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Abstract
Heterogeneous multi-cores that integrate cores with differ-
ent power-performance characteristics are promising alter-
natives to homogeneous systems in energy- and thermally
constrained environments. However, the heterogeneity im-
poses significant challenges to power-aware scheduling. We
present a price theory-based dynamic power management
framework for heterogeneous multi-cores that co-ordinates
various energy savings opportunities, such as dynamic volt-
age/frequency scaling, load balancing, and task migration in
tandem, to achieve the best power-performance characteris-
tics. Unlike existing centralized power management frame-
works, ours is distributed and hence scalable with minimal
runtime overhead. We design and implement the framework
within Linux operating system on ARM big.LITTLE hetero-
geneous multi-core platform. Experimental evaluation con-
firms the advantages of our approach compared to the state-
of-the-art techniques for power management in heteroge-
neous multi-cores.

Categories and Subject Descriptors C.0 [COMPUTER
SYSTEMS ORGANIZATION]: General; D.4.7 [OPER-
ATING SYSTEMS]: Organization and Design

Keywords Heterogeneous Multi-core, Power Management,
Price Theory

1. Introduction
Relentless CMOS scaling at deep sub-micron level has re-
sulted in increased power density in microprocessors, which
forced computing systems to move in the direction of par-
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allel architectures with homogeneous multi-cores. However,
the emergence of dynamic and diverse workloads demand
heterogeneous multi-cores, consisting of both simple and
complex cores in the same chip, that can provide high perfor-
mance at low energy consumption. Existing works show the
potential of heterogenous computing in terms of energy ef-
ficiency and performance benefits [5, 8, 19, 20, 33]. There
exist two different kinds of heterogeneity: functional het-
erogeneity and performance heterogeneity. Modern embed-
ded systems exhibit functional heterogeneity by incorpo-
rating general-purpose processors, GPUs, and accelerators
on a single chip. On the other hand, performance hetero-
geneity is demonstrated in asymmetric multi-cores, where
the cores share the same instruction-set architecture but ex-
hibit diverse power/performance characteristics. For exam-
ple, ARM big.LITTLE (as shown in Figure 1) integrates
high performing, complex, out-of-order ARM Cortex-A15
and energy-efficient, simple, in-order ARM Cortex-A7 cores
in the same chip.
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Figure 1: ARM big.LITTLE heterogeneous multi-core.

We propose a power management framework for asym-
metric multi-cores exhibiting performance heterogeneity in
mobile platforms. Our framework can satisfy the applica-
tion demands expressed as Quality of Service (QoS) require-
ments with low energy consumption under a Thermal Design
Power (TDP) constraint.

We first present the goals that our framework strives to
achieve and then explain our design choices. Traditionally,
centralized power management techniques [9, 18, 35] have
been employed in embedded mobile platforms. However,
centralized approaches suffer from scalability issues, es-
pecially in future many-core heterogeneous systems. The
power management techniques for such platforms should
have distributed decision making strategies.



Second, the power management in heterogeneous multi-
cores involves coordinating multiple knobs. Dynamic Volt-
age and Frequency Scaling (DVFS) is the most common en-
ergy saving scheme [18, 23, 35]. A good power management
approach should incorporate DVFS to provide satisfactory
user experience at very low energy consumption. Apart from
DVFS, load balancing and task migrations are two major
techniques that have significant impact on power in multi-
cores [28]. Load balancing and task migration challenges are
further exacerbated in the presence of heterogeneity, where
the right core should be selected for the right task due to
differing power-performance characteristics.

Finally, mobile platforms are now facing strict thermal
design power constraint that excludes the possibility of run-
ning all the cores at their maximum frequency levels. In
such a peak power constrained environment, we have to ju-
diciously select the appropriate voltage-frequency level for
each core. Moreover, in an overloaded system exceeding the
TDP constraint, all the applications may not be able to meet
their QoS targets. In such situations, it is important to maxi-
mize the user experience by favoring tasks with higher prior-
ity. Therefore, power management schemes cannot be obliv-
ious to the user-level task priorities. Finally, the power man-
agement approach should be incorporated in modern com-
modity operating systems with minimal modifications for
easy acceptability.

Most of the existing works focus only on a subset of the
aforementioned objectives. It is important to notice that em-
ploying multiple energy-saving features (DVFS, load bal-
ancing, and migration) requires a coordinated approach. For
example, load balancing distributes the workload across the
cores and DVFS takes advantage of the balanced workload
to reduce the frequency of the cores. While load balanc-
ing is beneficial across the same core types, it may conflict
with task migration across different core types. This is be-
cause task migration needs to ensure that the power hungry
cores are used sparingly and switched on only when abso-
lutely necessary. It is challenging to synergistically employ
all the different power management techniques within a sin-
gle framework. Moreover, in a dynamic system with large
number of tasks/cores and time-varying workload, arriving
at the appropriate decisions with low computational over-
heads introduces additional challenges.

The novelty of our power management approach is that
it incorporates all the objectives outlined earlier within a
unified and scalable framework based on the foundations
of price theory [21] from economics. We implement our
approach within the Linux fair scheduler with minimal
modifications to the kernel. Moreover, our evaluations are
performed on a real heterogenous multi-core chip ARM
big.LITTLE. Our main contributions are:

• We propose a comprehensive, unified, distributed, and
scalable power management technique for heterogeneous
multi-cores under thermal design power constraint.

• The framework is based on price theory that unifies in-
dividual power management schemes like DVFS, load
balancing, and task migration. Furthermore, our price
theory-based approach strictly follows the supply-demand
based market mechanisms [21], thereby ensuring stabil-
ity and efficiency.

• We implement our framework within the commodity
Linux operating system for a prototype version of the
ARM big.LITTLE platform. All the results reported are
from the real system as opposed to simulations. Experi-
mental evaluations show that our technique outperforms
existing techniques [3, 25] designed for heterogeneous
multi-cores.

2. System Overview
Architecture model. We target single-ISA heterogeneous
multi-core architectures, which exhibit power-performance
heterogeneity as in big.LITTLE [15] and Tegra [26] plat-
forms. The target system is comprised of a set of cores
C grouped in a set of voltage-frequency clusters V , with
each cluster having a separate voltage and frequency regu-
lator. Each cluster v can operate at several discrete voltage-
frequency (V-F) levels and consists of a set of cores Cv ⊆ C.
All the cores within a cluster are symmetric in terms of
micro-architecture and have to run at the same V-F level.

Task model. A task t is a computational entity that can
execute on a core. Each task t is assigned a priority rt by the
user, where higher value means higher priority. T represents
the set of all tasks.

Task to core mapping. Our framework dynamically
maps the tasks to the cores. A task t is mapped to a core
ct. Tc ⊆ T represents the set of tasks mapped to core c and
Tv = ∪c∈CvTc denotes the set of tasks mapped to the cores
in cluster v. The idle task tidle executes on a core without
any active task. If there are no active tasks in an entire clus-
ter, then we can power down that cluster. We define Rc, Rv ,
R as the sum of the priorities of all the tasks mapped to core
c, cluster v, and the entire system, respectively.

Supply Model. Each core c can supply certain amount
of computational resources Sc, which is constrained by the
maximum supply Ŝc. The computational resource is defined
in terms of of Processing Units (PU), where one PU is
equivalent to one million processor cycles per second. The
higher the frequency of a core c, the more it can supply PUs
(i.e., higher the value of Sc) and the maximum supply of
PUs Ŝc is determined by the maximum possible frequency
of the core. For example, a core running at 1000MHz (or
350MHz) produces a supply of 1000PUs (or 350PUs). Note
that the amount of work (instruction processing) that can be
achieved with one PU on a small core is generally less than
the amount of work that can be done with one PU on a big
core; that is, one PU on a big core is more valuable than one
PU on a small core.

