicts in the L2 cache. If m is L2 cache hit in the intra-task
cache analysis but downgraded to Non-Classified after conflict
analysis, then C,,, = 1 otherwise C,,, = 0. Thus

A — agem — Z

0<j<MAi#j

A —agenm — Z

0<j<MAi#j

(conf; xintfi;) + C x Crm < C

(conf; xintfi;) + C x Cp >0

where C is a large constant. The extra penalty due to the con-
flicts in the L2 cache is defined as

penalty = Z ((12-miss_lat — 12_hit_lat) X fm X Cp)

meM;

where f,, is the execution frequency of memory block m in

the worst-case path, and I2_hit_lat and [2_miss_lat are the L2
hit latency and L2 miss penalty, respectively. Finally, the new
WCET estimate of task t;, W ECT;, is calculated as follows.

WCET; = W, + penalty
C.3 WCRT Computation

For a task ¢, as previously described, we define four variables
to represent its lifetime: Earliest Ready;, EarliestFinishy,
Latest Ready;, and LatestFinish;. As FEarliest Ready;

Fig. 4. Task graph for DEBIE benchmark.

and FarliestFinish; are constant across different task map-
pings, we concentrate on computation of LatestReady, and
LatestFinish, in this section. According to Equation 1, for
each task ¢; € pred(t;), we have

LatestReady:, > LatestFim'shtj

According to Equation 2, the peers of task ¢; may delay the
start time of ¢;. Therefore, we have to consider the delay in-
curred by ¢;’s peers when calculating Latest Flinish,. We de-
fine pd;; as the peer delay introduced to task ¢; by task ¢;.

if peer;; =1
0 otherwise

pdi; = { WCET;

We substitute it with equivalent equations as follows
pdij 2 0

pdi; — C x peer;; <0
pdij — WCET; + C — C x peer;; >0
pdij — WCET; —C+ C X peeri; <0

where C' is a large constant as before. Thus

LatestFinishy; = Latest Readys; + Z pdi; + WCET;

0<j<N

Finally, our objective is to minimize the W C'RT of the entire
application. According to Equation 3, we also introduce the
following constraint for each task t € T

WCRT > LatestFinishy

V. EXPERIMENTAL EVALUATION

Experimental Setup. We evaluate our task mapping ap-
proach with both real-world and synthetic benchmarks. We
first perform a case study with a real-world embedded bench-
mark DEBIE-I DPU Software [10], an in-situ space debris
monitoring instrument developed by Space Systems Finland
Ltd. We manually create a task graph corresponding to DEBIE
benchmark by identifying the compute-intensive kernels of the
benchmark and the dependencies among them, as shown in
Figure 4. The task graph consists of 12 tasks. These tasks have
different code sizes varying from 448 bytes to 23,288 bytes.

We further validate our approach by creating synthetic task
graphs using TGFF [8]. However, we use real WCET bench-
mark kernels from MRTC benchmark suite [12] as tasks for
these synthetic task graphs. The code size of WCET bench-
marks vary from 864 bytes to 12,480 bytes. We create nine
synthetic task graphs with different number of tasks.

We compile the source code corresponding to our tasks with
gcc cross-compiler for SimpleScalar PISA (Portable ISA) in-
struction set architecture [4]. The cache analysis phase is built
on top of the open-source WCET analysis tool Chronos [16].
We perform all the experiments on 2.53GHz Intel Xeon CPU
with 24GB memory and use CPLEX as ILP solver [1].

Optimal ~ @Our approach @w/o L2 cache modeling

.

1:1KB L2:16KB L1:2KB L2:16KB
Configuration: 4-core

=

Fig. 5. Comparison of our approach with exhaustive enumeration and shared
cache agnostic task mapping for DEBIE benchmark.

We assume our target architecture has four cores and two
levels of instruction caches, as shown in Figure 1. The hit la-
tency for L1 cache is 1 cycle. The hit latency for L2 cache
is 10 cycles, while its miss penalty is 100 cycles. As we are
modeling the instruction cache, we assume a simple in-order
processor with unit-latency for all data memory references.

