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Abstract

Domain-specific accelerators deliver exceptional performance
on their target workloads through fabrication-time orches-
trated datapaths. However, such specialized architectures
often exhibit performance fragility when exposed to new ker-
nels or irregular input patterns. In contrast, programmable
architectures like FPGAs, CGRAs, and GPUs rely on compile-
time orchestration to support a broader range of applica-
tions; but they are typically less efficient under irregular or
sparse data. Pushing the boundaries of programmable ar-
chitectures requires designs that can achieve efficiency and
high-performance on par with specialized accelerators while
retaining the agility of general-purpose architectures.

We introduce Canon, a parallel architecture that bridges
the gap between specialized and general purpose architec-
tures. Canon exploits data-level and instruction-level par-
allelism through its novel design. First, it employs a novel
dynamic data-driven orchestration mechanism using pro-
grammable Finite State Machines (FSMs). These FSMs are
programmed at compile time to encode high-level dataflow
per state and translate incoming meta-information (e.g., sparse
coordinates) into control instructions at runtime. Second,
Canon introduces a time-lapsed SIMD execution in which
instructions are issued across a row of processing elements
over several cycles, creating a staggered pipelined execution.
These innovations amortize control overhead, allowing dy-
namic instruction changes while constructing a continuously
evolving dataflow that maximizes parallelism. Experimen-
tal evaluation shows that Canon delivers high performance
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across diverse data-agnostic and data-driven kernels while
achieving efficiency comparable to specialized accelerators
yet retaining the flexibility of a general-purpose architecture.

DRAFT

1 Introduction

An ideal processor would allocate nearly all its resources to
computation while minimizing the cost of control and data
movement. However, the end of Dennard scaling, the slow-
down of Moore’s law, and the disparate scaling of memory
relative to logic have constrained the performance and effi-
ciency gains of classical von Neumann architectures, moving
them away from the ideal processor envisioned [16, 46]. As
these architectures increasingly devote resources to control
and data movement, their computational efficiency decreases.
Against this backdrop, the rise of domain-specific compute-
intensive applications has triggered a Cambrian explosion
of novel, non-von Neumann accelerator architectures.

These domain-specific architectures incorporate special-
ized compute units and manage data dependencies through
hardwired datapaths that mimics the application’s intrinsic
data flow [2]. This hardwiring reduces the cost of control
and memory access relative to the computation. Essentially,
these architectures rely on the fabrication-time orchestra-
tion or configuration of the compute and data dependencies.
Examples include Tensor Processing Units (TPUs)[19], Al
accelerators[6, 28, 48], media and protocol accelerators [20],
and sparse tensor accelerators [10, 33, 41, 51], each designed
solely for the respective workloads. However, when tasked
with workloads beyond their intended domain, these archi-
tectures exhibit extreme fragility in performance [43].

In contrast, programmable architectures, such as Coarse-
Grained Reconfigurable Arrays (CGRAs) and FPGAs, rely
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on sophisticated mapping, placement, and routing software
to orchestrate computation on their reconfigurable fabrics.
By spatially distributing computation and communication at
compile time, they achieve flexibility compared to specialized
accelerators. GPUs, on the other hand, leverage an execu-
tion model with massive thread-level parallelism, relying
on compilers and schedulers to manage computation. While
they offer more adaptability than fixed-function accelerators,
their efficiency hinges on structured and regular workload
decomposition and inherent parallelism.

Irregularity is becoming an increasingly critical factor in
modern workloads. For instance, sparse tensor operations in
machine learning (ML) workloads bring irregularities with
wide-ranging sparsity from 5% to 95%, and can appear in
structured or unstructured forms, either known at compile
time or determined at runtime. Supporting a broad range of
sparse kernels has become essential [4, 49, 50]. Ultimately,
GPUs, FPGAs, and CGRAs perform well on regular or data-
parallel tasks but are less efficient for workloads with ir-
regular dataflow and memory access patterns. While these
architectures generally handle workload variations better
than specialized accelerators, the compile-time orchestration
and reliance on massive thread level parallelism can lead to
performance degradation when faced with dynamic or un-
predictable data patterns. This emphasises the need for a
hybrid approach that integrates static and dynamic decision-
making to handle an assortment of regular and irregular
workloads with minimal resource overhead.

Contributions: We propose Canon', a novel parallel ar-
chitecture that transcends traditional specialization-flexibility
tradeoffs. Our objective is to push the boundaries of pro-
grammable architectures, aligning with the idea that extreme
domain specialization may often be superfluous [36].

As shown in Figure 1, Canon is based on a 2D-mesh spatial
architecture composed of Processing Elements (PEs). Unlike
conventional reconfigurable architectures that rely exclu-
sively on compile-time orchestration, Canon exploits a two-
tier approach. Canon first leverages inherent workload
regularities, specifically, data-level and instruction-
level parallelism, to schedule predictable high-level
dataflow, and then uses dynamic scheduling in hard-
ware via a lightweight programmable orchestrator to
handle irregularities. Therefore, the cost of dynamic sched-
uling and control is minimized by confining it to the irregular
aspects of the workload (e.g., arbitrary input patterns), while
the bulk of the execution benefits from the efficiency of reg-
ular dataflows. The orchestrator incorporates a FSM which
acts as an on-the-fly data-to-instruction translator. This FSM
is programmed by the compiler, which relies on static anal-
ysis of the high-level dataflow and compute organization,
and at runtime, the FSM relies on input-data and neighbor
messages as triggers for generating instructions.
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Figure 1. Canon Hardware Architecture

Second, Canon incorporates a time-lapsed SIMD executio
combined with distributed memories, where instructions
propagate through PEs over multiple cycles, amortizing con-
trol cost and enhancing scalability. While different PEs may
be at various stages of execution at an instant, they eventu-
ally perform the same operation over time. Consequently,
Canon exploits an evolving dataflow across the fabric,
where execution patterns are constructed, switched,
and adapted over time at fine granularity to suit an
unpredictable input without sacrificing parallelism.

Control and synchronization are completely abstracted
from the compute units in the PE array by resorting to or-
chestrators and issuing instructions in a time-lapsed manner.
This abstraction enables a priori look-ahead into decisions,
yielding predictable and deterministic behavior across the
fabric, even under dynamic orchestration. The hardware
sustains high parallelism, maximizes utilization, balances
workload efficiently, and ultimately achieves consistently
high throughput across diverse kernels and input data pat-
terns. Canon matches the performance of dense, un-
structured and structured sparse accelerators in their
own specialization domains with minimal efficiency
degradation while also supporting a broad array of
other parallel workloads typically handled by recon-
figurable architectures. To our knowledge, Canon is the
first architecture to sustain such high performance across
such a diverse set of data-agnostic and data-driven kernels.

DRAFT

2 Canon Architecture

Canon is designed to effectively handle both regular work-
loads and data irregularities, with the primary intention of
ensuring a stable performance and minimal fragility. This
section provides an overview of the architecture’s design
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Figure 2. Orchestration and Instruction issue in Canon

principles that combine dynamic orchestration with a scal-
able reconfigurable fabric composed of PEs in a 2D mesh
topology with a time-lapsed SIMD execution. Each PE has
a vector lane for computation, associated registers, a router
for communication with neighboring PEs, and a local data
memory. The detailed micro-architectural implementation
and mapping are further discussed in later sections.