The supply of a cluster Sv is the same as the supply of any
of the constituent cores, which have identical Sc values. The
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Figure 2: Agent Interaction Overview.

supply of the entire chip S is the summation of the cluster
supply values. The current supply of PUs to task t on core
ct is represented by st (≡ sctt ). The supply of PUs to a task
t has to be less than the supply produced on the core ct it is
mapped to, that is, st ≤ Sct .

Demand Model. Each task t demands a certain amount
of computational resources (PUs), which can vary dynam-
ically during the course of the execution. In heterogenous
multi-cores, a task demands different amount of PUs across
different core types. For example, a task would demand more
PUs on a small core compared to a big core to achieve the
same application-level performance. The differing demands
for computational resources on different core types model
the heterogeneity of the architecture. The current demand
of task t on core ct is represented by dt (≡ dctt ).

Let Dc represent the sum of demands of all the tasks
mapped to core c. The core with the highest demand in
a cluster is called the constrained core of the cluster. Let
c̃v ∈ Cv represent the constrained core of the cluster v.
Then the demand of the cluster Dv = Dc̃v is defined as
the demand of its constrained core c̃v and the demand of the
entire chip D is the sum of the demands of the clusters.

Power model. The power consumption of a core c rep-
resented by Wc depends on the core type, its V-F level, and
the workload. The power consumption of a cluster v is rep-
resented by Wv , while the entire chip power consumption is
represented by W . The quality of the cooling solution deter-
mines the value of the TDP constraint Wtdp. As mentioned
before, our goal is to keep the total chip power consump-
tion below the TDP (W < Wtdp) while meeting the task
demands at minimal energy.

3. Power management Framework
Our power management framework is designed on the foun-
dation of the Price Theory [21] and the Quantity theory of
money [13]. The resource allocation, DVFS, task mapping
and migration are all controlled through the virtual market
place, where the commodity being traded is processing unit
(PU) using virtual money.

The framework is realized as a collection of autonomous
entities called agents. Each agent represents a transactional
body in the market. An agent can perform various function-

alities such as earning, bidding, purchasing, and distribution
of computational resources. Furthermore, the actions of an
agent are prompted by the goals of the client(s) it represents.
For example, an agent representing a task is motivated to
meet the demand imposed by the task. Similarly, the agent
representing the entire chip ensures that the thermal design
power constraint is not violated.

The efficient functioning of the market is ensured through
the regulations imposed on the actions of the agents. The
regulations introduced are reflections of the power manage-
ment goals. Interested readers may refer to [13, 21] for more
details on economic equilibrium, supply, demand, inflation
and deflation concepts.

Our power management framework consists of two main
components: Supply-Demand module and Load-Balancing
plus Task migration module (LBT). Given a task to core map-
ping, the supply-demand module attempts to satisfy the de-
mands of all the tasks with minimal power consumption un-
der the TDP constraint. It relies on the concept of regulating
inflation-deflation. The LBT module aims to reach a power
efficient task to core mapping through load balancing and
task migrations and employs the concept of reduced spend-
ing. Both the modules work in tandem to achieve the final
design goal of power management in heterogenous multi-
cores.

3.1 Overview of Agents
Figure 2 shows the interaction among the agents.

Task agent. Each task is represented by an agent, who
is a buyer in the market. A task agent can receive, spend, or
save money to purchase the computational resources (PU).
An agent corresponding to a task gets an allowance (virtual
money) that it uses to bid for the resources according to the
demands of the task.

Core agent. Each core is represented by an agent who de-
termines the price of the computational resources produced
by the core. The price for PUs in a core emerges from the
bids submitted by the task agents and the current supply of
the core. The core agent then distributes the available re-
sources among the task agents according to the bids. A core
agent also distributes the allowances received from the clus-
ter agent to the task agents.

Cluster agent. A cluster agent controls the price of the
resources by manipulating the supply of PUs in the cores
under its purview. The increase (or decrease) of the supply
is achieved by varying the V-F levels of the cluster. A cluster
agent also distributes the allowance received from the chip
agent to the core agents.

Chip agent. The chip agent controls the amount of
money in circulation in the system by manipulating the al-
lowances, thereby ensuring that the total chip power does not
exceed the TDP constraint. It then distributes the allowances
to the cluster agents.



3.2 Supply-Demand Module
In this section, we explain the mechanisms employed by the
supply-demand module in manipulating the V-F levels to
meet the task demands at minimal power consumption. The
supply-demand module requires all the task, core, cluster,
and chip agents to work in synergy. In terms of price theory,
the demands of all the tasks are satisfied only in an economic
market without inflation (or deflation). Thus, controlling in-
flation (or deflation) is equivalent to providing enough sup-
ply to satisfy the current demand in the market. This is the
basic principle employed in the supply-demand module.

3.2.1 Task and Core Dynamics
The main objective of the task agent is to sustain the demand
of the task it represents. This objective is achieved through
an iterative process consisting of three steps per round: bid-
ding by the task agents, price discovery by the core agent,
and purchase of the resources. The iterative process contin-
ues till the market stabilizes in an economic equilibrium.

The core agent gives an allowance at (the virtual money)
to each task agent according to the priority of the task. The
task agent bids an amount bt to buy resources based on the
current demand of the task dt. If the bid is less than the
allowance, then the difference mt = at − bt is saved for
future use. The bid cannot exceed the sum of allowance and
savings. We also require the bid to be higher than a pre-
defined minimum bid bmin. That is bmin ≤ bt ≤ at +mt.

For every round, each task agent submits a bid amount
bt based on the experience in the previous round. The task
agent increases (or decreases) the bid amount if the supply
received was less (or more) than the demand in the previous
round. The agents keep the bid unchanged when the demand
is satisfied.

Given the bids from all the tasks mapped to core c, the
core agent representing c discovers the price per PU Pc as
follows Pc =

∑
t∈Tc

bt

Sc
. Each task agent now purchases

the resources at the value determined by the core agent and
obtains its current supply st = bt

Pc

∣∣
t∈Tc

.
The bids in the (N+1)th round by the task agents depend

on the supply, demand and prices observed in theN th round.
As mentioned earlier, the bidding amount is capped by the
summation of allowance at and savings mt for the task.

bN+1
t = max

(
at +mt, b

N
t + (dt − st)× Pc

) ∣∣∣∣
t∈Tc

(1)

Table 1: Task and Core Level Dynamics Example

Round bta btb Pc sta stb Sc

1 1 1 0.0066 150 150 300
2 1.33 0.66 0.0066 200 100 300

Running Example Table 1 shows the working of the
agents of two tasks ta and tb executing on core c with supply

Sc = 300 PUs. The current demands are dta = 200 PUs and
dtb = 100 PUs. Both the task agents begin with the initial
bid of $1. In round 1, the task tb is over-supplied, while ta
is under-supplied. In round 2, by adjusting bids based on the
supply-demand characteristics, the resources are effectively
shared among the tasks according to their requirements.
3.2.2 Cluster Dynamics
The cluster agents are responsible for controlling the price
and preventing both price inflation and deflation in the cores.
When a core is undersupplied (oversupplied), we observe
price inflation (deflation). The cluster agent adjusts the sup-
ply using DVFS to avoid either over-supply or under-supply
situations in the cores, which in turn is reflected in the stable
price of the PU.

In our architecture, all the cores within a cluster have to
run at the same V-F level. Thus the supply can be modi-
fied only at the cluster level and not at the core level. So the
cluster agent observes and responds to price inflation (or de-
flation) of only the constrained core because the constrained
core represents the highest demand among the cores within
the cluster. Thus, the supply of the cluster is controlled by
the most constrained core. Note that given a task mapping, a
non-constrained core may suffer from deflation, while the
constrained core suffers from inflation. The cluster agent
takes care of the inflation in the constrained core, which can
further magnify the deflation in the non-constrained core.
The LBT module (discussed in Section 3.3) is responsible
for fixing the deflation in the non-constrained core through
load balancing.

