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ABSTRACT
The requirements’ demands of applications, such as real-
time response, are pushing the wearable devices to leverage
more power-efficient processors inside the SoC (System-on-
chip). However, existing wearable devices are not well suited
for such challenging applications due to poor performance,
while the conventional powerful many-core architectures are
not appropriate either due to the stringent power budget in
this domain. We propose LOCUS – a low-power, customiz-
able, many-core processor for next-generation wearable de-
vices. LOCUS combines customizable processor cores with a
customizable network on a message-passing architecture to
deliver very competitive performance/watt – an average 3.1x
compared to quad-core ARM processors used in the state-
of-the-art wearable devices. A combination of full-system
simulation with representative applications from wearable
domain and RTL synthesis of the architecture show that 16-
core LOCUS achieves an average 1.52x performance/watt
improvement over a conventional 16-core shared-memory
many-core architecture.

1. INTRODUCTION
Internet of Things (IoT) — a giant, ever-growing network

of billions (estimated to be 25 billion by 2020 [4]) of devices
embedded within physical objects — is expected to revolu-
tionize our future. Recently, a burgeoning group of these
embedded devices, the wearables, is rapidly emerging and
bringing new experiences to daily life.

Conventional wearable devices encompass limited func-
tionality (e.g., data collection from on-body sensors, pre-
processing the data, temporary data storage), and rely on
higher performance endpoints such as mobile phones, gate-
ways or remote servers. However, the increasing demands
from customers have been pushing the performance envelope
of the wearable devices to provide real-time in-situ compu-
tation capability. For example, most smart glasses support
augmented reality that requires real-time response [5]. Sam-
sung is offering standalone smart watches with the tag-line
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“leave your phone at home” [19]. Meanwhile, the develop-
ment tools of wearables are also rapidly evolving. Many
software development kits [2, 6, 20, 21] allow the program-
mers to create their own applications (e.g., HERE Maps [8],
IoT transportation application [49]) on wearable devices.

To meet the growing performance demands, more pow-
erful processors have been deployed inside wearable devices
since 2013. Figure 1 shows that the processors used in pop-
ular smart watches across different companies are increas-
ing in complexity from single-core ARM Cortex-M to quad-
core ARM Cortex-A7, with commensurate performance in-
crease from 150 to 9000 DMIPS. Correspondingly, the typ-
ical power consumption rises up to hundreds of milliwatts.
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Figure 1: Increasing core count in SoCs of smart
watches and corresponding power-performance trends

However, existing wearables still do not provide sufficient
performance for emerging IoT applications (detailed in Sec-
tion 2). Scaling the core count is an obvious option but
traditional many-core architectures cannot fit within the
stringent power budget of wearables. Application-specific
ASIC accelerators improve power-efficiency but are not prac-
tical due to the prohibitively high non-recurring engineering
(NRE) cost and exacting time-to-market constraints.

There have been recent efforts to design innovative high-
performance architectures for low-power sensor nodes [31,34]
for health-monitoring applications. But to the best of our
knowledge, there have been little attempt to design low-
power, high-performance customizable SoCs for wearable
devices that work well independent of the application do-
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main. We take the first step towards filling this void through
LOCUS — a LOw-power, highly CUStomizable many-core
architecture that can be universally deployed as a wearable
device across diverse application scenarios. We study the
characteristics of computational kernels in the wearables do-
main and to exploit these characteristics to design LOCUS.

LOCUS differs from conventional multi-cores in many
key aspects. First, LOCUS uses a lightweight customizable
message-passing substrate for data transfers, instead of rely-
ing on costly (in area and power) hardware cache coherence
prevalent in shared-memory many-cores. Second, LOCUS
aggressively customizes the cores and network at run-time
in a synergistic and integrated fashion. Frequently occurring
instruction sequences in applications are automatically dis-
covered, triggering custom instructions that jointly acceler-
ate computing and communications. These custom instruc-
tions configure the processor cores and network at runtime
to tailor-fit LOCUS for each specific application, leading to
improved performance at lower energy. Together these de-
sign decisions and optimizations enable us to design a 16-
core LOCUS chip with 6mm×6mm area and average 0.27W
power consumption at 400MHz (32nm technology). Even
with this low power envelope, the architecture can achieve
1.71x speedup (3.1x gain in performance/watt) over the pro-
cessor used in the state-of-the-art wearable smart watches.
In order to validate the advantage of LOCUS across different
architectures regardless of the variations in technology, fre-
quency and core count, we compare with a simulated base-
line conventional 16-core shared-memory architecture and
observe average 1.52x gain in performance/watt from our
evaluation and experiment.

The concrete contributions of this work are the following.

• This is the first work that designs a dedicated many-
core architecture for wearable devices embracing paral-
lelism, message passing, and aggressive customizations
to realize exceptional performance/watt characteristic.

• We designed LOCUS in RTL, performed RTL synthe-
sis to obtain accurate power, area, timing metrics, and
compared LOCUS to quad-core ARM Cortex-A7 pro-
cessor (used in the state-of-the-art wearable devices
today) with real-world wearable applications.