DEBIE Case Study. For this case study application, we
assume a 4-core processor. L1 cache size is 1K bytes or 2K
bytes, with 2-way set associativity and 32-byte block size. L2
cache is 4-way set associative with block size of 64 bytes, and
it capacity is 16K bytes. The results are illustrated in Figure 5.

Our approach is based on the integrated task mapping and
shared cache modeling as presented in Section IV. Note that
the ILP formulation in our approach generates a task map-
ping that is expected to minimize the WCRT. However, the
ILP formulation includes some approximations in the task level
WCET analysis to keep the ILP solver time tractable. The task
mapping generated by the ILP is given to the iterative WCRT
estimation framework [18] and we report this WCRT estimate.

We obtain the optimal solution via exhaustive search that ex-
haustively tests all the possible task mappings and invokes the
iterative WCRT analysis [18] to estimate the WCRT for each
mapping. Obviously, given the exponential number of task
mappings and the long runtime of the WCRT analysis [18], this
approach is computationally infeasible for large task graph.

Finally, we also compare our approach with traditional
shared cache agnostic task mapping approach (w/o L2 cache
modeling). Basically, we exhaustively test all possible task
mappings and invoke the iterative WCRT analysis [18] with-
out L2 cache modeling. Then, all task mappings leading to
minimal WCRT are collected. The task mappings generated
this way are presented as inputs to the iterative WCRT analysis
technique with L2 cache modeling [18] and we report their av-
erage WCRT estimate. For example, in Figure 2, the traditional
approach will generate the task mappings #2 and #9 because
these mappings have the smallest WCRT without L2 cache
modeling (shortest red bar). We report the average WCRT cor-
responding to these mappings with L2 cache modeling (i.e., the
average of green bars corresponding to mappings #2 and #9).
The bar w/o L2 cache modeling shows the average WCRT re-
sults of this approach agnostic to shared cache conflicts.

As can be observed, our approach achieve significant reduc-
tion in WCRT compared to the traditional approach agnostic to
shared cache conflicts. We have an average of 25% reduction
in WCRT for these two configurations. Moreover, the WCRT
generated by our approach is quite close to the optimal WCRT.

Optimal BOur approach Bw/o L2 cache modeling

2.00
1.80 =
1.60
£ 140
9 1.20 M
2 1.00 -
% 0.80
2 0.60 -
0.40 -
0.20
0.00 T — " T T =l " T
Task Task Task Task Task Task Task Task Task
graph 1 graph2 graph3 graph4 graph S graph 6 graph7 graph 8 graph9
Configurations: 4-core, L1:512B, L2:4KB

Fig. 6. Comparison of our approach with exhaustive enumeration and shared
cache agnostic task mapping for synthetic task graphs.

TABLE I
RUNTIME OF OUR APPROACH AND THE OPTIMAL (EXHAUSTIVE
ENUMERATION) APPROACH.

Our approach | Optimal
Task graph | # of tasks (secl())lr)n ds) (sellon ds)
1 6 6.59 3.98
2 7 33.37 1.42
3 8 8.77 4.93
4 9 4.22 15.05
5 10 17.20 67.54
6 11 9.27 269.29
7 12 396.33 1089.35
8 13 480.62 3,883.00
9 14 539.31 | 22,794.00

Synthetic Task Graphs. We consider a 4-core processor.
L1 cache is 2-way set associative with block size of 32 bytes,
and its capacity is 512 bytes. L2 cache is 4-way set associative
with 64-byte block size, and its size is 4K bytes. We use smaller
cache size to generate more conflicts in the shared cache so as
to test the scalability of our ILP formulation.

We normalize all the results, where the optimal result re-
turned via exhaustive enumeration approach is used as the
baseline, as shown in Figure 6. Our approach generates task
mappings that lead to optimal WCRT for most of the task
graphs. Furthermore, compared to the approach agnostic to
shared cache conflicts, we achieve an average 33% reduction in
WCRT, which underlines the importance of considering shared
cache conflicts in task mapping.

Table I shows the runtime for our approach and the ex-
haustive enumeration approach. The runtime increases expo-
nentially for exhaustive enumeration approach with number of
tasks, whereas the runtime of our approach is within 9 minutes.