In order to identify inflation/deflation, we need a base
price from which the relative changes can be observed. Ev-
ery time the V-F level changes, we reset the base price to
the new price observed in the market. While the V-F level
is changing, we do not allow the task agents to change their
bids until they have observed the effect of the new supply on
their existing bids.

A user supplied parameter called tolerance factor δ de-
fines the rate of inflation (or deflation) that the cluster agent
can tolerate before increasing (or decreasing) the supply, i.e.,
DVFS by one level. Let Pc and PBasec represent the cur-
rent and base price of the resources in a constrained core
c, respectively. The cluster agent increases the supply when
the current price Pc ≥ PBasec + PBasec ∗ δ. Similarly,
a decrease in supply is observed when Pc ≤ PBasec −
PBasec ∗ δ. The tolerance factor δ determines the response
sensitivity of the cluster agents. The lower the value of δ,
the faster the response of the cluster agent. The faster re-
sponse results in frequent V-F level transitions, and hence
thermal cycling [29], which can be detrimental to both the
performance and the reliability of the hardware. Thus, it is
important to carefully select the value of δ by taking into
consideration the underlying hardware.

Running Example We demonstrate the cluster level dy-
namics by extending the example from Table 1 to Table 2. In



Table 2: Cluster Level Dynamics Example

Round bta btb Pc PBasec sta stb Sc

3 1.99 0.66 0.0088 0.0066 225 75 300
4 1.99 0.66 0.0066 0.0066 300 100 400

round 3, let us assume that the demand of ta increases from
200 PUs to 300 PUs. Let the tolerance factor δ be 0.2. In
round 3, the price increases to $0.0088, which is higher than
the tolerable value of $0.00796 = $(0.0066+0.0066×0.2),
thus causing inflation in the system. In round 3, the cluster
agent responds by increasing the supply Sc from 300 PUs
to 400 PUs (highlighted in gray). At the new supply, both
the tasks are satisfied and per unit price observed in fourth
round is $0.0066, which is set as new base price of c. Also,
in round 4, the task agents do not change their bids as the
new prices are determined only at the end of the round 4.

3.2.3 Chip Dynamics
While the cluster agent attempts to set the V-F level at the
minimum value so as to meet the demand of the tasks, the
chip level agent is responsible to ensure that the overall chip
power does not exceed the TDP budget. The chip agent in-
directly controls the power consumption of the chip by ma-
nipulating the allowance. It decides on the global allowance
valueA for the current round. The allowanceA is distributed
hierarchically throughout the system using the different clus-
ter and core agents.

The global allowance is distributed as cluster allowances
(Av) to the cluster agents and the distribution is inversely
proportional to power consumption. The cluster consuming
more power is given less allowance, which is calculated as
Av = A · W−Wv

W . The cluster allowance is distributed as
core allowance (Ac) to the core agents of the cluster based
on the priorities of task agents running on them, which is
calculated as Ac = Av · Rc

Rv
. Finally, the core allowance

is further distributed as task allowances (at) to the task
agents proportional to their priorities, which is calculated as
at = Ac · rt

Rc
.

When the chip agent increases the global allowance A,
the task agents receive additional money to generate higher
bids for the resources. The task agents with unsatisfied de-
mands increase their bid with the additional money. This
causes inflation in the under supplied clusters, triggering the
respective cluster agents to control the inflation by increas-
ing the supply (increase V-F level). This increased supply in
the cluster results in increased power consumption.

On the other hand, when the chip agent decreases the
global allowance A, all the task agents have less money at
their disposal and hence are forced to bid lower values. This
causes deflation in the clusters, which prompts the cluster
agents to decrease the supply (decrease V-F level) to control
the deflation, resulting in reduced power consumption.

When the chip agent decides to keep the allowance A
constant, all the cores will reach stable equilibrium prices.
With stable prices, neither inflation or deflation will be ob-
served by the cluster agents resulting in a steady-state with
no changes in V-F levels.

The global allowance for the (N + 1)th round is set as
follows AN+1 = AN + ∆, where AN+1 and AN are the
current and previous round allowances, respectively and ∆
is the change in the allowance. The key question is how to
dynamically set the ∆ value. The ∆ value is set according to
the current total power consumption of the chip.

When the chip power consumption W is below the TDP,
the primary goal of the chip agent is to meet the demands of
the tasks. On the other hand, if the chip power exceeds TDP,
then the chip agent is responsible to bring the power below
TDP. In case the system has a demand that is unsatisfiable
within the TDP, due to the discrete nature of the V-F levels
the system will oscillate around the TDP. To stabilize the
system near TDP when overloaded, we introduce a buffer
zone near TDP where the system is ought to stabilize. The
size of the buffer zone is decided by the parameter Wth.
Thus, the spectrum of power consumption is divided into
three regions:

Normal State. In the normal state, the power consump-
tion of the entire chip is less than the pre-defined threshold
W < Wth. In this state, the chip agent manipulates the ∆
value based on the current total supply S and total demand
D of the entire chip. When the demand is not satisfied in at
least one of the clusters, the chip is under-utilized and the
task agents need extra money to buy more resources. There-
fore, the allowance is increased by an amount proportional
to the difference between the supply and the demand. There-
fore, the value of ∆ is given by ∆ = AN · D−SD .

Threshold State. In the threshold state, the power con-
sumption of the chip is observed between Wth and TDP
Wtdp. Ideally, it is desirable for the power consumption of
the chip to stabilize in threshold state when the system is
overloaded. The stability is attained in the threshold state by
keeping the allowance constant through ∆ = 0. With larger
buffer zone (Wtdp−Wth), the number of oscillations around
the TDP reduces and the stable state is reached quickly, but
the chip might be severely under-utilized. On the contrary, a
smaller buffer zone leads to frequent oscillations around the
TDP, but achieves higher utilization. The idea of stability
here is similar to the concept of hysteresis in control sys-
tems.

Emergency State. In the emergency state, the power con-
sumption of the chip is above Wtdp and must be brought
down quickly. The allowances of the task agents have to
be curbed to reduce the power consumption. In emergency
state, the reduction in allowance is proportional to the de-
viation from the TDP. Hence, the value of ∆ is given by
∆ = AN · Wtdp−W

Wtdp
. Thus our system can achieve stability

(stable equilibrium price) in either the normal state (supply



Table 3: Chip Level Dynamics Example

Round A ata atb bta btb mta mtb Pc PBasec dta dtb sta stb Sc D S W
4 4.5 3.0 1.5 1.99 0.66 1.01 0.84 0.0066 0.0066 300 100 300 100 400 400 400 .8W
5 4.5 3.0 1.5 1.99 0.66 1.01 0.84 0.0066 0.0066 300 300 300 100 400 600 400 .8W

6.0 4.0 2.0 1.99 1.98 3.02 0.85 0.0099 0.0066 300 300 200 200 400 600 400 .8W
6.0 4.0 2.0 1.99 1.98 3.02 0.85 0.0099 0.0066 300 300 200 200 500 600 500 .8W

6 6.0 4.0 2.0 1.99 1.98 5.03 0.86 0.0079 0.0079 300 300 250 250 500 600 500 2W
7 6.0 4.0 2.0 2.38 2.38 6.64 0.47 0.0095 0.0079 300 300 250 250 500 600 500 2W

6.0 4.0 2.0 2.38 2.38 6.64 0.47 0.0095 0.0079 300 300 250 250 600 600 600 2W
8 6.0 4.0 2.0 2.38 2.38 8.25 0.10 0.0079 0.0079 300 300 300 300 600 600 600 3W
9 4.0 2.67 1.33 2.38 1.42 8.53 0 0.0063 0.0079 300 300 375 225 600 600 600 3W

4.0 2.67 1.33 2.38 1.42 8.53 0 0.0063 0.0079 300 300 375 225 500 600 500 3W
10 4.0 2.67 1.33 2.38 1.33 8.81 0 0.0074 0.0074 300 300 320 180 500 600 500 2W
11 4.0 2.67 1.33 2.23 1.33 9.25 0 0.0071 0.0074 300 300 313 187 500 600 500 2W
·
·

16 4.0 2.67 1.33 2.01 1.33 12.26 0 0.0067 0.0074 300 300 300 200 500 600 500 2W

meets demand), or the threshold state (when overloaded), but
never in the emergency state.