• We implemented LOCUS by modifying the gem5 [26]
architectural simulator and building the message pass-
ing library on top of it to enable execution of realistic
computation kernels running on wearables for system-
level performance evaluation.

The remainder of this paper is organized as follows. Our
motivation is presented in Section 2 with an application case
study. Section 3 states the related works in literature. Ar-
chitecture and system designs of our proposed SoC is de-
scribed in Section 4. The experiment and evaluation of our
proposed architecture are illustrated in Section 5 while Sec-
tion 6 concludes the paper.

2. APPLICATION CASE STUDY
We first present a case study to illustrate the shortcom-

ings of current wearable devices and the potential of the
proposed LOCUS architecture. Wearable devices are sub-
ject to very stringent power budget. Most wearable devices
today comprise of power-efficient processors and run simple

computations to minimally process the sensor data, relying
instead on more powerful smart phones or the cloud server
for handling heavy computing. Transmitting data to the
smart phones or cloud server through Bluetooth or wireless
networks brings about significant overheads both in terms
of increased power consumption (due to wireless communi-
cations) and prolonged response time of critical tasks (due
to network delay). This has led to increasingly powerful
commercial processors being introduced in wearable devices
(detailed in Section 3) to enable in-situ processing of the
sensor data.

We choose the Dynamic Time Warping (DTW) algorithm
as our driving application kernel. DTW is extensively used
in speech processing, data mining, gesture recognition, and
signal processing [32, 36, 48, 51]. We study the DTW algo-
rithm in relation to a specific IoT application that identi-
fies user contexts like walking, commuting, and waiting for
transport [7]. In this application, DTW is used to compare
barometer sensor readings with trained barometer signa-
tures to determine the transportation mode. As the barom-
eter detects terrain elevation, and terrain signature of roads
remains unchanged, commuters on vehicles that traverse the
same road segments (e.g., buses) can be matched to spe-
cific routes. The different speed of vehicles versus walking,
and the different time signatures of alternative modes such
as buses and subway allow DTW to effectively identify the
transport mode using the ultra-low-power barometer sen-
sor. We use the raw barometer traces collected by Sankaran
et al. [49] through smartphones carried by 13 individuals
in 3 countries, gathering 47 hours of transportation traces.
Figure 2 shows a DTW based transportation application
running on LG Watch Urbane W150 [12]. The application
samples barometer sensors at 1Hz frequency to ensure the
required sensing fidelity. Hence, the DTW kernel processing
per sampling interval has to be limited to 1 second to enable
real-time context detection.

Figure 2: DTW based transportation application run-
ning on LG Watch Urbane W150

We profile the DTW application on a quad-core ARM
Cortex-A7 cluster present in the Odroid XU3 development
platform [15], which is similar to the quad-core proces-
sor in Qualcomm Snapdragon 400 SoC embedded in state-
of-the-art wearable smart watches such as the LG watch
above [11–13, 23]. We run Odroid XU3 board at 1.2GHz
with 5 volts to emulate the highest frequency of Snapdragon
400. We use Odroid XU3 board (instead of the snapdragon
400 SoC inside LG Watch) as it has in-built power-sensors
and allows individual cores to be turned off, enabling us to



obtain the power consumption of the processor rather than
the whole SoC and profile the power-performance impact of
core counts. Table 1 summarizes the system configuration
of this platform.

Number of cores 4 ARM Cortex-A7
L1 I/D Cache 32KB each
L2 Cache 512KB
Frequency 200 - 1400MHz
Voltage 900 - 1050 mV
Process technology 28nm
Operating System Ubuntu 14.04 LTS

Table 1: Odroid XU3 system configuration.

1-core 2-core 4-core 16-core
A7 A7 A7 LOCUS

Meeting Deadline × × ×
√

Execution Time (sec) 5.13 3.15 1.56 0.91
Average Power (mW) 164 251 456 266
Energy (mJ) 841 791 711 243
Frequency (MHz) 1200 1200 1200 400
Process technology (nm) 28 28 28 32

Table 2: Execution time, power, energy consumption
of DTW kernel running on different processors

Table 2 shows the power/energy consumption and execu-
tion time of the DTW kernel running on one, two, and four
A7 cores. The unused cores are turned off. The average
power consumption varies from 164mW ∼ 456mW reflect-
ing the ultra-low power constraint faced by wearable proces-
sors. In terms of performance, even with four A7 cores ac-
tive, the computation cannot meet the 1 sec deadline. How-
ever, our proposed 16-core LOCUS architecture processes
this DTW kernel in 0.913s, meeting the deadline while dis-
sipating 266mW power1at 400MHz. Specifically, LOCUS
achieves 1.71x speedup with only 58% power consumption
(i.e., 2.93x in terms of performance/watt) compared to the
quad-core ARM cortex-A7 processor used in state-of-the-art
wearable devices. This case study points out the deficiencies
of existing wearable devices while confirming the potential
of LOCUS in enabling in-situ processing of sensor data at
critically low power budget.

