
Approximation-Aware Scheduling on
Heterogeneous Multi-core Architectures

Cheng Tan1, Thannirmalai Somu Muthukaruppan1, Tulika Mitra1, and Lei Ju2

1School of Computing, National University of Singapore
2School of Computer Science and Technology, Shandong University

Email: {tancheng,tsomu,tulika}@comp.nus.edu.sg, julei@sdu.edu.cn

ABSTRACT

The high performance demand of embedded systems along
with restrictive thermal design power (TDP) constraint have
lead to the emergence of the heterogenous multi-core architec-
tures, where cores with the same instruction-set architecture
but different power-performance characteristics provide new
opportunities for energy-efficient computing. Heterogeneity
introduces challenges in scheduling the tasks to the appropri-
ate cores and selecting the frequency assignment of each core.
In this paper, we introduce an approximation-aware schedul-
ing framework for soft real-time tasks on the heterogeneous
multi-core architectures. We consider multiple versions of a
task obtained by introducing approximation in the computation
to provide different levels of quality of service (QoS) versus
performance tradeoffs. The additional choice of approxima-
tion allows us more flexibility in meeting the performance and
TDP constraints while maximizing QoS per unit of energy.

I. INTRODUCTION

Heterogeneous multi-core architectures, such as ARM
big.LITTLE [5], combine power-efficient simple cores with
power-hungry complex cores on the same chip in addition to
multiple frequency levels per cluster of cores. Heterogene-
ity enables better match between application requirements and
computation capabilities, and achieves substantially improved
energy-efficiency [6, 1]. These architectures also provide a
promising solution to the emerging dark silicon era where a
chip can have many cores but power and thermal constraints
demand that a significant fraction of them should be left un-
powered (or dark) during execution [4, 2]. With heterogeneous
architectures, only the cores most suitable for the current com-
putation are switched on leading to energy-efficiency.

Fig. 1. ARM big.LITTLE heterogeneous multi-core architecture.

In this paper, we focus on scheduling soft real-time tasks
on heterogenous multi-core architectures with strict TDP con-
straints. Apart from heterogeneity and power state manipula-

tion (switching off unused cores), we exploit dynamic voltage
and frequency scaling (DVFS) and approximate computing to
meet the performance and TDP constraints while offering the
best tradeoff between QoS and energy. While DVFS can help
satisfy the TDP constraint through lower voltage-frequency op-
erating point, the increased execution time of the tasks may
lead to frequent deadline misses.

An alternative is to employ approximate computing where
the execution time of a task is reduced at the cost of lower QoS.
Traditionally, computing systems focus on delivering precise
and accurate output. However, many modern workloads can
easily accommodate minimal loss in accuracy and/or QoS. This
inherent tolerance of applications for accuracy can be lever-
aged to improve the power-performance characteristics. For
example, a video can be encoded at an expected frame rate
(performance/deadline constraint) but at reduced image quality
(QoS). The approximation enables execution of a task at lower
frequency (low power) without impacting its performance but
potentially diminishing the QoS.

Concretely, this paper integrates computation approxima-
tion, task scheduling, and DVFS on heterogeneous multi-core
architecture to minimize energy consumption and maximize
QoS while satisfying the performance and TDP constraint. Our
key contributions are:
• We propose a framework to achieve energy-efficiency un-

der the TDP constraint by prudently scheduling tasks, ac-
commodating approximation, and managing DVFS.

• We propose an offline algorithm to search the complex de-
sign space consisting of task versions, DVFS, task sched-
ule to obtain near-optimal solution.

• We propose a run-time scheduler to dynamically improve
the QoS and energy efficiency further.

• We show the effectiveness of our approach with real ap-
plications on a real heterogeneous multi-core architecture.

II. RELATED WORK

With the emergence of the multi-core processors, multi-core
scheduling is a well-researched topic. In terms of heteroge-
nous multi-core scheduling, Li et al. adapt the Linux scheduler
to take into account the characteristics of the different cores in
a heterogeneous architecture [11]. Both [8] and [9] modify the
original scheduling policy to decide which core will be used for
an incoming task. The energy cost will decline if a little core is
selected while the execution time will be shortened if a big core

1

is active. Such trade-offs provide an opportunity to improve
the performance-per-watt behavior of the system. [6] proposes
a scheduling framework for heterogeneous multi-core that sat-
isfies performance demand under thermal design constraint and
minimizes energy. In terms of real-time systems, [10] guaran-
tees that the peak temperature of the chip remains under the
threshold with a modified DVFS management. The peak tem-
perature or power consumption is minimized in [12] through
ILP or a heuristic algorithm. In this paper, we combine the task
scheduling with the DVFS management together.