Savings An important by-product of our price theory
based power management scheme is the concept of al-
lowance savings by the task agents in the form of non-zero
mt values. How does a task end up with savings? The sav-
ings are incurred under two scenarios. First we note that
the global allowance is increased by ∆ when the demand
is not satisfied in at least one of the clusters. Thus, the task
agents belonging to the clusters in supply-demand equilib-
rium would have additional allowance that will be saved for
future bidding. Second, the price per PU within a cluster
is determined by the most constrained core. This leads to
the savings of allowances by the task agents belonging to
the non-constrained cores. The saved allowances would fa-
cilitate the task agents to outbid other task agents for more
resources during the supply constrained situation in both the
threshold state and the emergency state. The savings are es-
pecially beneficial for tasks with alternating high and low
demand requirement. Such task agents save money during
their dormant phase and use the saved allowance to outbid
other tasks during their active phase.

We choose to cap the savings of a task agent at a fraction
of its current allowance. This is because large amount of sav-
ings may allow the tasks to keep the system in an emergency
state longer than permissible. The ideal factor for capping is
determined by the designer with knowledge of the underly-
ing hardware.

Running Example To illustrate the chip level dynamics,
we further extend the example from Table 2 to Table 3. Let
us setWtdp andWth to 2.25W and 1.75W , respectively. Let
us further assume that, for the given application, the system
reaches the emergency state at 600 PUs supply (3W power)
and the threshold state at 500 PUs supply (2W ).

The global allowance is $4.5 in the beginning. Let the
priorities of tasks ta and tb be 2 and 1 respectively. Thus
task ta receives higher allowance relative to task tb due to

the difference in priorities. In table 3, the change in values
are highlighted in gray.

So far in round 4, we have met supply and demand of
both the tasks by increasing the core supply to 400 PUs. Now
the demand of task tb increases to 300 PUs in round 5. As
the demand at the core level by the two tasks cannot be met
with the current supply of 300 PUs, we observe an increase
in allowance (from $4.5 to $6.0) as well as price inflation.
This price inflation forces the cluster agent to increase the
supply to 500 PUs, which brings the chip to threshold state
consuming 2W power. In the threshold state, the allowance
is kept constant (observed in rounds 6-7). Meanwhile, the
savings (mta andmtb ) are calculated based on the allowance
allocated and bids by the tasks in each round.

In round 7, the price inflation again causes the supply
to increase to 600 PUs, which pushes the system to the
emergency state. Now we need to stabilize the system in the
threshold state. This is achieved by decreasing the system-
level allowance from $6.0 to $4.0. This decreased allowance
percolates all the way to the tasks. By round 9, the task tb
has also used up all its savings. This is because the allowance
was held constant in the threshold state (rounds 6-7). So with
decreased allowance and zero savings, the task tb is now
forced to lower its bids. The lower bids cause price deflation,
resulting in reduction of supply from 600 PUs to 500 PUs.

As the supply is brought down to 500 PUs, the system
reaches the threshold state again. This time the allowances
are constant; hence the tasks cannot increase their bids
preventing price inflation and subsequent increased supply
(higher frequency) that takes the system back to emergency
state. So the system stabilizes (round 16) in the threshold
state where the power consumption is close to the TDP and
the higher priority task (ta) meets its demand, while the
lower priority task (tb) suffers.

3.2.4 Stability of the Supply-Demand module
We show that given a fixed task-to-core mapping, the supply-
demand module ensures that the system reaches a stable



state. By stable state here, we imply that there are no changes
in the V-F levels and the resources allocated to the tasks.

The principle of price theory states that the market is only
stable at a price equilibrium, which is the price at which
the supply is equal to the demand. Once the supply meets
the demand, it automatically prevents further inflation or
deflation within the market. Let us assume that we start off
in a stable state. The stability is perturbed as tasks enter/exit
the system, or the demand within a task changes due to phase
behavior or change in the input conditions. We show that the
system will reach a (possibly) different stable state assuming
there is no task migration in between.

There are three possible scenarios when the demand
changes. In the first scenario, the demand can be satisfied
in the normal state. In this case, we observe price infla-
tion/deflation till the supply is equal to the demand and the
system reaches stability. We always round up the demand to
the next supply value so as to prevent oscillation between
two consecutive supply values. Note that the price equilib-
rium is reached in the constrained core, which determine the
V-F level. For the non-constrained cores, the supply might
be greater than the demand because all the cores have the
same supply value (V-F level). In this case, the price in the
core(s) with over-supply will fall till the bid price hits the
minimal bid value bmin. The same situation happens when
the demand on the constrained core is less than the minimum
supply value (minimum frequency level) and the system sta-
bilizes at the minimum frequency.

In the second scenario, the demand can be satisfied in the
threshold state. Here, the allowance is kept constant, which
eventually translates to fixed bid prices by the tasks (because
bid price cannot exceed allowance), preventing further infla-
tion/deflation. In the absence of inflation/deflation, the V-F
levels are not modified and all the clusters in the system sta-
bilize to fixed V-F levels.

The third scenario is the most interesting one where the
system needs to be in the emergency state to meet the de-
mand. But we clearly cannot keep the system in the emer-
gency state for long and have to ensure that it quickly stabi-
lizes in the threshold state. This is the scenario illustrated in
the example in Table 3. The stability is ensured by defining
a buffer zone near TDP (the difference between Wtdp and
Wth). The buffer zone should be designed such that the sys-
tem cannot move from the normal state to the emergency
state or vice versa without passing through the threshold
state. Once the system reaches the emergency state, the al-
lowances are reduced, which moves the system to the thresh-
old state. Once in threshold state, the allowance is kept con-
stant at reduced value, which leads to fixed bidding prices
and hence price equilibrium.

3.3 Load Balancing and Task Migration (LBT) module
The supply-demand module achieves a steady-state with per-
missible power consumption for any given task mapping by
manipulating the V-F levels. But the mapping itself may not

be efficient in terms of performance and power leading to a
sub-optimal solution. Thus, the goal of the LBT module is
to find a task mapping that is superior in terms of both per-
formance and/or power consumption relative to the current
mapping. The LBT module first attempts to meet the task
demands followed by improving power efficiency through
load balancing within a cluster and task migration across the
clusters. Load balancing within a cluster helps reduce the
V-F level of the cluster, while task migration exploits the
heterogeneity of the different clusters to potentially improve
both the power and the performance behavior of the tasks.
In the following, we first describe our task migration policy
across heterogeneous clusters.

Give a fixed task-to-core mappingM, let sMt and bMt be
the steady-state supply and bid corresponding to the task t
on core cMt . Also dMt be the demand of task t on core cMt .
Recall that the demand of a task changes based on the core
type; the demand is lower on a more powerful core compared
to a simpler core for the same level of performance.

We define a metric perf(M) to compare the performance
of two different task mappings. Given two different map-
pingsM andM′, we define perf(M′) > perf(M) if and
only if

(
∃t ∈ T :

sM
′

t

dM
′

t

>
sMt
dMt

)
AND

(
∀t′ ∈ T s.t. rt′ > rt :

sM
′

t′

dM
′

t′
≥

sM
t′

dM
t′

)

Basically we sort all the tasks T in the system according to
their priority rt. For the mapping M′ to be better than the
mapping M in terms of performance, we need two condi-
tions to be satisfied. The first condition is that there should
exist a task t for which the supply-demand ratio in the map-

pingM′ denoted as sM
′

t

dM′
t

is higher than the ratio inM. The
second condition requires all the tasks with higher priority
than t to have either better or equal supply-demand ratio in
M′ thanM.