3. RELATED WORK
The past three years have witnessed a shift from ultra-low

power single-core to more powerful multi-core SoCs for wear-
able devices. Table 3 shows architectural characteristics of
the latest commercial wearable devices from different com-
panies. From this table, we can see that the processor em-
bedded in many state-of-the-art wearable devices [11,13,23]
is the quad-core ARM cortex-A7 with hundreds of milliwatts
typical power consumption.

Sensor nodes utilized in the health care domain have also
seen a shift to multi-cores. Authors in [31, 34] propose a
multi-core architecture, which performs data processing in
the sensor node for quick response time in wearable health
monitoring systems. However, popular wearable devices like
smart watches are not restricted to only pre-defined appli-
cations but can be programmed to support diverse appli-
cation scenarios. For example, most existing smart glasses
support augmented reality with real-time response require-
ment [5, 17]. Offline navigation applications [8] have also

1The power consumption of LOCUS has been projected
from 133mW at a frequency of 200MHz (detailed in Sec-
tion 5.2).

Product
(Announced)

SoC
CPU
(#core)

Freq
(MHz)

Memory

Typical
CPU
Power
(mW)

Google Glass
(Apr, 2012)

TI
OMAP4430

ARM
Cortex-A9
(dual-core)

1000
2GB RAM
16GB Flash

350

Vuzix M100
(Jan, 2013)

TI
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1GB RAM
4GB Flash
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(Oct, 2013)

ST
STM32
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200
16MB SRAM
2GB Flash

10
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(Aug, 2014)
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Smartwatch 3
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Qualcomm
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ARM
Cortex-A7
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400

ARM
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(quad-core)
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Samsung
Gear S2 3G
(Aug, 2015)
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ARM
Cortex-A7
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512MB RAM
4GB Flash

Not available

Motorola
Moto 360 2ed
generation
(Sep, 2015)

Qualcomm
Snapdragon
400

ARM
Cortex-A7
(quad-core)

1200
512MB RAM
4GB Flash

450

Table 3: Specifications of the latest wearable devices

emerged on standalone smart watches [19]. Many software
development kits [2, 6, 20, 21] are available for programmers
to create their own applications, such as the transportation
application [49] mentioned in Section 2. Health care mon-
itoring apps can also be implemented in wearable devices
with appropriate sensors plugged in. The increasing perfor-
mance demands across diverse application scenarios call for
high-performance processors in wearables.

Existing multi-core wearables cannot meet increasing de-
mands of applications especially under real-time scenarios
as illustrated in Section 2. At the same time, many-core
architectures such as Tilera TILE64 [25], Picochip PicoAr-
ray [35], Intel Xeon Phi [10] target domains such as cellular
base stations, Internet routers and cloud servers, with high
power budget, which is a major obstacle for their deploy-
ment in the wearable domain. For example, the Intel Xeon
processor consumes 150W [42]. In contrast, LOCUS is care-
fully designed to operate within the power budget of typical
wearable devices while providing far superior performance.

Current wearable devices increasingly leverage heteroge-
neous architecture integrating lightweight GPUs (e.g., Pow-
erVR, Mali GPU) with general-purpose processor cores
together as system-on-chip (e.g., Qualcomm Snapdragon
400 [18], Ineda Dhanush WPU [9]). Although moving the
workload of data parallel computing and image processing to
the lightweight GPUs likely leads to higher power-efficiency,
it is orthogonal to our work. In this paper, we only focus on
the CPU architecture.

4. LOCUS SYSTEM ARCHITECTURE
We now describe the system architecture of LOCUS: a

low-power, highly-customizable many-core architecture for
wearable devices. Figure 3 presents a high-level view of
the architecture. The current prototype consists of 16 tiles
connected through a customizable mesh network (SMART
NoC [27,41]). Each tile contains a customizable CPU (JiTC
core [28]), separate instruction and data caches, NIC (net-
work interface controller) plus router, and a lightweight mes-
sage passing unit (LMPU). The memory controller is con-
nected to the router inside the first tile. LOCUS employs
aggressive customization at multiple levels to deliver very
competitive performance/watt: (a) Communication: Cus-



tom message-passing instructions in place of generic shared-
memory to minimize communication cost, (b) Interconnect:
Custom single-cycle datapath between any two communicat-
ing cores through SMART NoC, (c) Compute cores: Custom
instructions extend the ISA (instruction-set architecture) at
runtime with frequently occurring computational patterns
through JiTC core, and (d) Integrated compute-communicate
customization: Specialized custom instruction pairs at two
communicating cores seamlessly combine compute and com-
munication customization. We will next detail each compo-
nent of LOCUS before putting it all together, showing how
LOCUS enables integrated customization of compute and
communications for specific applications, delivering the tar-
get power-performance of wearables.