Earliest Deadline First (EDF) is a popular scheduling algo-
rithm for hard real-time systems. [13] introduces a restricted
migration-based scheduling strategy for the multi-cores, which
permits the migration of tasks only at job boundary (defined
as task-level migration in [14]). In this work, we modify the
scheduling strategy in [13] to take into account heterogeneous
multi-core architecture.

For graceful degradation of QoS while satisfying the perfor-
mance and thermal constraints, we employ approximate com-
puting. We create multiple versions of a task with the loop per-
foration [7] technique. It transforms loops by skipping some of
the iterations such that the accuracy of the result is impacted but
the execution time is reduced. None of the above energy-aware
scheduling works consider approximation of the tasks that can
potentially improve energy-efficiency significantly while hav-
ing minimal impact on QoS.

III. PROBLEM FORMULATION

Architecture and Application Our architectural model is
based on a generalization of the ARM big.LITTLE heteroge-
neous multi-core [5]. The architecture consists of C clusters
and E cores. Each cluster consists of a set of homogeneous
cores. But different clusters have different core types. Given a
core e ∈ E, let ctype(e) ∈ C represent the cluster that core e
belongs to. Each cluster c has Fc = {f1c , . . . fFc

c } discrete fre-
quency levels where f1c is the lowest frequency level and fFc

c

is the highest frequency level. All the cores in a cluster need to
run at the same frequency level. We observe that the speedup
at different frequency levels compared to the lowest frequency
on a cluster is mostly agnostic to the workload. So we define
{sf1c , . . . sfFc

c } as the speedup at different frequency levels on
cluster c normalized to the lowest frequency level, i.e., sf1c = 1
and sfmc ≥ 1 for m = 1 . . . Fc. Similarly, we assume that the
active and idle power of a core is constant at a particular fre-
quency level and is defined as APm

e and IPm
e , respectively at

frequency level m on core e. Note that active and idle power of
all the cores within a cluster are identical.

Our application model consists of a set of independent, pe-
riodic, soft real-time tasks T . Each task has multiple versions
where each version provides different tradeoffs in terms of QoS
and execution time. Let us define Vt = {v1t . . . v

Vt
t } as the Vt

different versions of task t ∈ T . The first version v1t represents
the original task without any approximations, i.e., it has the
best QoS and longest execution time among all the versions.
Let svnt be the speedup of the nth version of task t compared
to the original version. Clearly, sv1t = 1 and svnt ≥ 1 for
n = 1 . . . Vt. Note that we assume (and experimentally vali-
dated) that the speedup of a task version compared to the orig-

inal is independent of the core type on which it is running. We
also define qnt as the relative QoS of the nth version of task t
compared to the original version. That is q1t = 1 and qnt ≤ 1
for n = 1 . . . Vt.

We define wt,c as the WCET of the original version v1t of
task t running on cluster c at the lowest frequency level f1c
whereas wm,n

t,c is the execution time of the nth version of task
t on cluster c at the mth frequency level. So wt,c = w1,1

t,c and
wm,n

t,c =
wt,c

svn
t ×sfm

c
.

Let pt be the period of task t and letHP be the hyper-period
corresponding to the task set T . A task t has Jt = HP

pt
jobs

(task instances) denoted as Jt = j1t . . . j
Jt
t within HP and let

J =
⋃

t∈T Jt be the set of all jobs within HP .

Problem Definition The notations used in the paper are sum-
marized in Table I. Given a set of independent, periodic
soft real-time tasks and a heterogeneous multi-core architec-
ture with per-cluster DVFS management (all the identical cores
within a cluster run at the same voltage-frequency level), our
objective is to select the version for each job (task instance)
and derive the task schedule and frequency assignment for the
hyper-period that minimize energy consumption and maximize
QoS while satisfying the thermal design power (TDP) con-
straint and the performance demand. Our solution consists of
(a) an offline scheduling strategy based on the WCET values of
each task and (b) an online strategy that improves upon the of-
fline solution by exploiting the difference between the WCET
and the actual execution time.