We also define another metric spend(M) to capture the
aggregate spending by the tasks in the steady-state for the
mapping M. The value of spend(M) is calculated as fol-
lows, spend(M) =

∑
t∈T b

M
t . From the power perspective,

it is desirable if a task movement brings down the aggregate
spending without affecting the performance. The aggregate
spending spend(M) reduces only when the steady-state
bids from all the tasks combined together is lower. This
reduction in bid price is observed only when the steady-state
demand lowers due to appropriate load balancing across the
cores within a cluster and the migration of the tasks to the
most efficient cluster in terms of heterogeneity. The reduced
bids cause deflation by lowering the price, which in turn
brings down the supply, i.e., V-F levels and hence the power
consumption. Therefore, any reduction in aggregate spend-
ing will translate to reduction in the power consumption,
provided that the performance remains unchanged. Thus
mappingM′ is more power efficient than mappingM, that



is, power(M′) < power(M) if and only if

spend(M′) < spend(M) AND perf(M′) ≥ perf(M)

In the LBT module, each task agent first estimates steady-
state perf(M) and spend(M) for the current mapping
M. This is the baseline power-performance behavior that
we want to improve upon. Next, each task agent estimates
perf(M′) and spend(M′) for all possible mappings M′
where only the task corresponding to this agent migrates to
another cluster while the remaining tasks do not move.

Let us consider the potential migration of task t from the
cluster v to the cluster v′. In order to estimate the perfor-
mance and the spending of the current and the new mapping,
we need the steady-state supply, demand, and bid price for
the current cluster v and the target cluster v′. This steady-
state behavior is estimated as follows.

• Demand: In the current cluster v, the steady-state de-
mand is assumed to be the currently observed demand.
For the target cluster v′ (with different core type), the
steady-state demand is estimated using off-line profiling,
which is explained in detail in Section 5. We have re-
cently developed a power-performance prediction model
for single-ISA heterogeneous multi-core systems using a
combination of program analysis, mechanistic modeling,
and empirical modeling [27]. In future, we plan to in-
clude this estimation model within our price theory based
power management framework to eliminate the off-line
profiling step.

• Supply: The steady-state supply of a cluster is estimated
to be the same as the steady-state demand, unless the
supply is constrained by the TDP constraint. The steady-
state supply per task can be estimated by distributing
the total supply among the tasks in proportion to their
priorities.

• Bids: The steady-state bids are calculated by estimating
the price in the steady-state. The price at a higher V-F
level Z+1 can be estimated from the price observed in
the current V-F level Z using the following equations,

PZ+1 = PZ + (PZ × δ) (2)

where δ is the tolerance factor. Using recursion, the price
at the steady-state supply can be estimated. For exam-
ple, let PZ and δ be $10 and 0.02 respectively. Let us
also assume that the V-F level has to increase by 3 levels
to achieve the steady-state supply. Then, by using Equa-
tion 2 recursively for each level, the price can estimated
to be $10.612.

Note that the task agents perform performance and sav-
ings estimations in parallel, which enables the computational
overhead to be distributed across the entire chip, thus ensur-
ing scalability. All the information required for the estima-
tion is hierarchically disseminated from the cluster agents

to the chip agents and subsequently to the task agents and
is kept consistent with periodic message passing. The over-
head of the computation and communication increases with
increasing number of tasks, cores, and clusters.

To reduce this overhead, only the task agents in the con-
strained core of each cluster contemplate movement of the
tasks. Furthermore, the overhead is high if the task agents
consider migration possibility to all the other cores in the
system. We only let the task agents consider the most over-
supplied unconstrained core in the target cluster as a poten-
tial candidate for migration. Thus there exists a trade-off be-
tween the overhead and the quality of the solutions obtained.
We demonstrate in Section 5 that this simple heuristic works
quite well in practice.
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Agent 
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Figure 3: Task Migration in Constrained Core.

Figure 3 illustrates the flowchart of the task migration
module in the constrained core c of a cluster v. If the de-
mands of all the tasks are expected to be satisfied in the
steady-state of the current mappingM, then the goal is to re-
duce the power consumption. In this case, all the task agents
in c estimate the performance and spending, if the task mi-
grates to the most over-supplied unconstrained core in each
of the other clusters, leading to a new mapping. Each task
agent then sends the estimated perf(M′) and spend(M′)
for the most power-efficient new mapping M′ to the core
agent. The core agent selects the most power-efficient map-
ping from the task agents and forwards this mapping to the
chip agent through its cluster agent. The chip agent finally
selects the most power-efficient mapping from all the clus-
ters.

On the other hand, if some tasks are not expected to meet
the demand in the steady-state in the constrained core, then
only the clusters with unsatisfied demand consider possible
task migration. For each such cluster, only the task agents
with unsatisfied demand in the constrained core contem-
plate migration to the other clusters. In particular, at all lev-
els (chip level, cluster level, and core level) we choose the
highest priority task that improves its supply-demand ratio
through migration without impacting the supply-demand ra-
tio of the higher priority tasks. If two mappings have the



same performance, then we select the one with better spend-
ing, i.e., better power consumption.

The load balancing process is very similar to the task
migration. The only difference is that the target core is not in
a different cluster but the most over-supplied unconstrained
core within the same cluster. Thus only the cluster agent
and the core agent are involved in this process. The chip or
the cluster agent approves only one task movement at any
given time. The movement of the other tasks, if any, will be
performed in future LBT invocation.

3.3.1 Stability of the LBT module
The LBT module performs task migration either within the
cluster or across clusters. It can introduce instability if and
only if there exists cyclic movement of the tasks. However,
our heuristic ensures that the number of task migrations is
finite for the following reasons. If the demands of some
tasks are not met in the current mapping, then we choose
the mapping that improves the supply-demand ratio of the
highest priority task with unsatisfied demand through migra-
tion. This, by definition, ensures that only the lower-priority
tasks are impacted by this migration and the chain of task
movements will end with the lowest priority tasks. Thus the
number of migrations is bounded by |T |.

On the other hand, if all the tasks meet their demands,
then task migration reduces power consumption through re-
duced spending. This series of task migrations to reduce
spending ends when the spending cannot be reduced further.

3.4 Invocation Frequency
The different modules involved in our framework have to
be invoked at different rates to reduce the overhead in the
system. As mentioned before, the bidding process by the
task agents takes place in a series of rounds. The change in
the supply level by the cluster agent occurs asynchronously
based on inflation/deflation.

The load balancing within the cluster is invoked more
frequently than the task migrator because task migration
across clusters is expensive (2-4 ms) compared to migration
within cluster (50-170 µs). The equations below summarize
the periods for load balancing and task migration where
linux scheduling epoch is 10ms.

task migration period = 2× load balancing period

load balancing period = 3× bid rounds period

bid rounds period = max (linux sched epoch, task period)

For workloads with periodic tasks, we set the bidding
interval as the maximum of the linux scheduling epoch and
the shortest period among the tasks. In our experiments, the
shortest period for any task is 31.7ms; so we invoke the
bidding round every 31.7ms, the load balancer every 95.1ms,
and the task migrator every 190.2ms. The LBT module is
disabled in the emergency state as the immediate goal is
to bring the power below TDP through the supply-demand
module.