Figure 3: Overview of LOCUS architecture

4.1 Lightweight Message-Passing (LMP)
Conventional shared-memory many-core architectures

suffer from high energy and latency overheads in maintaining
coherence among the private caches [56]. These overheads
motivated us to replace the shared-memory model with a
lightweight message-passing (LMP) mechanism in LOCUS.
Explicit message passing leads to fast communications and
alleviates unnecessary data transfers. Moreover, elimina-
tion of hardware cache coherence management and direc-
tory structures reduces overall power consumption, saves
precious on-chip resources, and provides better scalability.

A number of commercial many-core architectures support
message-passing including IBM Cell [37], MIT Raw [52], In-
tel SCC [39], Epiphany [38], and MEDEA [53]. Some of
these architectures provide sophisticated software support
such as large message-passing library code and complex in-
terrupt handlers [46, 47] for compatibility with MPI code-
base [14] or high performance computing. These factors
deteriorate performance and increase power consumption.
Instead, in the context of wearables, we opt for hardware-
assisted lightweight message-passing to alleviate the soft-
ware overhead and minimize communication cost.

As mentioned earlier, each tile in LOCUS features an
LMPU that connects the CPU to the NIC. The LMPU
comprises a message buffer [40] to temporarily store data
received from remote cores. The message buffer is designed
as a 16-entry fully-associative queue where each entry stores
32-bit data along with the source ID. The message buffer
can be searched for data received from a source core (if any)
within a cycle. The LMPU also maintains a 2-bit status for
each destination core to record the current communication
status, which indicates whether a send or receive request is
issued and whether the data sent got buffered on the receiver
side or not. In LOCUS, we support both register-to-register
and cache-to-cache communications for different granularity
of data.

4.1.1 Register-to-Register Communication

We introduce two new instructions RLD (remote load)
and RST (remote store) in the compute core to support
register-to-register communication between the cores. Pro-
grammers write applications using LMP Application Pro-
gramming Interface (API). For example, in Figure 4, Core
0 sends data to Core 1 by calling LMP API Send function
with a pointer to the data variable and destination core ID
as arguments. Similarly, Core 1 receives data from Core 0
by calling Recv function with a pointer to the variable to
receive data and source core ID as arguments. The Send

and Recv functions are converted to assembly instructions
RST and RLD by our modified compiler.

The RST instruction has two source registers: data and
destination core ID. The register data is sent to the destina-
tion core and is accepted by the corresponding RLD instruc-
tion whose source register represents the source core ID and
a destination register accepts the data from the source core.
The CPU treats RLD/RST instructions as normal memory in-
structions and sends them to the Load Store Queue (LSQ).
However, the LSQ activates the LMPU rather than L1 cache
controller for RLD/RST instructions. LMPU is also activated
when the NIC receives data that has been pro-actively sent
by a remote core before being requested by current core.

Figure 4: LMP API and remote load/store

Remote Store: A RST instruction triggers the flow of the
data (4-bytes) from LSQ to LMPU to NIC to generate a
network flit that is sent to the destination. If the desti-
nation core has already executed the corresponding (RLD)
instruction, then that instruction would have triggered a
receive request earlier to the source duly recorded in the
status register of the source LMPU. In this case, the source
can proceed to execute subsequent instructions. Otherwise,
the source waits for acknowledgment. The LMPU at the
destination core sends an acknowledgment only if the data
can be buffered. If not, it discards the incoming request.
This makes the source wait till the destination executes an
explicit receive (RLD) forcing the source to resend the flit but
this time without waiting for an acknowledgement.

Remote Load When a remote load instruction is executed
on the destination core, it first checks if the data is already
available in the message buffer, i.e., the source has already
sent the data. Otherwise, the LMPU sends a remote load
request to the source and waits for the data to arrive. The
source immediately sends the data if the corresponding RST

instruction had already executed. Otherwise, the status bits
at source LMPU are updated. When the corresponding RST

instruction is executed by the source, the LMPU checks the
status bits and immediately sends the data as mentioned
before. Programmers should thus post remote loads before
remote stores as much as possible to prevent the buffer from
getting full.

Eliminating Deadlocks In our communication protocol,



a send will not complete until the data is either buffered or
read in the destination. Similarly, a receive will not complete
until the data becomes available in the message buffer. The
buffering of messages, if necessary, avoids deadlocks, while
the proactive remote loads avoids buffering latency for faster
transfers.

4.1.2 Cache-to-Cache Communication

Besides the asynchronous word-length data transfer, LO-
CUS supports a synchronous cache-to-cache communication
for bulk transfer through a pair of new instructions VRLD
(varisized remote load) and VRST (varisized remote
store). For example, in Figure 5, Core 1 receives data from
Core 0 by calling LMP API VRecv function with starting
address, data length, and source core ID as arguments. Cor-
respondingly, Core 0 sends data to Core 1 by calling VSend

function with starting address, data length, and destination
core ID as arguments. The VSend, VRecv functions are con-
verted to assembly instructions VSET followed by VRST or
VRLD by our modified compiler. Specifically, the VSET in-
struction indicates the (data_size in bytes) to the cache
controller. Note that VRST instruction with data length less
than a single cache line size still sends the whole cache line
and hence the compiler should ensure proper data alignment
to avoid spurious data transfer. Then, VRLD triggers the
cache controller on Core 1 to issue a varisized remote load
request carrying the receiver data address (Recv_Array) to
Core 0 (Src_Id). Once the VRLD request arrives and VRST is
executed on Core 0, its cache controller forwards the cache
lines indicated by Send Array address to Core 1 (Dest_Id).
The cache lines are bundled up as a network package with
Recv_Address and sent into the NoC continuously2 until the
preset data size is reached or exceeded. Similarly, Core 1 fin-
ishes receiving once the size of the received data equals to
or exceeds the preset data size data_size.