Data-Driven Orchestration: Figure 2 illustrates the mech-
anism where each row of processing elements is managed
by a dedicated orchestrator—a lightweight, programmable
finite-state machine. A bitstream configures the FSM with
states representing high-level operational modes (e.g., flush-
ing memory or accumulating partial sums). The FSM dy-
namically issues instructions to its row of PEs reacting to
input meta-data (e.g., sparse coordinates) and messages from
neighbors. For instance, in Figure 2, both the rows are ini-
tially issued instruction 2 (inst2) corresponding to State Sj;
subsequently, a message from the orchestrator at the North
to South triggers the second row’s transition from State S, to
Sy, changing its output instruction from inst2 to inst1. This
dynamic orchestration, which is a hybrid of compile-time
mapping with runtime decision making, enables the architec-
ture to adapt seamlessly to both regular and irregular input
data patterns.

Time-Lapsed SIMD Execution: As depicted in Figure 3,
the architecture employs a time-lapsed SIMD execution model
wherein instructions generated by the FSM-based orches-
trator propagate through the PE array over multiple cycles
via a dedicated instruction network in a staggered manner.
Unlike conventional SIMD execution where a single instruc-
tion is broadcast simultaneously to all PEs, here an instruc-
tion—such as “multiply inputs from SRAM and East; Send
Output South”—is issued to the first PE in cycle 1, then tra-
verses a 3-cycle pipeline before reaching the second PE in
cycle 4. This staggered instruction issue ensures that while
different PEs can behave differently at a given timestamp,
they ultimately execute an identical sequence of operations
on their respective data. The behavior, including NoC and
memory actions, is replicated across the fabric. For instance,
in Figure 3, the first columns’ compute, memory, and NoC
behavior are recreated three cycles later by the next columns.
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Figure 3. Time-lapsed SIMD with staggered instruction issue

2.1 Reduced Control Cost

An important issue with traditional von Neumann and man
reconfigurable architectures is the high overhead of con
trol logic [24, 46]. In Canon, orchestrators provide a light-
weight control mechanism, reducing the per-PE control bur-<
den. They generate and distribute control signals via a‘l:’m
instruction-dedicated NoC from the periphery of a PE ro
through staggered instruction issue. By offloading controlD
and instruction distribution, we preserve a lightweight com-
pute fabric, enhance scalability, simplify the programming
model, and achieve high energy efficiency.
Synchronization: Each cycle, the orchestrator dispatches
an instruction to the first PE of the row, which executes
it and subsequently passes it along to the next PE. Conse-
quently, every PE in a row ultimately performs the same
instruction—albeit at staggered cycles and on distinct data.
Each PE operates with a fixed pipeline latency of 3 cycles,
ensuring that the sequence of actions initiated by the first
PE (including data exchanges and memory accesses) is con-
sistently replicated by subsequent PEs with a delay corre-
sponding to the instruction propagation. This predictable
behavior enables us to abstract inter-PE synchronization
through orchestrator-level coordination. This also means
effectively enhancing the compute-to-control ratio, maximiz-
ing computational density, and reducing control overhead.
Abstracted & Deterministic Irregularity Handling;:
The orchestrator is primarily designed to manage dynamic in-
put variations, such as sparsity, by effectively addressing the
challenges posed by irregular workloads and dynamic data
dependencies. While CPUs and GPUs resolve such depen-
dencies through memories, dataflow architectures depend
largely on the NoC for data movement. In regular applica-
tions with predictable communication patterns, static rout-
ing—via circuit-switched or hardwired NoCs—is effective.
However, for complex applications characterized by irreg-
ularities and variable data dependencies, packet-switched
or dynamic NoCs are preferable due to their adaptability,
despite incurring additional hardware overhead from mecha-
nisms such as backpressure and virtual channels [17, 52, 53].
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We design a dynamically managed circuit-switching scheme
that handles both regular and irregular workloads with min-
imal overhead. Thanks to deterministic timing across the
PE array from abstracted synchronization, runtime control
and congestion management within the PE’s NoC become
unnecessary. The orchestrators manage irregularities exter-
nally, using their insight into PE determinism and input data
patterns to make dynamic decisions. These decisions are em-
bedded in the instruction stream, ensuring that the circuit-
switched configurations accurately reflect the required data
dependencies during execution.

2.2 Reduced Data-Handling Costs

Canon employs a distributed memory system in which each
PE features local memory and communicates via the NoC.
The orchestrators dynamically configure both the NoC and
the memory through instructions, to efficiently support reg-
ular and irregular workloads. Although NoCs are highly
efficient in data movement [16, 17], their fixed topology and
limited bandwidth constrain their ability to manage complex
dependencies, necessitating reliance on memory.

Canon prioritizes the NoC for mapping inherently regular
compute patterns and data transfers, while it opportunisti-
cally resorts to memory when handling irregularity. In this
design, memory serves a dual purpose and is partitioned
respectively into two segments to prevent port saturation
and minimize fragmentation: a larger segment for static data
(e.g., ML weights) and a smaller scratchpad that serves as a
read/write buffer to handle complex dependencies on the fly.
Both segments support single-cycle random access.

As a storage device, the static data memory is mainly
used for input and output data, enabling effective data reuse,
reducing off-chip bandwidth requirements, and accommo-
dating random accesses, particularly beneficial for irregular
workloads with runtime-determined patterns. For resolving
data dependencies, the scratchpad holds intermediate data
during execution, akin to von Neumann architectures, or
acts as a buffer to amortize runtime irregularities. Canon de-
couples local memory management from the compute units
by integrating both software and hardware control, drawing
inspiration from Explicitly Decoupled Data Orchestration
(EDDO) architectures [38]. The compiler directs data dis-
tribution and programs kernel-specific data management
policies into the orchestrator FSM, enabling dynamic mem-
ory management based on orchestrator instructions.

3 CANON Micro-architecture

The micro-architecture of the PE and the orchestrator is
depicted in Figure 4 and Figure 5, respectively. Each PE func-
tions as a 3-stage pipeline. At LOAD stage, data is loaded from
the scratchpad memory, data memory, or the NoC into the
vector-lane registers for input operands. The COMPUTE stage
performs computations using a vector lane that processes

four words in parallel. The results are written to the scratch-
pad, registers (e.g. for accumulation), data memory or sent
to neighborhood PEs through the NoC at the COMMIT stage.
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Figure 4. Architecture of 3-stage CANON PE pipeline
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Figure 5. Architecture of the programmable Orchestrator

3.1 ISA and PE Control

PEs do not include complex control logic; they primarily rely
on orchestrator-issued instructions. These instructions are
streamed through the PE pipeline, dictating their execution
behavior, i.e., the router, compute, and memory behavior.
The instruction format is straightforward, specifying the
operation, operand addresses, and destination addresses:

<inst> ::= <op> <opl_addr> <op2_addr> <res_addr>

To simplify the instruction format, the scratchpad, data
memory, router, and SIMD registers share a unified address
space. The specific memory accessed or NoC switching ac-
tion is inferred from the address.