4. Related Work
Increasing power consumption raises lot of challenges in
modern embedded computing systems, where tablets, smart
phones, PDAs are becoming widespread [24]. There ex-
ists a plethora of prior works on power management on
homogeneous multi-core systems. Most of the works fo-
cus on power management using any combination of tech-
niques like DVFS, load balancing and task migrations. Isci
et al. [18] evaluate a DVFS based global power management
policy with various objectives like prioritization, power bal-
ancing and throughput for different combinations of bench-
marks. Rangan et al. [28] explore the use of thread migration
in power management compared to the traditional DVFS
scheme. In [35], the authors present a control theory based
power management framework using per-core DVFS capa-
bility. Ma et al. [23] present a scalable power management
solution for workloads that contain a mix of multi-threaded
and single-threaded applications in homogeneous chip mul-
tiprocessor. However, these solutions are designed for ho-
mogeneous multi-core systems and require non-trivial mod-
ifications to adapt them to heterogeneous multi-cores.

Existing works [5, 8, 19, 20, 33] illustrate the potential
of heterogeneous multi-cores to improve both the perfor-
mance and power-efficiency. Craeynest et al. [33] propose a
scheduling technique for asymmetric multi-cores using on-
line performance estimation across different core types. Sim-
ilarly, Koufaty et al. [19] propose a dynamic heterogeneity
aware scheduler, which schedules tasks with very low mem-
ory stalls on complex cores for higher performance. Our ap-
proach handles both the performance and the power man-
agement in heterogeneous systems.

A study by Winter et al. [36] evaluates various scheduling
and power management techniques for heterogenous multi-
cores with special considerations to the scalability of the ap-
proaches. They propose a thread scheduling algorithm called
Steepest Drop, which has little overhead but does not con-
sider DVFS technique. The technique Pack & Cap proposed
in [9] uses thread packing and DVFS to maximize perfor-
mance under a TDP constraint. Schranzhofer et al. [31] in-
troduce a static solution for task to core mapping problem in
heterogeneous MPSoC. Our work dynamically incorporates
all the three techniques (load balancing, task migration and
DVFS) under a single price theory-based framework to meet
performance demands at minimum energy consumption un-
der a power budget. We have previously proposed [25] a hi-
erarchical power management framework for heterogeneous
multi-cores. The load balancing and task migration tech-
niques proposed in [25] do not handle heterogeneity and task
distribution efficiently.

Some existing works [4, 7, 10–12, 16, 22, 30] borrow
economic theory ideas to develop power or thermal man-
agement schemes. Ebi et al. [10] propose an agent-based
power distribution scheme for multi-cores, where the trad-
ing commodity is the power units. Agent based dynamic



thermal management techniques are proposed in [4, 14],
where negotiations are made in the market to make effi-
cient task migration decisions. Roy et al. [30] propose an
energy management technique for mobile devices based on
abstractions such as isolation, delegation and subdivision.
This technique requires building an offline energy model for
a system, which consists of a multi-core that uses two dif-
ferent ISA (ARM11 and ARM9). In contrast, our technique
targets single-ISA heterogeneous multi-core system that en-
ables task migration.

Some prior works [7, 16, 22] employ welfare economics
in datacenters to improve power efficiency. [16, 22] em-
ploy Mixed Integer Linear Programming (MILP) technique
for determining the optimal allocation of resources. Lu-
bin et al. [22] present power management in homogeneous
multi-core datacenters. This approach is extended to het-
erogeneous systems in [16]. The solving time is quite high
(800ms) for MILP formulation. This is only suitable for
datacenter workloads exhibiting relatively stable phases so
that allocation decisions can be made at long intervals (e.g.,
10-minute interval). But such high overhead cannot be tol-
erated in a mobile platform with dynamic workloads where
the allocation decisions need to be revised multiple times per
second. Our dynamic price theory based power management
mechanism is distributed in nature and thus accomplishes
the optimization with minimal overhead.

5. Experimental Evaluation
We now proceed to evaluate our price-theory based power
management framework, called PPM, for asymmetric multi-
cores. First, we present the experimental setup and the
workload selection. We compare PPM with a control-theory
based power management framework for asymmetric multi-
cores, called HPM [25] and the Linux asymmetry-aware
scheduler [3]. Finally, we quantify the effects of savings and
priorities followed by the overhead of PPM.

5.1 Experimental Setup
We use the Versatile Express development platform [2] for
our experimental evaluation. It is a modular and flexible plat-
form that allows for quick development of both hardware
and software prototypes. The platform consists of a versatile
express motherboard with a daughter board containing TC2
CoreTile test chip with ARM big.LITTLE heterogeneous
multi-core at 45nm GP technology. The test chip consists
of two core Cortex-A15 (big) cluster and three core Cortex-
A7 (LITTLE) cluster as shown in Figure 1. Both big and
LITTLE cores implement ARM v7A ISA and are connected
together by CCI-400 cache coherent interconnect. The fre-
quency can only be modified at the cluster level in the target
platform. The architectural features of big and LITTLE core
are detailed in [15, 27]. For heterogeneous multi-cores, it
is important to discern the migration penalties across differ-
ent clusters. As expected, we observe that the migration cost

within a cluster is lower than the cost across the clusters. The
migration cost within the big cluster is in the range of 54–
105 µs depending on the frequency level, while for the LIT-
TLE cluster the observed cost is 71–167 µs. However, the
migration cost across the clusters is much higher: 1.88–2.16
ms for the migration from LITTLE to big cluster at different
frequency levels, and 3.54–3.83 ms for the migration from
big to LITTLE cluster.

The firmware installed on the motherboard is responsi-
ble for booting the Linux kernel in the big.LITTLE chip. We
use Ubuntu 12.10 Linaro release for Versatile Express [3]
with Linux kernel release 3.8. The evaluation platform is
equipped with sensors to measure frequency, voltage, power
and energy consumption per cluster. The Linux 3.8 kernel
release provides the hardware monitor (hwmon) communi-
cation interface to interact with all the sensors located in the
test chip. The idle cluster (that did not boot the Linux ker-
nel) can be powered down if necessary. We boot the Linux
kernel in the LITTLE cluster. The powering down and mod-
ification of V-F levels are achieved using the drivers related
to the oscillators.

In our framework, the agents are implemented in soft-
ware as kernel modules. The core, cluster, and chip agents
are instantiated during kernel boot process. The task agents
are instantiated as and when the tasks are created. The com-
munication between the tasks in user space and the agents
in kernel space is performed using system calls. The clus-
ter agent uses cpufreq utility to manipulate the frequency of
the cluster. The voltage at each frequency level is automati-
cally set by the hardware. The task migration is handled by
the cluster and the chip agents using the task affinity through
sched setaffinity interface in the Linux scheduler.

The core agents are responsible for distributing the avail-
able resources among the tasks. This is achieved by manipu-
lating the nice values of each task. In Linux kernel, nice val-
ues are the indirect indications of priorities for task manage-
ment. For example, lower nice value manifests as higher pri-
ority and more resource consumption. As we use nice values
for resource allocation, the user-level priorities of the tasks
in our framework are set in the context of the Linux kernel by
adding a new member prio in the structure task struct. The
prio value can be modified from the user space using system
calls. For the sake of simplicity, we do not allow dynamic
modification of the priorities (prio) of the tasks.

5.2 Workload Selection
We use benchmarks from PARSEC [6], Vision [34] and
SPEC 2006 [1] suites. At present, our framework requires
the tasks to express the performance demand. We employ
the Heart Rate Monitor (HRM) [17] infrastructure to capture
this information. HRM provides a simple and effective way
to measure the performance of a task in terms of heartbeats
per second (hb/s), which is defined as the throughput of the
critical kernel in a task. For example, number of frames pro-
cessed per second defines the heart rate of a video encoder.



Table 4: Illustration of conversion from heart rate to demand
with min and max heart rate being 24 hb/s and 30 hb/s
respectively.