Figure 5: LMP API and custom cache-to-cache data-
transfer instructions

During cache-to-cache data transfer, if there is a cache
line miss in source core, a main memory access request will
be sent to the memory controller with the requester being
set to the destination core and the destination address set to
Recv_Array. Therefore, the memory controller will directly
forward the data to destination core after fetching from main
memory. Once the data arrives at destination, it will update
the cache line according to Recv_Array address. Note that
the replacement policy would be triggered first if there is no
space available in the cache.

2All the data to be transferred should be within a single
page (the alignment is done by gcc) in a system with virtual
address support to avoid re-mapping from virtual to physical
address.

4.2 Customizable Interconnect
In LOCUS, we leverage SMART NoC [27, 41] to achieve

single-cycle data-path between source and destination af-
ter a custom message passing communication is established
between any pair of source and destination cores on-chip.
SMART achieves this by replacing clocked link drivers at
each router along the path with clockless repeaters, enabling
a flit to traverse multiple hops in one cycle (without buffer-
ing at intermediate routers). A custom single-cycle path is
created automatically where available, providing the illusion
of a dedicated interconnect atop a shared NoC.

Once a custom message-passing instruction (RLD/RST or
VRLD/VRST) is executed, the corresponding communication
will launch into the SMART NoC. A SMART-hop starts
from the source NIC, where flits are buffered. A SMART-
hop setup request (SSR) is sent by the source NIC via ded-
icated repeated wires (which are inherently multi-drop) to
all routers within 4 hops. All intermediate routers arbi-
trate between the SSRs they receive to determine if flits
can zoom through without stopping, or if flits should be
buffered due to contention. In this way, remote read/writes
can be almost as fast as local loads/stores in LOCUS, signif-
icantly improving the overall power-efficiency especially for
communication-intensive workloads.

4.3 Customizable Compute Cores
The wearable device can be deployed in many different

application domains. Therefore, in-situ data processing on
wearables exhibit vastly different computational patterns.
Adapting the architecture to exploit diversity within and
across applications can significantly improve performance-
power trade-offs. But due to high non-recurring engineering
cost of SoC devices, it is not feasible to design customized
circuits for specific application scenarios. We leverage Just-
in-Time Customizable (JiTC) cores [28] to reconcile the con-
flicting demands of performance and flexibility. Each JiTC
core contains a Special Functional Unit (SFU) in conjunction
with a simple processor pipeline. The SFU can be configured
at runtime to execute custom instructions that accelerate
commonly occurring computational patterns in an applica-
tion. As the SFU for each JiTC core can be specialized with
different custom instructions, LOCUS can be transformed
into a heterogeneous many-core architecture where distinct
computational workloads are mapped onto different tiles and
accelerated by different SFUs.

Each JiTC core is very power-efficient, featuring a simple
5-stage, single-issue in-order pipeline implementing 32-bit
ARM ISA and integrated with an SFU. The JiTC com-
piler [28] can automatically identify frequently occurring
computational patterns within an application. Each of these
patterns can have at most 4 inputs and 2 output operands.
The selected computational patterns are converted into cus-
tom instructions and added to the baseline ISA. The custom
instructions are issued to the SFU instead of the execution
unit inside the in-order pipeline. The SFU consists of a
complex functional unit in parallel with two basic functional
units without extending the critical path. Each basic func-
tional unit consists of an ALU followed by a shifter while the
complex functional unit has an additional multiplier. The
SFU is able to execute most computational patterns with
various compositions of operations in one clock cycle by set-
ting the control bits for each internal functional unit and
the MUXes that connect the different internal components.



Figure 6: Walkthrough example illustrating LOCUS’ integrated, customizable compute and communications

The remaining complex custom instructions may execute in
two or more cycles. The control bits corresponding to each
custom instruction are stored in a control memory and is in-
dexed by a subset of the opcode of the custom instructions.
Before each application initiates execution, the control mem-
ory needs to be loaded. As the subset of custom instructions
selected varies for different applications, the content of con-
trol memory is unique for each application. In other words,
the JiTC architecture achieves customization by changing
the content of the control memory and thereby instantiat-
ing different custom instructions per application. The size
of the control memory is set to be as big as 32KB in [28].
However, our evaluation shows that the maximum number
of identified static custom instructions among all kernels is
no more than 30, which is far fewer than 1024 that is theo-
retically supported by [28]. Furthermore, only the identified
computational patterns that can be executed within single
cycle, which occupies 90% of all identified patterns, are fi-
nally selected as custom instructions. Therefore, we chose a
small 256B control memory for LOCUS.