Since instructions are executed in a pipelined manner,
hardware resource contention is minimized. The read ports
of the data memory and scratchpad are accessed only during
the LOAD stage if op1_addr or op2_addr corresponds to these
memories, while write ports are used exclusively during the
COMMIT stage if res_addr targets them. The NoC switch is
active in both LOAD and COMMIT stages when transferring data.
Due to router constraints, it supports only one data transfer
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per cycle per direction. As pipeline stages are executed in
parallel (ILP), a single instruction cannot simultaneously
read from and write to the same NoC direction to prevent
conflict with other instructions executed in parallel. This
restriction is enforced at compile time.

3.2 Orchestrator Microarchitecture

The orchestrator is designed to generate instructions at run-
time using its FSM, which serves as a data-to-instruction
translation function. Its primary roles are to produce instruc-
tion fields, update its internal state, and send messages to
neighboring orchestrators. As shown in Figure 5, the FSM’s
internal state is maintained using two types of registers: the
State Register, which holds the current state, and the State
Meta Registers, storing value-based state information such as
iteration counts or memory status, depending on the target
kernel. The state transition function is defined at compile
time, while the state transitions are triggered at runtime by
external events, including metadata from the input stream
captured in the Input Meta Register and messages from neigh-
boring orchestrators in the Orchestrator Message Register (for
content) and the Orchestrator Message ID (for message type).
We note that the semantics of the states and messages are not
fixed by the hardware but instead defined by the compiler
along with the definition of state transition logic.

The registers are processed for four key functions: com-
puting the state transition condition, generating addresses,
calculating the new state, and generating messages. The
condition computation is statically configured (all gray com-
ponents in the figure), while the other three functions are
dynamically configured (blue components) by programmable
logic depending on the FSM state. This programmable logic
is a lookup table (LUT) unit capable of implementing any
combinational logic function of its inputs. The LUT is im-
plemented as SRAM. It contains 2!° entries, corresponding
to all possible configurations of its 10 input bits (23*3+2x2),
Each entry outputs 48 bits for configuring the dynamic com-
ponents, resulting in 6 KB SRAM. The dynamic control logic
is defined by the programmer or compiler by specifying the
encoding of the state, state meta, orchestrator messages, and
message IDs. Before kernel execution, this data-instruction
translation logic is prefilled into the LUT as a ‘bitstream’,
enabling programmability of the orchestrator.

4 Canon Application Mapping

As Canon eliminates much of the control from PEs and has
a new execution paradigm, it is essential to demonstrate the
architecture’s programmability and generalizability across
various kernels. The compiler should produce a bitstream
for every kernel. This bitstream programs the orchestra-
tors and synchronizes the memory controllers to initiate the
distributed data placement. The latter follows the EDDO par-
adigm that asynchronously moves the data between main

memory and compute fabric. The current workflow lever-
ages a combination of loop analyses and human intervention
to produce the microcode for the FSM that efficiently maps
arbitrary kernels. Given the vast mapping space, ensuring
optimal mapping and data placement on Canon hardware
remains an open challenge. At present, the process that com-
piles applications from high-level libraries and languages
(e.g., PyTorch, C) is under development and falls outside the
scope of this work. Instead, we focus on demonstrating the
underlying logic behind the mapping in this study.

4.1 Mapping Sparse Kernels

Sparse kernels, particularly sparse tensor operations, are
among the most popular and representative HPC workloads

that involve input-dependent control flow. These operations
create bottlenecks in applications spanning high-performancE_<
computing (HPC) and machine learning [25, 33, 41, 49, 51]
Moreover, these workloads involve varying sparse operaI'T'4
tions with different degrees of randomness or structure in
inputs. Sparse tensor operations highlight two primary chal,
lenges common to applications with irregular input datam
First, the sparsity in inputs introduces irregular memory acQ
cess patterns, leading to memory bottlenecks. Second, the
uneven distribution of non-zero elements results in work-
load imbalance across compute units, necessitating special-
ized hardware for load balancing and synchronization. Tra-
ditional architectures, including GPGPUs [8] and systolic
arrays [19], often suffer from under-utilization of compute
units due to this. We demonstrate the mapping of various
dense and sparse kernels on Canon hardware.

4.1.1 Case Study: SpMM. Canon supports various control
patterns (or dataflows). Figure 6(a) illustrates our SpMM
dataflow, based on Gustavson’s algorithm [10, 14, 33, 51]. In
this approach, rows of the sparse matrix A are processed in
parallel to produce corresponding output rows, with non-
zeros streamed into the matching row of the PE array.

Each PE maintains a tile of the dense matrix B in its local
memory. PEs within the same row store identical rows of B,
but distinct columns. For every non-zero entry a;; in a row
of A, the corresponding rows of B, indexed by j, are retrieved
from local memory. This enables scalar-vector multiplica-
tions between a;; and the local segments of B, yielding partial
sums (psums). These vector psums are then propagated along
the PE array’s column for accumulation. The final cumulative
psums exit the last PE in each column, forming the resulting
output matrix C. A detailed pseudo-code representation of
the dataflow, obtained by restructuring (tiling, reordering)
the standard triple-for loop used in matrix multiplication, is
provided in Listing 3 in the Appendix. This mapping achieves
exceptional efficiency in our architecture by effectively ad-
dressing random access, reduction dependencies, and
load imbalances, while preserving high parallelism.
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Local Random Accesses. We tile and partition the dense
matrix B so that all PEs in the same physical row store iden-
tical rows of B, with each PE holding a distinct column seg-
ment. Consequently, when a non-zero element from A is
processed, every PE in that row accesses the same address
offsets in its local memory, ensuring uniform addressing,
aligning with the staggered instruction issue.
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Figure 7. SpMM decision tree

Load Balancing by Asynchronous Reduction. When
spatially mapping the reduction dimension (K-dimension)
in matrix multiplication, a naive approach can suffer from
write-after-write (WAW) hazards during the accumulation
of partial sums. In SpMM kernels, non-uniform densities of
non-zero elements in A may lead to load imbalance, where
PEs managing denser regions are stragglers that force down-
stream PEs to stall, ultimately reducing overall throughput.
We address this through asynchronous reduction. Since
addition is associative, the accumulation order can be out-of-
order to circumvent stalls. Each PE is concurrently responsi-
ble for two tasks: one performing multiply-and-accumulate
(MAC) operations on its local non-zeros, and the other han-
dling partial sum accumulations received from upstream PEs.
Once a PE completes MAC operations for a row, it moves on
to the next row without waiting for upstream PEs, thereby
preventing stalls. The orchestrator dynamically determines
whether a PE should execute its MAC operations or switch
to accumulation tasks based on the decision tree in Figure 7.
When a message is received from the north orchestrator
(condition A=yes), indicating that upstream PEs are flushing
their partial sums, the local orchestrator instructs the PEs to
process these sums (endpoint 1.1 or 1.2). In the absence of
such a message, the orchestrator directs the PEs to continue
their MAC operations (endpoint 2.2).