Prog. Current hr Frequency Utilization s d
phase (hb/s) (Mhz) (%) (PU) (PU)

1 15 500 100 500 900
2 10 800 50 400 1080
3 40 1000 100 1000 675

For each application, the user can define the performance
goal in terms of reference heart rate range and our goal is to
maintain the heart rate within that range, while minimizing
energy. Note that an application may have highly variable
computation requirement due to phase behavior and hence
may need different V-F levels or even migration to a differ-
ent core type to keep the heart rate within the specified range.
Table 4 illustrates the conversion of heart rate to demand for
a particular task. Each row in Table 4 represents the different
program phases of the same application. The user defines the
performance goals in terms of minimum and maximum heart
rate (24 hb/s – 30 hb/s). From the current observed heart rate,
core frequency and task utilization, the demand of the task
can be easily computed. For example, with the supply of 500
PUs, the current heart rate is 15 hb/s in program phase 1. It
is clearly well below the reference range prescribed by the
user. The required demand is estimated using the equation
dt = target heart rate×st

current heart rate , where target heart rate is the
mean of the minimum and maximum heart rate range. In our
example in Table 4, the target heart rate = 27. Similarly,
in program phase 3, the current heart rate exceeds the prede-
fined range and here the demand is lowered.

In the absence of HRM infrastructure, an approximate
way to determine the demand in Linux operating system is
to measure the time a task spends in the run-queue in a given
epoch of scheduling. This per-entity load tracking proposed
by Paul Turner [32] in kernels higher than 3.7 can be used in
lieu of heartbeats. Table 5 summarizes the benchmarks along
with inputs and the heartbeat insertion point.

We create 9 different multiprogrammed workload sets
from the benchmarks based on the metric intensity =∑

t∈T dA7
t −S

max freq
A7

Smax freq
A7

, where
∑

t∈T d
A7
t is the total demand

of all the tasks in the given workload and Smax freq
A7 is the

supply at the maximum frequency in the A7 cluster. The
metric intensity shows whether the demand of the entire
task set in a workload can be accommodated in the A7
cluster at the highest frequency. If intensity ≤ 0, the supply
exceeds the demand and hence the demand from all the tasks
can be satisfied in A7 cluster at highest frequency. On the
other hand, if intensity > 0, some tasks will not meet
their demand on A7 cluster and need to move to the more
powerful A15 cluster. Therefore, based on the intensity
metric, we classify the workload sets into three types: a) light

Table 6: Workload Sets

light
l1 texture v, tracking v, h264 s

swaptions l, x264 l, blackscholes l
l2 texture v, multicnt v, h264 b

swaptions l, bodytrack l, blackscholes l
l3 tracking v, multicnt v, h264 s

x264 l, bodytrack 1, blackscholes l

medium
m1 swaptions l, bodytrack l, blackscholes l

texture v, tracking v, h264 b
m2 texture v, tracking v, h262 s

swaptions n, bodytrack n, x264 n
m3 tracking v, multicnt v, blackscholes n

bodytrack n, texture f, h264 fo

heavy
h1 h264 fo, x264 n, blackscholes n

texture f, swaptions n, multicnt f
h2 blackscholes n, x264 n, tracking f

bodytrack n, texture f, h264 s
h3 h264 b, h264 fo, x264 n

swaptions n, bodytrack n, tracking f
* v-vga, f-fullhd, n-native, l-large
* s-soccer, b-bluesky, fo-foreman

(metric ≤ 0), b) medium (0 < metric ≤ 0.30) and c) heavy
(metric > 0.30). Table 6 summarizes the workload sets and
their classification based on the intensity value.

The LBT module requires the average demand and power
consumption of a task in different core types for specula-
tion during load balancing and task migration. We obtain
the average demand and power consumption of the tasks
in both Cortex-A7 and Cortex-A15 through off-line pro-
filing. The average metrics (demand and power consump-
tion) do not capture the dynamic phases of a task. Never-
theless, it leads to better speculation than the absence of
any knowledge whatsoever and the supply-demand module
can handle wrong speculations by manipulating the V-F lev-
els. Moreover, as mentioned before, we plan to include the
power-performance estimation model for big.LITTLE [27]
multi-core within our price theory based power management
framework to eliminate the off-line profiling step in the fu-
ture.

5.3 Comparative Study
We compare our price theory based power management
framework PPM with Hierarchical Power Management
(HPM) technique proposed in [25] and Heterogeneous
aware scheduler in Linux kernel (HL) [3]. The HPM is a
control-theory based power management framework that
employs multiple PID controllers to meet the demand of
tasks in asymmetric multi-cores under TDP constraint. How-
ever, the HPM scheduler uses naive load balancing and task
migration strategy.

The HL scheduler released by Linaro in Linux kernel re-
lease 3.8 is aware of the heterogeneity in ARM big.LITTLE
platform. The activeness of a task (the amount of time spent
in the active task run-queue) is used as a proxy for migra-
tion decisions. For example, the HL scheduler migrates a
task to A15 cluster (A7 cluster) once the time spent in the



Table 5: Benchmarks description

Benchmark Benchmarks suite Description Inputs Heartbeat Location
swaptions PARSEC Monte Carlo (MC) simulation native and large every “swaption”

to compute the prices.
bodytrack PARSEC Tracks a human body with multiple native and large every frame

through a series of image sequence.
x264 PARSEC Video encoder. native every frame

blackscholes PARSEC Solves partial differential equation native and and large every 50000 option
to calculate the prices for a portfolio.

h264 SPEC2006 Video encoder. foreman, soccer and bluesky every frame
texture Vision Motion, tracking and stereo vision vga and fullhd every frame

multicnt Vision Image Analysis vga and fullhd every frame
tracking Vision Motion, tracking and stereo vision vga and fullhd every frame
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Figure 4: Comparison of the percentage of time the tasks do
not meet the reference heart rate range (no TDP constraint).Experiment – 1 
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Figure 5: Comparison of power consumption (no TDP con-
straint).

active run-queue exceeds (falls below) certain predefined
threshold. Furthermore, the HL scheduler does not react to
the varying demands of the individual tasks. For the HL
scheduler, we also employ cpufreq on-demand governor that
changes the frequency value based on processor utilization.
In all the experiments related to the comparative study, we
set all the tasks to run at the same priority because HPM and
HL do not take the priorities into consideration.

For the first comparative study, we assume that the system
does not have any TDP constraint and hence can consume
arbitrarily high power. Figure 4 plots the percentage of time
the reference heart rate range of any task in the workload is

not met, that is, the percentage of time the observed heart
rate was smaller than the minimum prescribed heart rate
for any of the task in the workload. It is evident that the
HL performs better under light workloads (l1, l2, l3). This
is expected as the HL scheduler migrates the tasks to the
powerful A15 cluster at the first opportunity while HPM and
PPM both take a more judicious approach. The impact is
shown as significantly higher average power consumption
for HL compared to HPM and PPM as shown in Figure 5.

On the contrary, the PPM scheduler outperforms both
HPM and HL for medium (m1, m2, m3) and heavy (h1, h2,
h3) workloads. The HPM scheduler implements a relatively
simple and non-speculative load balancer and task migrator
that is oblivious to the utilizations in the other clusters. As
the HL scheduler migrates all the tasks to the A15 cluster,
it results in inefficient usage of the resources for the more
demanding workloads.

Figure 5 plots the average power consumption for the
different techniques with no TDP constraint. HPM and
PPM have comparable average power consumption across
all types of workloads. The HL scheduler with on-demand
governor results in an average power consumption of 5.99W,
which is much higher than that of HPM (3.43W) and PPM
(2.96W) across all the workloads.

Experiment – 4W 
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Figure 6: Comparison of the percentage of time the tasks do
not meet the reference heart rate range under TDP constraint
of 4W.