We use the following variables to define a concrete sched-
ule and frequency assignment S. First the hyper-period HP is
divided into time intervals such that the job executing on each
core and the frequency assignment of each cluster remain un-
changed throughout each interval. Given a time interval x, we
define task(e, x) as the task running on core e and freq(c, x)
as the frequency of cluster c during time interval x. We also
let ver(jkt) denote the version selected for the kth instance of
task t denoted by jkt . The variables task(e, x) and freq(c, x)
for all time intervals and ver(jkt) for all jobs concretely define
a solution S with task schedule and frequency assignment.

In order for a solution to be valid, it has to satisfy the per-
formance and the TDP constraint. The performance constraint
requires that a job should complete execution before its dead-
line. For the kth instance of a task t, we have to ensure the
following: (a) the job can execute only during its own period,
(b) the job can only be assigned to one core, and (c) the cu-
mulative execution time of the job within its period should be
equal to wt,c

ver(jkt)
. The cumulative execution time for the job

within the period can be computed as∑
∀x within [(k−1)×pt,k×pt]

s.t. task(e,x)=t

length(x)× sfmc (1)

where x represents a time interval within the period for the kth

task instance ([(k − 1) × pt, k × pt]) where for some core e,
we have task(e, x) = t and c = ctype(e) is the cluster type
of core e, m = freq(c, x) is the frequency level assigned to
cluster c during the time interval x, and length(x) is the length
of the time interval x.

To ensure the TDP constraint, we first compute the power
consumption for the entire chip P (x) for time interval x.

P (x) =
∑
e∈E

β(e, x) ≤ TDP (2)

β(e, x) =

{
APm

e if task(e, x) 6= ⊥ & freq(c, x) = m
IPm

e if task(e, x) = ⊥ & freq(c, x) = m
0 if task(e, x) = ⊥ & freq(c, x) = 0

where c = ctype(e) is the cluster containing core e. Note that
freq(c, x) = 0 implies that the cluster c is shutdown in the
time interval x. Similarly, task(e, x) = ⊥ implies that the
core c does not have a task mapped to it.

Objectives Our objective is to maximize the QoS per unit en-
ergy. First, we compute WE that represents the worst-case en-
ergy consumption under the scenario that we execute the origi-
nal versions of all the tasks at the highest frequency level with-
out any consideration to the TDP constraint. The total energy
consumption within the hyper-period HP is the summation of
the energy consumption for each interval x. Then the normal-
ized energy consumption ne(S) of a solution S is

ne(S) =

∑
x (length(x)× P (x))

WE
(3)

We compute the normalized QoS of a solution nq(S) w.r.t.
the minimal QoS for each task t (WQt) expected by the user.
We compute the QoS of a solution as the summation of the QoS
of the version assigned to each job for each task.

nq(S) = (
∑
t∈T

∑
jkt ∈Jt

n=ver(jkt)

qnt −WQt

1−WQt
)/|J | (4)

Our objective is to choose the solution S that maximizes the
normalized QoS divided by the normalized energy nq(S)

ne(S) .

IV. PROPOSED FRAMEWORK

An overview of our proposed framework is shown in Fig-
ure 2. The framework consists of two components (a) an off-
line strategy to generate a near-optimal schedule and frequency
assignment based on the worst-case execution time, and (2) a
run-time scheduler to improve the QoS and conserve energy
further based on the actual execution time of the tasks.

Fig. 2. An overview of the proposed framework.

TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning

C the set of all the clusters

E the set of all the cores

ctype(e) the cluster that core e belongs to

Fc a set of discrete frequency levels of cluster c

fn
c the nth frequency level of cluster c

sfn
c the speedup of the nth frequency level of cluster c

APm
e the active power of frequency level m on core e

IPm
e the idle power of frequency level m on core e

T a set of soft real-time the tasks

pt the period of task t

Vt a set of different versions of task t

vn
t the nth version of task t

svn
t the speedup of the nth version of task t

qnt the relative QoS of the nth version of task t

wm,n
t,c

the execution time of the nth version of task t on

cluster c at the mth frequency level

HP the hyper period corresponding to the task set T

J the set of all the jobs generated from tasks within HP

JCc the set of all the jobs running on cluster c

Jt the set of jobs generated from task t

task(e, x) the task running on core e during time interval x

freq(c, x) the frequency of cluster c during time interval x

ver(jkt) the version selected for the kth instance of task t

length(x) the length of the time interval x

P (x) the power of the entire chip for time interval x

WE worst case energy corresponding to the schedule with best QoS and highest frequency

WQt minimal expected QoS for task t

A. Off-line Schedule Generation

The mapping of the jobs to the cores, scheduling them along
the time axis, choosing the version for each job, and finally
frequency assignment for each cluster is a complex optimiza-
tion problem. While it might be possible to employ search
based heuristic algorithm such as genetic algorithm (GA) for
this problem, from our experimental evaluation, the search us-
ing GA often returned solutions that are local optimal. Integer
Linear Programming (ILP) formulation, on the other hand, was
computationally infeasible with the large design space. There-
fore, we design a customized algorithm that can return good
quality solution within reasonable runtime.