Load Balancing by Explicit Buffer Management. Al-
though asynchronous reduction mitigates stalls caused by
WAW dependencies, it does not eliminate the underlying

Listing 1. SpMM FSM Pseudo-code

// NNZ: Non-Zero, CID/RID: Column/Row ID of NNZ in A
msg_from_north = {None, PSum(RID)}

input = {None, NNZ(CID), RowEnd(RID)}

buffer = (RID_start)// Buffer state

state = {MAC(RID), ACC(RID), FLUSH(RID), NOP} // FSM main State

// PE Behavior
op = MAC(CID) if !msg_from_north && input == NNZ(CID);
FLUSH(RID) if !msg_from_north && input == RowEnd(RID);
ACC(RID) if msg_from_north == PSum(RID) &&
buffer.is_managing(msg_from_north.RID);
otherwise NOP;

// Memory Operations

dmem_op = LOAD[CID] if op == MAC(CID); otherwise NOP;

spad_read = LOAD[RID] if op == ACC(RID);
LOAD[buffer.first()] if op == FLUSH(_) && buffer.is_full();
otherwise NOP;

spad_write = FLUSH[RID] if op == FLUSH(RID) || (op == ACC(RID) && op.RID !=

state.RID);

otherwise NOP;

// Router Behavior
router_op = NORTH_TO_SOUTH if msg_from_north == PSum(RID) &&
!buffer.is_managing(msg_from_north.RID) && op != FLUSH(_);
REG_TO_SPAD if op == ACC(_) || op == FLUSH();
SPAD_TO_SOUTH if op == FLUSH(_);
SRAM_TO_REG if op == MAC(L);
otherwise NOP;

// Buffer State Updates
buffer.RID_start += 1 if op == FLUSH(_);

// Message to south
msg_to_south = PSUM[RID] if op == FLUSH(RID) // flush
PSUMLRID] if op == MAC(_) && msg_from_north == PSum(RID) //bypass

DRAFT

imbalance, so the overall execution still waits for the slowest
row of PEs. To further balance the execution, each PE main-
tains a local scratchpad buffer to temporarily store partial
sums it generates or receives, anticipating imbalance from a
straggler in the array. This buffer operates on a FIFO basis,
with the PE processing only those partial sums that are man-
aged at a given time. The orchestrator monitors the buffer
state, explicitly tracking the oldest row index. Once a PE
completes processing a row of sparse elements, it flushes the
oldest partial sum to the downstream PE (case 2.1). Upon re-
ceiving the partial sum, the downstream PE compares its row
index against its current operating range (condition C). If the
index is out of range, indicating that the current row of PEs
is overloaded, the partial sum is bypassed (case 1.2), allowing
the receiving PE to continue its work without interruption.
Each row of PEs can thereby dynamically offload surplus
work to downstream PEs, further balancing the workload.

The asynchronous reduction and explicit buffer manage-
ment are programmed as microcode for the FSM, as shown
in Listing 1. This microcode defines the FSM’s behavior in
response to events by specifying how its internal state tran-
sitions and how it generates instructions that control each
PE’s router, memory, and compute operations.

The performance of Canon in SpMM is sensitive to the
scratchpad buffer size and the characteristics of the input
data. A larger buffer enhances workload balancing by allow-
ing each PE to locally store more psums, thereby alleviating
congestion in downstream PEs and reducing stalls due to
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load imbalances. However, larger buffers also introduce in-
creased overhead from more frequent buffer management
operations. We evaluate the quantitative trade-offs between
the scratchpad size and performance in Section 6.5.

4.1.2 Case Study: SDDMM. Sampled Dense-Dense Ma-
trix Multiplication (SDDMM) is another important sparse-
tensor kernel largely used in the sparse attention mecha-
nisms of transformers [3, 4, 28, 48, 50]. Conceptually, SD-
DMM computes C = M - (A X B), where the result of A X B is
sampled based on a binary mask M. To exploit the sparsity
in M, computations are restricted to the non-masked ele-
ments. However, SDDMM is challenging to accelerate due to
the arbitrary nature of the mask, which introduces irregular
data-distribution and random access patterns to the input
tensors. Figure 6(b) illustrates the dataflow for SDDMM with
the detailed pseudo-code in Appendix B. Since the sparsity
is in the C matrix, the computation must follow an inner-
product matrix multiplication dataflow. The mask M governs
the computation, with its sparsity managed by orchestrators.
The dense input tensor A is streamed from the top of the
PE array. By the end of the PE array (the rightmost side in
Figure 6(b)), a vector of V partial sums is obtained.

The proposed SDDMM dataflow also requires load balanc-
ing: elements of the A matrix are shared across PEs along
the y-dimension. However, the primary source of imbalance
arises from the M mask matrix, as differing numbers of non-
zeros are mapped to rows processed by different PEs (i.e.,
PEs along the y-dimension). This imbalance complicates the
sharing of A’s input elements efficiently across PEs. A simi-
lar strategy than SpMM of using scratchpad to amortize the
unbalance can also be applied for SDDMM, but is used to
buffer the incoming A vectors to improve its reuse.

4.1.3 Case study: Structured Sparsity. Sparsity can ex-
hibit structured patterns that are known at compile time.
Common forms of structured sparsity include N:M sparsity
in the input [54], i.e., N non-zeros in every M elements and
diagonal-wise sparsity (commonly referred to as a window)
in SDDMM operations for sparse attention [4, 18, 50]. Canon
fully supports N:M sparsity for any N:M ratio for SpMM
kernel. The global mapping is identical to SpMM, where the
coordinates of sparse elements are fed to the orchestrator.
With exactly N non-zero per M elements, there is no need
of workload balancing with scratchpad. Instead, the psum is
flushed to the next row of PEs for every N elements processed.
The sliding window sparsity is similarly well-supported by
Canon using the mapping strategy described in prior accel-
erators [3]. Here, the output sparsity is decomposed into
dense rows, where each row corresponds to a vector-matrix
multiplication. The memory can be efficiently managed for
perfect data reuse between computation of rows.

4.2 Mapping General Kernels

With our primary focus on sparse tensor operations that
have been showcased previously, Canon is able to support
more general kernels. For data-agnostic kernels, i.e. where
control flow remains independent of runtime data, the place-
and-route-like spatial mapping techniques on reconfigurable
dataflow architectures [7, 13, 23, 44] can also be applied
to our architecture as show in Appendix D. However, as
Canon has a 4-SIMD lane, for any inner loop that cannot
be parallely unrolled by 4, such spatial mapping results in
compute under-utilization.

More generally speaking, Canon can map affine loops: Let
I denote the n-d iteration space of the loop nest:

I={(ti,ts,...,81,82,...) | ti,sj; € Z}, where

t1, ta, . .. are temporal iterators, meaning the iterations areE_<
executed sequentially with respect to the order among them
S1,S2, . . . are spatial iterators, meaning the iterations areuq
executed spatially and parallely. In our case, they are onl
two spatial dimensions: x and y of the PE array.

Let A denote a memory accessed in the loop, to an m-dm
array with dimensions dy, dy, . . ., dr,. The access functio
f +Z" — Z™ maps the iteration space I to array indices
Aliy, iz, ..., im]. The access function f is affine for each array
dimension i:

ik = fi(t, b2, oy S1,82,...) = ck+Zﬁkiti+Z axjsj, where
i J

¢k € Z is a constant offset, S, ax; € 7? are coeflicients for
temporal and spatial iterators, respectively.