Next we study how the different techniques cope with
strict TDP constraints. We observed through a series of ex-



0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 50 100 150 200 250 300

No
rm

al
iz

ed
 h

ea
rt 

ra
te

 [h
ea

rt
be

at
s/

s]
 

Time [s] 

swaptions_native bodytrack_native

priority 
swaptions = 1 bodytrack = 1 

(a)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 50 100 150 200 250 300

No
rm

al
iz

ed
 h

ea
rt 

ra
te

 [h
ea

rt
be

at
s/

s]
  

Time [s] 

swaptions_native bodytrack_native

priority 
swaptions = 7 bodytrack = 1 

(b)

Figure 7: Normalized performance of swaptions and bodytrack where [0.95,1.05] is the normalized performance goal.

periments that the TDP of our evaluation platform is 8W.
To emulate a power-constrained environment, we artificially
cap the power budget to 4W. For the HL scheduler, we
switch off the A15 cluster once the power exceeds the TDP.
This is because the observed maximum power in A7 cluster
and A15 cluster are 2W and 6W, respectively. Thus power-
ing down of the A15 cluster guarantees that the total power
consumption will be well below the TDP constraint of 4W.

Figure 6 plots the percentage of time any task in the work-
load do not meet their reference heart rate range under TDP
constraint of 4W. The tasks are able to meet their reference
heart rate more often with PPM approach compared to HPM
and HL. The improvements are 34% and 44% compared to
HPM and HL, respectively under 4W TDP constraint.

5.4 Impact of priorities and savings
A unique aspect of our price theory-based solution is that we
take into consideration the priorities of the tasks as well as
their savings. To evaluate the effectiveness of these concepts,
we schedule two demanding tasks on one core. We disable
load balancing and task migration to study the behavior of
the tasks with different priorities and phases of execution
(where savings become useful).

Figure 7a shows the dynamically changing performance
in terms of heartbeats per second for swaptions and body-
track with the same priority. The black shaded region shows
the expected performance range. In this case, swaptions and
bodytrack spend 29.7% and 31.1% of time outside the ex-
pected performance range. In Figure 7b, we change the pri-
ority level of swaptions to 7. As can be observed from the
figure, swaptions is now allocated more resources and hence
spends 7.5% of time outside the performance range, while
bodytrack now spends 57% of time outside the range.

To evaluate the advantage of savings, we choose swap-
tions and x264. Both the tasks are running at the same prior-
ity. In the initial phase (first 100s), x264 exceeds the perfor-
mance goals due to relatively less demand (dormant phase),
while swaptions just about meets its demand. Thus x264
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Figure 8: Normalized performance of swaptions and x264
when [0.95, 1.05] is the normalized performance goal.

manages to save a significant fraction of its allowance in this
phase.

In the second phase (100 to 300 s), the performance
demand of x264 increases severely as it moves into its active
phase. Now x264 uses up its savings to buy more resources
relative to swaption. At 300 s, the savings runs out and
the high performance demand of x264 cannot be sustained
any further. This illustrate that the concept of savings offers
transient benefits to the tasks that spend long time in the
dormant phases with very few active phases.

5.5 Scalability
Our price theory based power management framework is
scalable due to the distributed nature of the agents that work
in parallel. We first provide a computational complexity
analysis of our framework followed by quantitative results
from the implementation.

The computational overhead arises from the calculations
performed in the supply-demand module to decide on the
bids, price, and supply level. It is evident that these com-
putations are straightforward with negligible overhead. The
primary overhead comes from the LBT module that needs to
estimate the performance, spending of current and candidate
future task mappings.



Let V be the number of clusters on chip,C be the number
of cores per cluster, and T be the average number of tasks
per core. Let M be the average computation performed to
estimate perf(M′) and spend(M′) for each possible task
mapping M′. We estimate the cost and benefit of migrat-
ing a task to the most over-supplied unconstrained core in
each cluster. Thus for each task in the constrained core, we
consider V task mappings. So the worst-case computational
overhead in the constrained core is T × V ×M . Clearly, the
overhead increases with number of tasks and clusters.

Our evaluation platform has two clusters and five cores.
To measure the overhead of our approach, we inject all the
8 benchmarks in the system. The supply-demand module
is invoked every 31.7ms. As discussed in Section 3.4, the
load balancing and task migration are invoked every 95.1ms
and 190.2ms, respectively. The overhead per invocation of
the LBT module in the ARM big.LITTLE platform is only
0.003ms.

In order to quantitatively evaluate the scalability of our
approach, we emulate systems with large number of cores
and clusters. We randomly generate tasks with varying de-
mands and feed this information to the A7 core running at
the lowest frequency level (350MHz), which is a highly pes-
simistic scenario. We assume that this core is the constrained
core. We randomly generate the supply/demand information
for the other clusters (up to 256) and the cores (up to 16), and
provide this information to the constrained core. The sup-
ply and demands are randomly chosen between 10–50 PUs,
while the maximum supply of the cores in different clus-
ters are between 350–3000 PUs. We then measure the time
spent in the supply-demand module and the LBT module
by this constrained core when the task migration module is
triggered every 190ms (see in Section 3.4). Table 7 summa-
rizes the overhead in the constrained core for varying num-
ber of tasks, cores, and clusters. As we measure the overhead
in the small core at the lowest frequency, the overhead will
be much smaller on big cores. As recommended for Linux
kernel, we also compile the supply-demand module and the
LBT module with -O2 compiler optimization flag. For a sys-
tem with 256 clusters (16 cores per cluster, 32 tasks per core
for a total of 131,072 tasks), we observe that the overhead
drastically reduces from 11.4ms to 1ms with -O3 optimiza-
tion flag.

Some existing works [16, 22] provide mixed integer-
linear programming (MILP) formulation of the power man-
agement problem, which can provide the optimal solution.
The MILP-based approach has low overhead for small sys-
tems with fewer core types, clusters, and tasks. The com-
plexity of the MILP approach increases exponentially with
increasing number of clusters. The average overhead re-
ported in [22] for solving the MILP formulation is 29
minutes, whereas a greedy approximation takes 5.16 min-
utes for 1000 homogeneous nodes, each node consisting of
four cores. All the experiments in [22] were performed on

Table 7: Computational overhead for varying number of
clusters V , cores per cluster C, and tasks per core T .

V C T Total Avg. Avg.
Tasks overhead overhead

[%] [ms]

4
2 8 64 0.02 0.038

32 256 0.11 0.21

4 8 128 0.03 0.057
32 512 0.16 0.30

16
8 8 1024 0.75 1.42

32 4096 0.96 1.82

16 8 2048 0.81 1.54
32 8192 1.37 2.67

256
8 8 16384 3.48 6.62

32 65536 5.12 9.74

16 8 32768 4.16 7.90
32 131072 6.0 11.4

a 3.2GHz dual-processor dual-core platform with 8GB of
memory. In [16], the authors report 800ms linear solver time
per invocation at 10-minute interval in a datacenter envi-
ronment consisting of 160 Xeon nodes or 225 Atom nodes
or some combination of them. Clearly, the MILP based ap-
proaches are infeasible in a modern embedded platform with
dynamically varying workloads requiring frequent invoca-
tion of the solver. In contrast, the estimated overhead of
our price theory-based approach in a 256 cluster system (16
cores per cluster, 32 tasks per core for a total of 131,072
tasks) is only 11.4ms per invocation at 190ms interval on a
Cortex-A7 running at 350 MHz.

6. Conclusion
In this paper, we propose a price theory-based power man-
agement framework for heterogeneous multi-cores to min-
imize the power consumption while satisfying the perfor-
mance goals under a power budget constraint. We incor-
porate various power management techniques like DVFS,
load balancing and task migrations in a single, unified and
comprehensive framework, which is highly scalable and dis-
tributed in nature. Our solution is integrated within the Linux
fair scheduler with minimal modifications to the kernel and
implemented on a real heterogeneous multi-core platform.
Empirical results confirm the superiority of our approach
compared to the existing techniques.
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