4.4 Compiler Tool Chain
In order to support LOCUS architecture, we implement

an automated compiler tool chain integrated with a modified
GNU Assembler. Given a multi-threaded application writ-
ten in C or C++ with the LMP API, the tool chain first con-
verts LMP functions to appropriate message-passing instruc-
tions. This is done using inline assembly in LMP API imple-
mentation. The compiler then detects the ‘hot’ (frequently
occurring) basic blocks through profiling. The data-flow
graphs of these ‘hot’ basic blocks are analyzed to identify
all the potential candidate custom instruction patterns [55].
A subset of these candidate patterns is selected for imple-
mentation as custom instructions and mapped onto the SFU
through a greedy heuristic mapping algorithm [28,44], while
the control bits to be loaded into control memory for the
mapping to SFU are generated in parallel. The tool then
replaces each occurrence of a selected pattern in the code
(consisting of a sequence of instructions from the base ISA)
with the corresponding custom instruction in assembly, and
generates the binary executable through the modified GNU
Assembler.

4.5 Integrated Compute-Communication
Customization

Customizations in different layers are seamlessly com-
bined and adaptively optimized to maximize the power-
efficiency in LOCUS. Conventionally, memory and data
transfer (load/store) operations are not included within cus-

tom instructions due to unpredictable data access latency
and implicit memory dependencies. Fortunately, the cus-
tom message-passing instructions (RLD/RST) of LOCUS with
fixed-access latency to the LMPU permits the inclusion of
communications within custom instructions. We use a sim-
ple example to illustrate this optimization. As shown in
Figure 6, 1 the frequently executed basic block running
on Core 7 is first detected as ‘hot’ basic block by the com-
piler tool chain according to the profile information during
offline analysis. Then, 2 the frequently occurring compu-
tation pattern (add and mul) within the ‘hot’ basic block
is identified as a custom instruction candidate (ci). 3 By
relaxing the constraint of excluding load/store, the message-
passing instructions are also included in generating ci* that
contains all four original instructions. As a result, a single-
cycle input-compute-output processing flow is encapsulated
within a single custom instruction. 4 Once the custom
instruction (ci* ) is selected, the compiler generates the exe-
cutable file and the corresponding control bits for JiTC core.
At runtime, instead of the execution unit inside the pipeline,
the SFU takes responsibility to execute the computation op-
erations (add and mul) inside the custom instruction (ci* ).
The remote read and store operations will trigger the NIC
to launch the communication request. 5 Once the custom
message passing communication is launched, the SMART
router establishes single-cycle data-path from the source to
the destination cores by bypassing the buffers inside the in-
termediate routers. 6 When the data finally arrives at its
destination, the program execution on Core 13 will resume
forward progress.

5. EXPERIMENTAL EVALUATION
This section presents a detailed experimental evaluation

of LOCUS architecture for its suitability in wearable de-
vices. We employ a combination of RTL synthesis and high-
level architectural simulations with representative kernels
running on wearable devices for this evaluation.

5.1 Simulation Environment
We use the gem5 multi-core architectural simulator [26]

for performance evaluation of LOCUS. Our baseline is a
directory-based MESI cache-coherent shared memory archi-
tecture consisting of 16 in-order ARM cores connected in a
conventional 2D mesh NoC (Garnet [24]). The baseline is
only implemented and simulated in gem5, and not in RTL.
This is to mitigate the significantly higher implementation
and simulation time complexity of RTL simulations, as gem5
architectural simulations permit much wider design space
exploration.



The gem5 simulator is modified to model LOCUS
message-passing architecture with 16 JiTC cores connected
by SMART NoC. ARM cores are chosen due to their power
efficiency. We extend the ISA to support message passing
instructions (RLD/ RST, VRLD/VRST, VSET) and other cus-
tom instructions executed by SFUs in JiTC cores. We inte-
grate the JiTC compiler tool chain with the modified GNU
Assembler for ARM ISA to support LOCUS by identifying
custom instructions based on profiling information, replac-
ing the native instructions of the selected computational-
communication patterns with custom instructions in the as-
sembly, and generating the executable and the control mem-
ory configuration data corresponding to the selected instruc-
tions. Light-weight message-passing (LMP) API is imple-
mented based on MPICH library [14]. We can support cycle-
accurate execution of applications parallelized using LMP
API and extended with custom instructions.

Detailed parameters of the simulated system are listed in
Table 4. Both LOCUS and the baseline have similar config-
uration except that LOCUS does not have directory and its
network is replaced by SMART.

Cores 16 ARM in-order (single-issue) cores 400MHz

L1 Cache
split I & D, 8KB, 2-way, 64B block, LRU,
1-cycle access latency

Directory
MESI coherence, single slice, 6-cycle access
latency

Network
2-D Mesh, 16B-flit, 1/5-flit control/data
packets, 5-stage router, 1-cycle link

Memory 512MB, 100-cycle DRAM access latency

Table 4: RTL and simulation parameters for LOCUS
and baseline share-memory multi-core.