For Canon to be able to share data among the neighbor-
hood PEs with the mesh-network, the spatial iterators s; in
the access function must satisfy:

Ak, j),axj € {-1,0,1} A V(K. j) # (k,j),axj =0.

Since finding an optimal set of loop transformations to sat-
isfy the above conditions remains an open problem, we rely
on a combination of loop analyses—primarily polyhedral-
based—and human intervention to efficiently map kernels,
similar to writing PTX code for GPUs [30].

5 Evaluation Methodology

We synthesize our design as configured in Table 1 using a
22nm commercial FDSOI technology node and the Synop-
sys Design Compiler, targeting 1GHz frequency. The design
incorporates a PE array—each PE featuring a 4-wide vec-
tor lane, a router, associated SRAM as data memory and a
dual-ported scratchpad—along with orchestrators positioned
at the edge of each PE row. We further develop an event-
driven, cycle-accurate simulator in Rust to provide a detailed
breakdown of performance and access patterns for every
architectural component when running various workloads.
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Table 1. Configuration of the evaluated Canon Architecture

Component Configuration

Array 8 X 8 4-SIMD INTS array;
SRAM 4KB per PE; 288KB Overall
Scratchpad Dual-port, 64 Bytes per PE

Orchestrator 8 orchestrators, 1 per PE row.
Main Memory 17 GB/s, LPDDR5x

Architecture. We evaluate Canon against four represen-
tative baselines spanning different specialization. First, the
systolic array similar to TPU [19] serves as a reference for
dense tensor accelerator. Next, the 2:4 systolic array similar
to NVIDIAs Tensor Core [29, 32] for exploiting 2:4 structured
sparsity, i.e., two non-zeros in every four elements. ZeD [10]
represents the state-of-the-art specialized sparse accelera-
tor. Finally, a conventional CGRA is used to illustrate the
general-purpose reconfigurable architecture.

To ensure fairness, all baselines are synthesized at the
same technology node, with each architecture provisioned
with an equal number of MAC units to guarantee equivalent
theoretical peak compute performance. The CGRA baseline
adopts a classical 2D-mesh PE architecture [12, 13, 22, 35]
featuring circuit-switched NoC and a small instruction mem-
ory within each PE, sufficient for mapping the most com-
plex kernel in our benchmarks. We use the state-of-the-art
CGRA mapper [47] for complex kernels. We develop a cycle-
accurate simulator to model the timing behavior of ZeD.
For a fair comparison of the architecture, we exclude ZeD’s
preprocessing optimization of row reorganization during
evaluations, as the same can be applied to Canon.

On-chip memory configuration significantly impacts power,
area, and off-chip bandwidth requirements. For consistency,
we allocate an average of 1KB of data memory per MAC
unit for Canon and all baseline architectures. These mem-
ories are synthesized using the foundry memory compiler
at the same tech node as Canon, with organization tailored
to each architecture as shown in figure 8: Canon employs
distributed memory local to each PE; systolic arrays and
CGRAs use memory banks along the edge of the array; and
the sparse accelerator follows the original design’s bank orga-
nization [10]. The results are validated against the respective
papers to ensure fairness of comparisons.

Workloads. We primarily utilize the sparse tensor ker-
nels SpMM and SDDMM in ML workloads to demonstrate
our architecture’s resilience to input fragility. We employ
the state-of-the-art sparsification technique [26] to induce
sparsity in the activations of the CNN and MLP layers. The
inherent sparsification in the activations leads to SpMM op-
erations. Furthermore, we apply attention sparsification tech-
niques from [28, 48], resulting in unstructured SDDMM oper-
ations for the QK attention matrix (later labeled SDDMM-U).
We use the sliding window attention [4, 18, 49, 50](later la-
beled SDDMM-Win) as structured SDDMM operation. These
sparsification techniques enable a trade-off between sparsity

Canon Architecture

Systolic

Control Data Area

+Distributed M
+Orchestrators +:e;:>n‘;i; NoeCm +30%

vs systolic

-Specialized
Q| -Specialized Memory Banks
Q .
N Decoding -Crossbars +9%
@
2

+Orchestrators | +Distributed Mem
+Reconfig. NoC

-Instr. Mem

+Distributed M -
+Orchestrators istributed Mem | 7%

vs CGRA

Canon (ours) Sparse Accelerator
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and accuracy. While high levels of sparsity (> 85-90%) maym

cause significant accuracy degradation depending on th
model [26, 31], we conduct experiments with sparsity levelsm
up to 95% to thoroughly evaluate our hardware’s character
istics. For clarity in presenting our results, we categorize the
workloads into three sparsity ranges: S1: Relatively dense
(0-30% sparse). S2: Moderately sparse (30-60% sparse). S3:
Highly sparse matrices (60-95% sparse).

While the two sparse kernels already show the handling of
different workloads, to further evaluate Canon, we map the
kernels from the PolyBenchC [21] benchmark suite. Kernels
of the suite containing square root or exponential operations
in their loops are excluded due to the lack of support in
both Canon and CGRA. The PolyBenchC kernels are further
grouped into categories based on their classification within
the benchmark suite, enabling a more structured analysis.

6 Evaluation Results

The baselines chosen for evaluating Canon cover a landscape
of specialized and general architecture while simultaneously
they function as effective ablation studies for its various
features. Figure 8 qualitatively shows key features that can
be incrementally (+) added or removed (-) from the baseline
architectures to ultimately yield Canon. In the following
sections, we quantify the impact of these features on resource
consumption and performance, providing both a systematic,
real-world ablation and valuable insights into the advantages
of our architectural choices.

6.1 Incrementally evaluating the cost of generality

Area cost. A systolic array—representing the most densely
packed 2D-mesh structure of compute units—serves as an
ablation of Canon, wherein the routers, scratchpads, and
orchestrators are omitted and the distributed memories are
replaced with shared memories along the PE array edge.
Figure 9 compares the area breakdown between Canon and
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Figure 10. Runtime power breakdown of Canon’s PEs (av-
eraged), and average data-driven FSM state transitions for
different sparsity ranges. Here, Spad stands for scratchpad.

the systolic array, showing that Canon incurs roughly 30%
additional area, mainly due to its scratchpads, orchestrators
(control), and routing, alongside a slight increase in data-
memory resources for the distributed-memory design.

Circuit-switch routers account for about 5% of the PE chip
area , enabling the mapping of more complex data depen-
dencies than a rigid systolic NoC can support, similar to
conventional CGRAs [12, 13, 22, 35]. For better handling
irregularities, Canon introduces orchestrators along the ar-
ray edge. These orchestrators occupy 8% of the overall area,
reflecting a low control overhead. Moreover, each PE’s dual-
ported scratchpad contributes 13% to the chip area.

Compared to the sparse accelerator, Canon shows a 12% of
area overhead, primarily due to the added reconfiguration ca-
pabilities and generalized memory organization. Compared
to the general-purpose CGRA, benefiting from amortized
control over the SIMD lane and instructions due to the or-
chestrators and time-lapsed execution enables Canon to save
about 7% of total area.