The flow of the off-line strategy is illustrated in the right-top
corner of Figure 2. The off-line strategy has four main stages:
r-EDF, RELAX, IMPROVE, ADAPT. We will use a simple
example to illustrate the algorithm throughout. The input for
the example is illustrated in Table II. We assume two clusters c1
and c2 where the first cluster has two simple cores and the sec-
ond cluster has one complex core. We have three tasks t1, t2, t3
with different periods and different execution time on the two
clusters. Each task in this example has two different versions.
During the hyper-period, we need to execute two jobs for t1, t2
and one job for t3. Each cluster has two different frequency
levels and the speedups for different frequency levels are given
in Table II. The TDP constraint in this example does not al-
low both clusters to run at the highest frequency levels; any

other frequency assignment keeps the system below the TDP.
For simplicity, we do not show the exact QoS values.

TABLE II
ASSUMPTION FOR THE SIMPLE EXAMPLE

T
wt,c svvt pt C

sfm
c

c1 c2 v1t v2t f l
c fh

c

t1
j1t1 100 80 1 1.2 100

c1

e1
1 1.5

j2t1

t2
j1t2 100 60 1 1.3 100 e2j2t2

t3 j1t3 200 160 1 1.5 200 c2 e3 1 2

r-EDF Given a set of tasks, we first schedule the tasks using
the r-EDF [13] policy. For each task, we choose the version
with the shortest WCET and set all the clusters to run at the
highest frequency fhc . This guarantees that if the performance
demands cannot be satisfied with this schedule, then the per-
formance demands cannot be satisfied with any other choice
of task versions and/or frequency assignment. The original
r-EDF algorithm is designed for symmetric multi-core archi-
tecture where a global scheduler assigns each newly arrived
job to any core with enough available capacity. Then the cor-
responding local scheduler uses uni-processor EDF policy to
meet the deadline constraints. Our strategy uses the same
mechanism. In symmetric multi-core architecture, the capac-
ity required by a task on each core is identical. However, for
asymmetric multi-core architecture, we need to adjust the ca-
pacity required by a task on different clusters. The utilization
of a task t on cluster c can be defined as wt,c

sv
Vt
t ×sf

Fc
c ×pt

, i.e.,

we adjust the execution time for the highest frequency level on
cluster c for the task version with the least WCET. For exam-
ple, the execution time of j1t2 running on cluster c1 is calculated
as wt2,c1

(sv2
t2
×sfh

c1
)
= 100

(1.3×1.5) . Figure 3 shows the schedule after

applying the modified r-EDF policy on our example.

Fig. 3. Schedule after r-EDF: Every job selects the highest speedup (most
approximate) version and all the cores run with the highest frequency. The
power consumption from 0 to 51 exceeds the TDP constraint.

RELAX Once the schedule is generated by modified r-EDF
policy, we proceed to ensure that the TDP constraint is satis-
fied in each time interval along the hyper-period. If the TDP
constraint is violated in a time interval x, we reduce the fre-
quency of the cluster with the least workload in that time inter-
val, say cluster c, till the TDP constraint is satisfied. However,
this leads to increased execution time of the tasks on cluster c.
In our example in Figure 3, the TDP constraint is not satisfied
during time 0 to 51; so we proceed to reduce the frequency of
cluster c2 containing core e3. This leads to increased execution
time of job j1t3 .