5.2 Workloads
As there does not exist any benchmark suite for wear-

ables, we choose a set of representative kernels that are
widely used in wearable devices.3 Dynamic time warping
(DTW) is used in speech processing, data mining, gesture
recognition and signal processing. We use a specific vari-
ant of parallel DTW enabling higher parallelism [45]. Navi-
gation applications, especially offline navigation algorithms
that do not require tethering to the phone or the Internet,
is becoming increasingly critical on wearables [8]. A Star
search algorithm is typically used as a navigation kernel [16]
and we implement a parallel version [33]. Personal health
monitoring systems can offer a cost-effective healthcare so-
lution and the electrocardiogram (ECG) delineation is a
typical and essential application in this domain. We im-
plement an ECG R-peaks detection [3] for our evaluation.
Encryption/Decryption is another frequently used kernel in
wearables for secure data communications. We use AES
Encrypt and AES Decrypt as the representative kernels.
Image processing is increasingly applied in wearable devices,
especially augmented reality glasses. Kernels like 2D Con-
volution and Histogram are used in such scenarios for
sharpening, smoothening and enhancing images. As wear-
able devices have limited storage, sensor data needs to be
compressed before storage. We use the Haar Transform
variant of Discrete Wavelet Transform for compressing sen-
sor data. We also implement a Support Vector Machine
3We make these kernels publicly available:
https://github.com/iot-locus/kernels

Category Kernel
Problem
scale

Typical
commu-
nication
pattern

Paral-
lelism
(spee-
dup)

Pattern
maching

DTW 5000 x 5000 pipelined 13.2

Navigation A Star 3770 nodes
scatter-
gather

12.8

Health
Monitoring

ECG 18700
scatter-
gather

10.9

Encryption
AES
Encrypt

4000 bytes pipelined 11.6

AES
Decrypt

4000 bytes pipelined 11.1

Image
Processing

Histogram 1024 x 1024
scatter-
gather

13.8

2D
Convolution

1024 x 1024 None 15.7

Machine
learning

SVM
12224 1 x 4
Support Vector

scatter-
gather

13.8

Compression
Haar
Transform

1024 None 15.4

Table 5: Representative wearable application kernels.

(SVM) kernel as wearable devices are extensively used for
classifying patterns based on sensor data. All the workloads
are manually parallelized. Table 5 summarizes the repre-
sentative kernels used in our evaluation along with the in-
put size, communication patterns, and the parallelism. We
define pipeline communication pattern as one where a core
receives data from a previous core before processing (i.e.,
producer-consumer relationship). In scatter-gather commu-
nication pattern, one core works as the master to launch
processing tasks onto the other cores, then collects the data
from them at the end. The 2D Convolution and Haar trans-
form kernels do not have communications between threads.

We also implemented two applications: combo1 (SVM +
AES) and combo2 (AES Decrypt + DTW + AES), which
make use of the above mentioned kernels. Combo1 is used
to classify sensor data like images as anomalous or not. It
runs SVM Machine Learning kernel to recognize the anoma-
lous image, then encrypts it for future references. Combo2 is
used in context-detection; it gets encrypted barometer sen-
sor data as input, decrypts it, runs the DTW algorithm to
identify the context, then encrypts the output before send-
ing it to smartphone or cloud storage.

We first implement each parallel kernel using POSIX
threads for our baseline shared-memory architecture. Ta-
ble 5 shows the speedup for the 16-core shared-memory ar-
chitecture baseline and confirms the highly parallel nature of
these kernels. Note that the serial performance is simulated
in gem5 with the same processor configuration but with a
single core. The speedup of AES kernels is slightly lower due
to the frequent lock contention. The speedup of 2D convo-
lution and Haar transform are very close to linear, as they
are implemented in a totally data parallel fashion, where 16
cores could simultaneously execute without communication.

For evaluation of LOCUS, we implement all the kernels
using message passing programming model with the LMP
API. The communications in A Star and SVM are im-
plemented through cache-to-cache data transfer as trans-
fer size in each communication is always larger than 4-byte
register-to-register data transfer. The integrated compute-
communication custom instructions are leveraged in many of
the kernels. Note that we impose the restriction of at most
4 input operands and 2 output operands per candidate pat-
tern [29,30,54] during custom instruction identification.



5.3 Synthesis Results
We implement LOCUS architecture in RTL. We leverage

open-source ARM Amber core [1], and integrate it with an
SFU to form the LOCUS JiTC processing core inside each
tile, with the SFU running in parallel with the execute stage
of Amber. Each tile contains 2-way associative 8KB instruc-
tion and data caches with 64 bytes of cache lines for which we
use 64x24 and 64x512 SRAM blocks per set for tag and data,
respectively. The tile also contains a SMART router with
a 5x5 crossbar. A NIC is used to reassemble flits and dis-
assemble packets and an LMPU containing 16-entry buffer
stores data received from the other cores. In our design,
Tile0 is also connected to a memory controller.