Power cost. Figure 10 further illustrates the power break-
down of Canon across various workloads. Under GEMM,
which employs a systolic-style dataflow, Canon consumes
nearly the same power as the systolic array, with only a
slight (<13%) overhead from control and routing. Notably,
the GEMM power breakdown shows no dependency on
scratchpads in regular applications. As input irregularity
increases—from low sparsity (S1) to high sparsity (S3)—the
FSM in each orchestrator triggers more data-driven state
transitions to balance workload distribution. This necessi-
tates using the scratchpads for buffering data to amortize
the execution, resulting in a higher proportion of power
dedicated to scratchpad operations and higher total power.

Overall, Canon incurs additional resource consump-
tion relative to conventional domain-specific architec-
tures; however, this trade-off enables it to achieve high
performance across a wide range of workloads, as dis-
cussed in the following section.

6.2 Performance versus Flexibility

Figure 11 and Figure 12 quantify Canon’s performance rel-
ative to other architectures, serving both as a study of its
fragility under low performance conditions and as an abla-
tion of certain architectural features. Canon emulates the
systolic dataflow of conventional systolic arrays for the
GEMM kernel, exploiting kernel regularity to match their
performance. However, as Canon allocates a portion of its re-
sources to generality, for extremely regular, dense workloads
like GEMM, a systolic array achieves a higher performance
per watt, though our results indicate this performance gap
is minimal. In contrast, when workloads exhibit spar-
sity—which the systolic arrays dense design cannot
capitalize on—their throughput can drop to less than
0.3x that of Canon.

When extended to support 2:4 sparse operations [8], th
modified systolic array significantly improves its perforeE_<
mance for the corresponding 2:4 sparse structured SpM
kernel. Nonetheless, Canon leverages the 2:4 structure,
despite being designed agnostic to it, achieving com-
parable performance to the modified systolic arra
Moreover, such extreme specialization does not generalize
to other input patterns or kernels, as evidenced by the mod
ified array’s diminished performance on similar (2:8 struc-
tured sparse) or dissimilar kernels (SDDDM, etc.). In direct
comparison with the sparse accelerator ZeD, Canon
demonstrates comparable performance and efficiency
on unstructured sparse kernels—the very kernels for
which ZeD is specialized. ZeD outperforms marginally
(<8%) for matrices in sparsity zones S1 and select cases in S2,
where specialized workload balancing through work steal-
ing across compute units is advantageous due to a higher
number of nonzeros per row. Conversely, Canon is better at
exploiting higher sparsity levels thanks to the flexibility of
its scratchpad, which mitigates imbalance and provides up to
5% better performance on some inputs. Furthermore, ZeD’s
fixed datapath prevent it from leveraging structured inputs,
treating all matrices as unstructured and thereby missing the
additional performance gains offered in N:M sparse kernels
and SDDMM-Win operations. ZeD also allocates a signifi-
cant portion of its power budget to address sparsity via fully
connected crossbars and specialized decoders, resulting in
increased power consumption that varies with the nonzero
distribution pattern. In contrast, Canon’s homogeneous ar-
chitecture opportunistically resolves load-imbalance.

SDDMM-Winl and SDDMM-Win2 correspond to the orig-
inal Longformer [4] configuration on BERT [27] (window
width 512, sequence length 4K) and the Mistral-7B setup [18]
(window 4K, context 16K), respectively. As the other base-
lines architectures lack specialization for window attention,
we employ the state-of-the-art sliding chunk implementa-
tion [4] to convert the computation into multiple dense op-
erations. The results indicate that Canon outperforms
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Figure 13. EDP (lower is better) of the architectures nor-
malized to Canon for real ML models. (in brackets: average
sparsity of the model)

all baselines on window attention, with a performance
gains increasing at higher sparsity (Win2) due to its
ability to adapt to this input pattern.

Finally, the CGRA, which can be deemed as a study for
the importance of dynamic orchestration, must emulate the
systolic dataflow for tensor operations since it has not dy-
namic mechanism to exploit sparsity, delivers performance
on par with systolic arrays but at the cost of higher resource
consumption, as its routing and configuration circuitry is
considered overprovisioned [24]. Nevertheless, the CGRA’s
design prioritizes broad programmability, enabling it to exe-
cute diverse general workloads such as those in PolyBenchC.
For PolyBenchC benchmarks, CGRAs outperform Canon in
scenarios with low data parallelism, where finer-grained
reconfiguration is advantageous, which constitutes some
solvers in the BLAS set. In contrast, when kernels exhibit
sufficient parallelism—typical of most other BLAS, ker-
nel and stencil workloads—Canon achieves better per-
formance and power efficiency.

Figure 13 presents a comparative evaluation of architec-
tures on contemporary ML models through an analysis of
the Energy-Delay Product (EDP). As previously discussed,
Canon incurs a slight efficiency overhead compared to sys-
tolic arrays for entirely dense model components. However,
given the diverse composition of modern models—ranging
from different kernel types, such as SpMM in sparse MLPs, to
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a combination of SDDMM and SpMM in sparse attention, as
well as varying input patterns, including unstructured spar-
sity in LLaMA-8B and ResNet-50 and window-structured
sparsity in Mistral-7B—these results highlight the critical
need for a minimally fragile architecture capable of adapting
to new kernels and diverse sparsity patterns. For instance,
an accelerator specialized for the moderately sparse convo-
lutions of ResNet-50 would provide little advantage when
processing a diagonally windowed sparse SDDMM operation
in a model like Mistral-7B.

6.3 Canon’s scalability and sensitivity to data

When operating within the compute roofline, our architec-
ture remains entirely scalable like a systolic array. By in-
creasing the number of PEs, we can effectively scale out
our architecture. However, for the irregular workloads we
target, the theoretical arithmetic intensity—the number of
computations per unit of data—has a significant impact on
performance This overhead occurs more frequently because
each data element fetched results in only a few actual com-
putations. To assess the sensitivity of Canon to arithmetic
intensity, we scaled both the size of the sparse tensor prob-
lems and the size of the PE array (a 8x larger workload on
a 8x larger fabric). By adjusting the input shapes and spar-
sity levels, we acheive different arithmetic intensities for
the inputs. Figure 14 illustrates the compute utilization of
Canon with respect to problem size and arithmetic intensity.
Our results indicate that Canon’s compute utilization
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is primarily sensitive to arithmetic intensity, with no
clear correlation to problem/array size, demonstrating
the scalability of Canon.

6.4 Data memory Size vs. Off-Chip Bandwidth

The size of the on-chip data memory significantly influences
the required off-chip bandwidth. Additionally, the bandwidth
requirement depends on the arithmetic intensity of the work-
load. To evaluate the off-chip bandwidth requirements, we
randomly generate SpMM computations across various spar-
sity levels, thereby altering the arithmetic intensity. We adopt
a dense-stationary tiling strategy (i.e. the dense matrix stays
on-chip) because the sparse input inherently reduces off-chip
traffic due to its sparsity.

Figure 15 presents the results. As the arithmetic intensity
decreases (i.e., as sparsity increases), our architecture main-
tains high throughput; however, the bandwidth requirement
increases because fewer computations are performed per
data element. For buffer sizes large enough to hold the entire
input data (SRAM size above 576KB), the off-chip bandwidth
reaches its minimal value. The increased off-chip traffic at
lower arithmetic intensities reflects the extra bandwidth
needed for output data. It is important to note that at higher
sparsity levels, although we consume more bandwidth to
maintain the same amount of computation, the effective
equivalent dense computation is substantially higher. For ex-
ample, at a sparsity level of 95%, we may use approximately
7x more bandwidth, but the equivalent dense throughput
increases by =~ 16x (not 20x due to under-utilization).