Algorithm 1 is used to insert a new time slot after x to ac-
commodate the extra execution time of the tasks on cluster c.
The additional time for job jkt is denoted as left(jkt). If the

Algorithm 1: insertSlot(jkt , x, slot, f
m
c)

1 e ← core e that jkt is running on;

2 left(jkt) ← left(jkt) + slot;

3 for left(jkt) > 0 do
4 if x>k × pt then
5 return false;
6 x′ ← x + 1;

7 t′ ← task(e, x′);

8 if t′ = ⊥ then
9 task(e, x′) ← t;

10 if freq(c, x′) == 0 then
11 freq(c, x′) ← fm

c ;

12 left(jkt) ← left(jkt)− length(x′) × sfm
c ;

13 else

14 fm′
c ← freq(c, x′);

15 left(jkt) ← left(jkt)− length(x′) × sfm′
c ;

16 else
17 k′ ← x mod p

t′ ;

18 if jk
′

t′ 6= jkt && k′ × p
t′ >k × pt then

19 x′ ← x + 1;

20 task(e, x′) ← t;

21 fm′
c ← freq(c, x′);

22 left(jkt) ← left(jkt)− length(x′) × sfm′
c ;

23 if !insertSlot(jk
′

t′ , x′ , sfm′
c , fm′

c) then
24 return false;

25 x ← x + 1;

26 if left(jkt) < 0 then
27 for left(jkt) + length(x) × sfm

c ≤ 0 do
28 freq(c, x) ← 0;
29 task(e, x) ← ⊥;

30 left(jkt) ← left(jkt) + length(x) × sfm
c ;

31 x ← x − 1;

32 return true;

time interval after x is free to accommodate the extended exe-
cution time of the tasks on each core of cluster c, then we can
simply insert the slot and move on to the next time interval that
violates the TDP constraint (lines 8 - 16). The extra time in the
new slot is adjusted based on the frequency deployed (line 12
and line 15). However, if the time interval after x is occupied
on an affected core e by another task t′, then t′ may or may
not be preempted by the extended execution time of task t de-
pending on their relative deadline according to the EDF policy
(line 18). Thus it is possible that either t or t′ may end up
missing the deadline in the worst case. In some cases left(jkt)
might be a negative value as in the ADAPT stage where the
frequency may be increased to improve QoS/energy. Figure 4
shows the schedule after this stage for the simple example.
Cluster c2 decreases the frequency from fhc2 to f lc2 and the cor-
responding expanded execution time ranging from 53 to 104 is
inserted by the insertSlot function.

Fig. 4. Schedule after RELAX: Frequency on core e3 of cluster c2 from time
0 to 51 is decreased and the extra time slot is added for the affected job j1t3 .

IMPROVE So far in the schedule, we have used the task ver-
sions with the least WCET that corresponds to the worst QoS.
In this stage, we attempt to choose better versions for each job
as long as performance and TDP constraints are not sacrificed.
Given the job assignment to the cores, we create a versions

metric vm(j, v) to guide in selecting the appropriate version
for each job j. Let j = jkt , v = vnt , f = fmc and let c and e be
the cluster and the core where job j has been mapped to.

γ(j, v, f) =
wt,c × (APm

e − IPm
e)

svnt × sfmc
+ IPm

e × pt (5)

δ(j, v, f) =

(
qnt −WQt

1−WQt

)
÷
(

γ(j, v, f)

γ(j, v1t , f
Fc
c)

)
(6)

vm(j, v) =

∑
f∈Fc

δ(j, v, f)

Fc
(7)

γ(j, v, f) and δ(j, v, f) reflect the energy and normalized
QoS/energy respectively for each a version of the task at a par-
ticular frequency level. vm(j, v) averages δ(j, v, f) across all
the available frequency levels. If vm(j, v) < vm(j, v′), then
running the job with version v′ is likely to achieve higher ob-
jective function compared to the version v. Therefore, we can
select version v′ unless TDP or performance constraints are vi-
olated. To select versions for the tasks, we first order all the
job and version pairs in decreasing order of vm(j, v) value.
Let {j, v} be the first job, version pair. If the version for job j
in the schedule can be replaced by version v without violating
TDP or performance constraint, then we change the version and
remove all instances of job j from the ordered list. Changing
the version may increase the execution time and hence we need
to use the insertSlot function to insert the new time slot with
the additional execution time from the new version. As before,
insertSlot function checks for violation of TDP and perfor-
mance constraints. The schedule table after this stage is shown
in Figure 5. We can see that the QoS/energy of all the jobs are
improved by employing better versions with higher vm value
except job j2. The reason is that choosing a better version for
j2 will violate the TDP constraint from time 51 to 53.

Fig. 5. Schedule after IMPROVE: QoS/energy is improved by changing the
approximation versions for jobs.