VI. RELATED WORK

Over the past decade, many efforts have attempted to model
the private cache, shared cache and shared bus for static worst-
case timing analysis [17, 11, 21, 23, 13, 18, 15,7, 6, 9]. Task
scheduling on multi-core platform also considers cache effects
[3, 2, 5]. Our approach differs from previous work in that
we integrate task mapping with shared L2 cache modeling in
multi-core systems for WCRT minimization. The cache aware
task assignment technique [19] bears similarity to us. In [19],
cache locking and partitioning are employed for predictable
WCET estimation. In contrast, our techniques do not need spe-
cial hardware mechanism (cache locking and partitioning) and
can be applied to any architecture.

VII. CONCLUSION

In this paper, we propose a cache aware task mapping ap-
proach to minimize the WCRT of concurrent tasks. Caches are
modeled through abstract interpretation and an ILP formula-
tion approach is employed for task mapping. Both the cache
conflicts in the L2 cache and the workload balance are con-
sidered in our approach. Experimental results with both syn-
thetic task graphs and real-world benchmarks show that our
approach returns the best task mapping most of the time, and it
is more efficient in runtime compared to an exhaustive enumer-
ation approach that can produce optimal solution. Finally, our
approach achieves significant reduction in WCRT compared
to traditional approach agnostic to shared cache conflicts and
solely focusing on load balancing.

Acknowledgments This work was supported by Singa-
pore Ministry of Education Academic Research Fund Tier 2
MOE2009-T2-1-033.
REFERENCES
[1] IBM ILOG CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer.

[2] J. H. Anderson and J. M. Calandrino. Parallel task scheduling on multi-
core platforms. SIGBED Rev., 3(1), 2006.

[3] J. H. Anderson, J. M. Calandrino, and U. C. Devi. Real-time scheduling
on multicore platforms. In RTAS, 2006.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3), 1997.

[5] J. M. Calandrino and J. H. Anderson. Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study. In ECRTS, 2008.

[6] S. Chattopadhyay et al. A unified WCET analysis framework for multi-
core platforms. In RTAS, 2012.

[7] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared
cache and bus in multi-cores for timing analysis. In SCOPES, 2010.

[8] R.P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In
CODES, 1998.

[9] H.Ding, Y. Liang, and T. Mitra. WCET-centric partial instruction cache
locking. In DAC, 2012.

[10] European Space Agency. DEBIE -
space debris monitoring instrument, 2008.
http://gate.etamax.de/edid/publicaccess/debiel.php.

First standard
Available at:

[11] C. Ferdinand et al. Cache behavior prediction by abstract interpretation.
Sci. Comput. Program., 35(2-3), 1999.

[12] J. Gustafsson et al. The Milardalen WCET benchmarks - past, present
and future. In WCET workshop, 2010.

[13] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET esti-
mates for multi-core processors with shared instruction caches. In RTSS,
20009.

[14] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-
associative instruction caches. In RTSS, 2008.

[15] T. Kelter et al. Bus-aware multicore WCET analysis through TDMA
offset bounds. In ECRTS, 2011.

[16] X.Lietal. Chronos: A timing analyzer for embedded software. Science
of Computer Programming, 69(1-3), 2007.

[17] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embed-

ded software with instruction cache modeling. ACM Trans. Des. Autom.
Electron. Syst., 4(3), 1999.

[18] Y. Liang et al. Timing analysis of concurrent programs running on shared
cache multi-cores. Real-Time Syst., 48(6), 2012.

[19] T. Liu et al. Task assignment with cache partitioning and locking for
WCET minimization on mpsoc. In ICPP, 2010.

[20] F. Martin et al. Analysis of loops. In CC, 1998.

[21] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET
prediction by separated cache andpath analyses. Real-Time Syst., 18(2/3),
2000.

[22] R. Wilhelm et al. The worst-case execution-time problem -overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3),
2008.

[23] J. Yan and W. Zhang. WCET analysis for multi-core processors with
shared 12 instruction caches. In RTAS, 2008.