Considering the LPDDR5X as the off-chip memory, we
plot the bandwidths for configurations using a single-die 16x
lanes and a dual-die 32x module. The system-level design
of Canon should consider the problem’s arithmetic intensity
and the affordable on-chip and off-chip memory devices. For
instance, design point A is preferable when a higher off-chip
budget is available; design point B (our current configuration)
is preferable when there is a higher on-chip memory budget
and a higher probability of low arithmetic intensity. If the
target workload is known to have higher arithmetic intensity,
one can reduce the budget for both off-chip and on-chip
memory, as indicated by design point C.

6.5 Handling Load Imbalance with the Scratchpad

Figure 16 presents an ablation study highlighting the im-
pact of scratchpad size on Canon’s performance. An appro-
priately sized scratchpad can mitigate load imbalance by
buffering data and amortizing the irregularity, thereby en-
hancing overall fabric utilization. However, if the scratchpad
is too large, it introduces overhead because PEs unnecessar-
ily buffer data in anticipation of irregularity that may not be
present. As shown in the results, incorporating an optimally
sized scratchpad of 16 entries leads to 10-20% increase in
compute utilization compared to 1 entry (a single register)
for input sparsity levels of 60% and above.
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Figure 16. Impact of scratchpad depth on utilization

Although the scratchpad size is fixed at fabrication time,
the effective buffer size can be software-managed by chang-
ing the memory management logic that is programmed to
the orchestrator FSM. In the performance evaluations pre-
sented in Section 6.2, conservatively, we assume no prior
knowledge about the sparsity and, therefore, use a buffer size
of 16 entries. By incorporating compile-time knowledge
about the expected sparsity range (S1, S2, S3), Canon
achieves an additional 5% performance improvement
on average by adjusting the effective scratchpad range

7 Related Works

Canon is fundamentally a reconfigurable architecture de-
signed to support irregular inputs, a feature typically associ-
ated with sparse accelerators [15, 33, 41, 51]. It distinguishes
itself from prior reconfigurable architectures [5, 12, 13, 22, 34,
35, 39, 42, 45] through its unique granularity of processing
and reconfiguration as well as its novel approach to orches-
tration. When reconfigurable architectures are extended to
support irregularity, it often comes with significant over-
head [34]. Efforts to address irregular computation patterns
frequently resort to multicore architectures [9, 37] or PEs
with a much higher granularity of compute [42], as these
systems can amortize the added control overhead. Canon fun-
damentally reimagines the compute on its fabric, abstracts
most of its control, handling irregularity through time-lapsed
execution managed by orchestrators positioned at the edge.

Industry Architectures: Commercial architectures are
increasingly heterogeneous, integrating specialized units to
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meet evolving workloads. With the rise of AL most archi-
tectures now include systolic-array-based matrix multipli-
cation units—such as Tensor Cores in NVIDIA and AMD
GPUs and Google TPUs [19]. Early academic projects like
Plasticine [39, 42] proposed CGRAs optimized for limited
parallel patterns. However, industry adoption favored embed-
ding systolic arrays within processing elements to support
dense matrix multiplication efficiently [40], likely due to the
high cost and inefficiency of reconfigurable hardware for
such operations. This approach towards hardware design
may reduce kernel generalizability or result in underuti-
lized hardware, thereby negating benefits of reconfigurabil-
ity [11]. Groq [1] employs a completely software-defined
orchestration of heterogeneous components to emulate an
array-level RISC-like processor. It demonstrates good perfor-
mance on predictable, regular workloads yet suffers perfor-
mance fragility on new applications or irregularity due to its
reliance on extensive DLP and strictly compile-time mapping.
In contrast, Canon’s orchestration and compute granularity
minimizes fragility while maintaining high hardware utiliza-
tion for moderately DLP and irregular workloads.

8 Conclusion & Future Work

We present Canon, a novel parallel architecture that inte-
grates compile-time and runtime orchestration to overcome
performance fragility across a diverse range of workloads. By
employing FSM-based orchestration alongside time-lapsed
SIMD execution, Canon leverages regular workload pat-
terns—such as DLP and ILP—to establish a high-level dataflow
while dynamically handling and adapting to irregularities.
Experiments show that Canon achieves performance on par
with accelerators in their own domains, with minimal effi-
ciency loss, all while supporting a broader spectrum of paral-
lel applications typically accelerated by reconfigurable archi-
tectures. Future work includes end-to-end compiler support,
coming up with new techniques to exploit the architecture’s
programmability and dynamicity for new workloads. Canon
should push the boundaries of programmable architectures,
bridging the gap between ad-hoc domain specialization and
general-purpose architectures.
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Figure 17. SpMM dataflow

A Detailed SpMM Mapping

Listing 3 illustrates the high-level dataflow for SpMM. This
listing is obtained from transforming the conventional ma-
trix multiplication depicted in Listing 2 by applying loop
tiling, reordering, and splitting. The loop is splitted into two
parallel tasks: the first, spanning lines 13-22, involves the
PEs receiving sparse inputs and executing MAC operations
to generate local partial sums, while the second, spanning
lines 25-28, handles the asynchronous accumulation of these
partial sums, as discussed in Section 4.1.1.

Listing 2. GeMM original code

// Memories for inputs and outputs
AIMILK]
BLKILN]
CIMIIN]
fn gemm(Tx A, T* B, T* C){
for m in @..M

for n in @..N

for k in 0..k

C[mI[n] += A[m][k] % B[k1[n]

Listing 3. SpMM Dataflow Pseudo-code (transformed)

// See Figure 17 for these hyper-parameters

W,H: width, height of the tile of each PE

M,K,N: Matrix Shapes

X,Y: PE array dimensions

ASSERT W * X = N;

ASSERT Y * H = K;

// Memory Layout

A[MILYI[H]: tiled input sparse matrix A // A[M][K]
BLXJLYILWI[H]: tiled input dense matrix B // B[KI[N]
CIMILXILW]: output matrix C // C[MI[N]
psum[MI[XJ[YI[w]; // intermediate psums produced by PE(X, Y)

fn spmatmul(Tx A, Tx B, T* C){
// local psum computation
for m in @..M // sequential execution (temporal)
for h in @..H // sequential execution (temporal)
parallel_for x in @..X // parallel execution (spatial)
if (A[m]CylCh] !'= @) {// executed by orchestrators
parallel_for y in @..Y // parallel execution (spatial)
// scalar-vector multiplication and accumulation
_sv_mac(psum[m][x1Cy], A[mICy1Ch], BOxILy1Ch1);

} // End if non-zero

// accumulation of partial sums (asynchronous, non-associative)
for (a =0: a<y; att) //
for (b = 0; b <X; bt++) //

for (m=0; m < M; m++) //

_vv_acc(psum[m][allb], C[m]Ilal);
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Figure 18. SDDMM dataflow

B Detailed SDDMM Mapping

Listing 4 illustrates the SDDMM dataflow. In each cycle, a
vector from matrix A with width V (corresponding to the
vector lane size) is streamed into the first PE from the top.
Simultaneously, a bitmask M is provided to the orchestratorE_1
to select the column of B that will be dot-multiplied wit
the incoming A vector. Each PE then executes element-wise
MAC operations between the A vector and the correspondin
locally stored B vector. Each PE processes H columns of,
B; these columns are partitioned into % cycles of vectored
MAC operations. This process reduces the accumulatio
dimension from H to V, yielding a partial sum vector o
width V. These partial sums are propagated from left to right
and are accumulated in a V dimension vector. Finally, the
reduction of the V-dimensional partial sum to a single scalar
is performed by the last column of PEs, just before the result
is forwarded to the memory controllers.