ADAPT The final step in the offline schedule is to determine
the appropriate frequency level for each cluster so as to improve
the energy behavior without adversely affecting QoS, perfor-
mance, and TDP constraints. For this purpose, we define the
frequency metric fm(f, c). The frequency metric for a cluster
c computes the desirability of each frequency level f given the
jobs assigned to the cluster c. Let JCc be the set of jobs as-
signed to cluster c and let j = jkt , i.e., j belongs to task t. Then

fm(f, c) =

∑
j∈JCc

δ(j, v, f)

|JCc|
(8)

If fm(f, c) > fm(f ′, c), then choosing frequency level f po-
tentially achieves higher value of the objective function as long
as it does not affect performance or TDP constraint. Similar
to IMPROVE, we order the frequency, cluster pairs accord-
ing to decreasing value of fm(f, c). We process these pairs
in order. Let {f, c} be the first frequency, cluster pair. We

check for every time interval x along the hyper-period if the
frequency on cluster c can be changed to frequency level f
without missing deadline or TDP constraint. This is checked
using the insertSlot function again. For the time intervals
where this frequency change can be achieved, the frequency is
changed and new time intervals are inserted to accommodation
the additional execution time due to reduced frequency level.
Figure 6 shows the schedule after ADAPT for our example.

Fig. 6. Schedule after ADAPT: QoS/energy is improved by adjusting the
frequency and the corresponding extra time is added for the affected jobs.

B. On-line Scheduler
The actual execution time of a job can be shorter than the ob-

served WCET. We propose an on-line scheduler that dynami-
cally shuts down idle clusters to prevent extra energy consump-
tion and changes the versions for the future jobs to improve the
objective function further. Typically, when a job completes ex-
ecution, if the corresponding cluster is completely idle, then we
power down the cluster till the next job arrives on the cluster
according to the offline schedule. In addition, a predictive pol-
icy is used here to improve the versions of the incoming jobs.
To be specific, we average the execution time of the recently
executed jobs for the incoming task and predict the execution
time of the incoming job. Then based on this predicted exe-
cution time, we select an improved version of the task if that
can be accommodated within the next deadline. Experimental
evaluation shows that the simple prediction policy works well
and there are hardly any deadline miss due to version changes
based on the prediction.

V. EXPERIMENTAL EVALUATION

We evaluate our framework using the Versatile Express De-
velopment Platform [5] that includes a prototype version of the
ARM big.LITTLE chip containing 3 Cortex A7 cores and 2
Cortex A15 cores. The chip is equipped with power sensors to
directly measure the power consumption at different frequency
levels. The TDP constraint for this chip is observed as around
8W. We use single-threaded version of four applications with
simlarge input from the PARSEC [3] benchmark suite for our
experiments. The WCET of a task is computed as the exe-
cution time of one iteration of the compute-intensive kernel,
for example, execution time per frame for a vide decoder. We
compute the WCET for each task on both A7 and A15 core.
We also compute the speedup at different frequency levels on a
cluster averaged across all the benchmarks. We create multiple
approximate versions of each application through loop perfo-
ration [7]. The QoS of a version of a task is defined using the
accuracy metric introduced in [7]. Table III shows the QoS
of each version normalized w.r.t. the original version and the
corresponding speedup due to approximation.

TABLE III
QOS AND SPEEDUP FOR DIFFERENT APPLICATION VERSIONS

QoS Speedup QoS Speedup

body-
track

0.9963 2.79

x264

0.9990 1.84
0.9869 3.94 0.9919 2.45
0.9856 5.25 0.9898 4.1
0.9847 5.42 0.9901 5.22

canneal

0.9629 1.98 0.9971 5.45
0.9344 3.87

stream-
cluster

0.9991 1.29
0.9272 4.81 0.9990 1.35
0.9067 10.8 0.9946 1.6
0.8999 16.69 0.9945 1.65
0.8907 55.61 0.9935 1.87

For testing the quality and scalability of our framework, we
create eight test cases (see Table IV) based on the applications
and different number of clusters. The task sets are created by
combining different benchmarks with different period. Notice
that the minimal QoS expected by the user is set as 0.96 for all
the applications.