Listing 4. SDDMM Dataflow Pseudo-code

// See Figure 18 for these hyper-parameters

W, H: width, height of the tile of each PE

M,K,N: Matrix Shapes

X,Y: PE array dimensions

V: Vector lane width of each PE

ASSERT W * X * V = K

ASSERT Y * H = N;

// Memory Layout

ACMILWILXILV]: tiled input sparse matrix A // A[MI[K]
BLXJLYILHI[WILVI: tiled input dense matrix B // B[KI[N]
CIMILYI[H]: output matrix C // C[MI[N]

MLMILYI[H]: the mask of the result matrix // M[MI[N]
psum[XJLYIL[V]

psum_reduced[Y][V]

psum_final[Y]

fn sddmm(Tx A, Tx B, T*x C, Tx M){
for m in @..M // sequential execution (temporal)
for h in @..H // sequential execution (temporal)
for w in @..W // sequential execution (temporal)
parallel_for x in @..X // parallel execution (spatial)
parallel_for y in @..Y // parallel execution (spatial)
if (M[mICy1Ch] != 0){
_vv_mac(psum[x1[y], A[m1[wl[x1, B[x1LylChI[wl)
}
for y in 0..Y
for x in 0..X
// reduce psum from shape (x,y,v) to (y,v)
_vv_acc(psum_reduced[y], psum[x][y])
for y in @0..Y
for v in 0..V
// reduce to the final psum
psum_finally] = _sum(psum_reduced[y])
}
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C FSM behavioural insights

Figure 19, 20, and 21 show three representative snapshots of
the SpMM kernel execution. For illustration purpose, we use
the same dense matrix B for mapping as in Figure 17, where
each PE stores only two rows of B. For clarity, the figures
display only the orchestrator’s internal buffer-management
state and the first PE of each row, focusing on the top two
rows of the PE array to illustrate their interaction. To simplify,
we consider a scratchpad of size 4.

Case 1 (Normal Operation). When a new non-zero ele-
ment arrives at the orchestrator’s input and no message is
received from a neighboring orchestrator, the orchestrator
issues a MAC operation for its row of PEs. It calculates the
address in the local memory (i.e., a slice of B) based on the
column index of the incoming element from A, ensuring
that each PE fetches the correct data from its local memory.
For instance, if the input metadata in the first row indicates
a non-zero element from A at row 4, column 1 (case (D),
A[4][1]), the local memory address that the PE needs to load
from the corresponding B matrix is computed as (1 modulo
2), since two rows of B are mapped to each row of PE.

Case 1: Normal MAC
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Effect of the generated instruction:
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- Multiply and accumulate - Multiply and accumulate
Router: Router:

- from DMem to Vector lane
- from West (A[4][1]) to East
- from Vector lane to SPad

- from DMem to Vector lane
- from West (A[4][1]) to East
- from Vector lane to SPad

AN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEERS

G EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE,
YasssssssssEsEsEsEEEEEEsEsEsEsnsnmnnnmnnnns?

.

Figure 19. SpMM detailed execution: case 1

Case 2 (Row Completion and Psum Forwarding). Once
a row finishes processing, indicated by a row-end token,
space in the scratchpad must be freed for a new row. Ac-
cording to our FIFO buffer management policy, the oldest
buffered partial sum (psum) is flushed to the downstream
PE. The state meta registers record the row ID (RID) of the
oldest element and its corresponding offset in the scratchpad
(to implement a circular FIFO).

The orchestrator also informs the downstream orchestra-
tor about the row index of the forwarded psum (e.g., psum(1)
for the psum of row index 1?). Upon receiving this message,
the downstream orchestrator checks whether the row index
of the incoming psum falls within its current range of respon-
sibility (based on the index of the newest buffered row and
the buffer length). If it does (as in case 2), the downstream
row stops its local psum computation and accumulates the
incoming psum into its scratchpad.

DRAFT

2psum(1)represents the inter-orchestrator message, while psum[1] denotes
the actual value.

Case 2: Flushing psum upon new row
& downstream PE accumulates
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Effect of the generated instruction:
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- LOAD SPad[0x00] (psum[1])
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Effect of the generated instruction:
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- LOAD DMem[0x01]
- LOAD SPad[0x00] (psum 1)
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- Nop Compute:
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Figure 20. SpMM detailed execution: case 2
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Case 3 (Early psum Arrival and Bypass). If the down-
stream orchestrator receives a psum whose row index falls
outside its current range—in this case, receiving psum 5
while the newest row being computed is row 2—it bypasses
the received psum without interrupting its local computa-
tion. This situation indicates a workload imbalance, as the
downstream orchestrator is “too late,” potentially due to an
excessive number of sparse elements in its previous row. The
bypass is achieved using the router by directly forwarding
the psum from north to south without interrupting the exe-
cution pipeline. The downstream orchestrator also notifies
its next downstream orchestrator about the bypassed psum.

Case 3: Flushing psum upon new row
& downstream PE bypass

- from West to East
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- from Vector lane to SPAD
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Figure 21. SpMM detailed execution: case 3
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A Data-Driven Dynamic Execution Orchestration Architecture

D Using Canon for Spatial Execution

Canon inherently can support a fully static place-and-route
style spatial mapping, in which each PE executes the same
instruction over time. This mapping is typically associated
with entirely spatially reconfigurable architectures where a
kernel’s dataflow graph can be entirely mimicked on the fab-
ric. Figure 22 illustrates how this is accomplished. During the
configuration phase, the orchestrator preloads instructions
into the PE array without immediate execution—the results

Cycle +3
H® 1 H®
SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM
1L® HO LG
SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM
H® H H®
SRAM SRAM SRAM SRAM SRAI SRAM SRAM SRAM

M
HO O
SRAM SRAM AM SRAM [SRAM

[
D

are discarded. For instance, fully configuring a 4-column PE
array requires 12 cycles (4 columns x 3 cycles). During the
execution phase, PEs can be set to a “hold” state to prevent
instructions from propagating further through the pipeline
to subsequent PEs. This effectively means stopping the stag-
gered instruction issue. This mechanism allows the PEs to
execute the preloaded instruction from the configuration
phase, with the orchestrators maintaining the hold signal to
ensure that the PEs remain in this state.

Cycle + 12
1 1
olell 1®] .J|[oHeH—Ho
SRAM SRAM SRAM SRAM hold [SRAM SRAM SRAM SRAM
Id

Uollol[o] , |toHoHSt,
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Configuration

Figure 22. Using Canon for spatial dataflow execution
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