TABLE IV
CHARACTERISTICS OF TEST CASES

Tasks # Jobs # Clusters # Cores TDP (watt)
SI1 1 1 1 2 LITTLE 3.2
SI2 2 7 1 2 LITTLE 3.2
SI3 3 20 2 3 LITTLE + 2 big 8
SI4 4 55 2 3 LITTLE + 2 big 8
SI5 12 112 2 3 LITTLE + 2 big 8
SI6 48 448 2 3 LITTLE + 2 big 8
SI7 108 1008 4 6 LITTLE + 4 big 16
SI8 216 2016 6 9 LITTLE + 6 big 24

We evaluate our framework in three aspects. First, we evalu-
ate the energy savings and improved QoS obtained through our
approximation-aware framework. Figure 7 demonstrates 28%
to 84% energy savings and around 1% QoS loss across differ-
ent task sets and platforms compared to the optimal schedule
without approximation. The reduced execution time from ap-
proximation contributes significantly to the energy savings.

Fig. 7. Energy savings and QoS loss for test cases w.r.t. baseline.

Next we evaluate the quality of the solution returned by our
strategy compared to the optimal solution obtained through an
exhaustive design space exploration of all versions, task map-
ping, and frequency assignment. Figure 8 shows the objective
function value of our solution as a percentage of the optimal
solution. Clearly, our strategy returns close to the optimal so-
lutions. In all cases, it can reach 93.9% of the optimal solution.
Furthermore, our strategy is quite scalable with acceptable run-
time even with large number of tasks and cores. Note that we
regard the solution with the highest speedup version as the op-
timal one for the last four cases because the exhaustive design
space exploration is too compute intensive to be feasible.

Figure 9 illustrates the additional improvement in the objec-
tive function and the deadline miss rate by employing on-line
scheduler on top of the offline strategy. The online scheduler
improves the QoS/energy ratio significantly for large task sets.

VI. CONCLUSION

In this paper, we present a scheduling framework for soft
real-time systems on heterogeneous multi-cores. Our goal is

Fig. 8. QoS/energy and runtime for test cases w.r.t. optimal solution.

Fig. 9. QoS/energy and deadline miss rate improvement due to online
scheduler.
to meet the performance and thermal design power (TDP) con-
straints while maximizing the energy efficiency. Towards that
end, we employ approximate computing where we trade-off
accuracy (QoS) with execution time/power in addition to tra-
ditional DVFS and core-level heterogeneity to create an en-
riched design space. We propose a scalable scheduling frame-
work combining offline and online strategy that generates near-
optimal solutions and achieves significant energy savings (up to
84%) with minimal impact on the QoS.

VII. ACKNOWLEDGEMENT

This work was partially supported by CSR and Singapore Ministry
of Education Academic Research Fund Tier 2 MOE2012-T2-1-115.

REFERENCES

[1] Muthukaruppan et al. Price Theory Based Power Management for Het-
erogeneous Multi-cores. In ASPLOS’14.

[2] Shafique et al. Dark Silicon as a Challenge for Hardware/Software Co-
design: Invited Special Session Paper. In CODES+ISSS’14.

[3] Bienia et al. The PARSEC Benchmark Suite: Characterization and Archi-
tectural Implications. In PACT’08.

[4] Esmaeilzadeh et al. Dark Silicon and the End of Multicore Scaling. In
ISCA’11.

[5] ARM Ltd. 2011. http://www.arm.com/products/tools/
development-boards/versatile-express/index.php.

[6] Muthukaruppan et al. Hierarchical Power Management for Asymmetric
Multi-core in Dark Silicon Era. In DAC’13.

[7] Sidiroglou-Douskos et al. Managing Performance vs. Accuracy Trade-
offs with Loop Perforation. In ECFSE’11.

[8] Sondag et al. Phase-guided Thread-to-core Assignment for Improved
Utilization of Performance-Asymmetric Multi-core Processors. In ICSE
Workshop on Multicore Software Engineering, 2009.

[9] Cong et al. Energy-efficient Scheduling on Heterogeneous Multi-core Ar-
chitectures. In ISLPED’12.

[10] Hanumaiah et al. Temperature-aware DVFS for Hard Real-time Applica-
tions on Multi-core Processors. In TC’12.

[11] Li et al. Temperature-aware Scheduling and Assignment for Hard Real-
time Applications on MPSoCs. In SC’07.

[12] Chantem et al. Efficient Operating System Scheduling for Performance-
Asymmetric Multi-core Architectures. In VLSI’11.

[13] Funk, Shelby Hyatt. EDF Scheduling on Heterogeneous Multiprocessors.
In University of North Carolina, 2004.

[14] Davis et al. A Survey of Hard Real-time Scheduling for Multiprocessor
Systems. In ACM Computing Surveys (CSUR), 2011.