The design is implemented in Verilog and simulated with
Synopsys VCS-MX. Synopsys 32nm generic standard cell
and SRAM libraries are used to synthesize, place and route
our design in Design Compiler and IC Compiler to estimate
area, timing and power numbers.

Timing analysis. Our design synthesizes at 200MHz
with an operating voltage of 0.95V and 25°C temperature.
The critical path is in the Amber core with a cumulative
path delay of 4.88ns which goes through the write back out-
put (0.11ns) → execute (1.9ns) → barrel shifter (0.59ns) →
ALU (2.17ns) → execute output (0.11ns). Note that on a
commercial 28nm FD-SOI process, our design can synthe-
size to 1GHz, demonstrating that higher clock frequency can
be attained, though it is not necessary for our applications.
We chose the Synopsys generic 32nm PDK, and synthesiz-
ing LOCUS on this PDK achieved a maximum frequency of
200MHz.

Figure 7: Power and area breakdown of LOCUS tile.

Figure 8: Layout of LOCUS many-core architecture.

Power analysis. The power consumption of LOCUS is
derived from RTL simulation fed with instruction and mem-
ory traces generated from running benchmark applications
on gem5. The switching activity information file generated
in Synopsys VCS-MX is fed as input to Synopsys DC and
ICC to derive accurate power estimates. The power con-

sumption for the entire chip is 133 mW at 200MHz (esti-
mated 266mW at the target frequency of 400 MHz). Fig-
ure 7 shows the power breakdown of the LOCUS chip, where
the UnCore (NIC, router) takes up <25% of total power, a
significantly lower fraction than most shared memory multi-
cores whose Uncore comprise shared last-level caches, coher-
ence controllers and interconnect of the UnCore.

Area analysis. LOCUS chip area is 6 mm x 6 mm,
carried through place-and-route to layout, which satisfies
the area requirement of the wearables’ SoC like the Qual-
comm Snapdragon 400 (40∼50mm2 [22]) including a quad-
core ARM cortex-A7 processor. The layout of LOCUS is
illustrated in Figure 8. The area breakdown in Figure 7
shows Uncore taking up just ∼8% area. Note that the max-
imum distance in LOCUS for routing is 12 mm which is less
than the maximum SMART routing distance constraint [41].
Hence, the single cycle routing in LOCUS is guaranteed.

5.4 Comparison with Processors in State-of-
the-art Wearable Devices

We illustrate the potential of LOCUS by first comparing it
with quad-core ARM Cortex-A7 processor utilized in state-
of-the-art wearable devices. Figure 9 shows the speedup
and normalized power consumption across kernels running
on LOCUS with respect to the quad-core ARM Cortex-A7
running at 1.2GHz. Note that the execution time for LO-
CUS is collected from gem5 running at 400MHz while its
power consumption is obtained from the RTL simulation.
We use Odroid XU3 board to obtain the execution time and
power consumption of state-of-the-art quad-core Cortex-A7
processor (see Section 2). LOCUS achieves an average 1.71x
speedup while dissipating only 55.2% power across all ker-
nels (3.1x in terms of performance/watt) compared to 4-
core Cortex-A7. The speedup of 2D convolution and Haar
transform are better than the others thanks to their higher
parallelism.

Figure 9: Normalized speedup and power consump-
tion of LOCUS across kernels compared to 4-core
ARM Cortex A7 in state-of-the-art wearable devices.

5.5 Comparison with 16-Core Shared Mem-
ory Architecture

In order to verify the advantage of LOCUS across dif-
ferent architectures regardless of the variations in technol-
ogy, frequency and core count, a baseline of conventional
shared-memory architecture with the same scalability (16-
core) is compared. LOCUS achieves impressive improve-
ment in terms of performance/watt. The best case improve-
ment reaches 2.54x and the average is 1.52x (calculated ac-
cording to Figure 10 and Figure 11). We will discuss the
impacts of different components of LOCUS on performance
and power, respectively.



Figure 10: Normalized execution time with respect to the 16-core shared memory baseline

Figure 11: Normalized power breakdown with respect to the 16-core shared memory baseline

First, we evaluate the execution time reduction (Fig-
ure 10) for LOCUS with four different configurations
(PRIM: LOCUS with both JiTC core and SMART NoC
disabled; JiTC: LOCUS with only JiTC core enabled;
SMART: LOCUS with only SMART NoC enabled; LO-
CUS: LOCUS with both JiTC core and Smart NoC en-
abled) compared to our baseline directory-based shared
memory many-core architecture. LOCUS achieves an av-
erage 18% reduction in execution time with SMART NoC
and JiTC core compared to the baseline.

The contributions of the JiTC core and the SMART NoC
are observed to be different in each of these kernels. A 10%
reduction in execution time could be observed when using
JiTC core with computationally expensive kernels like ECG,
AES, SVM, and Combo1 (includes SVM). The SMART NoC
further reduces the execution time by more than 5% for com-
munication intensive kernels like DTW, A Star, AES and
Combo2. The variation in performance for the rest of the
kernels is attributed to less or no communication. The com-
bination kernels achieve significant performance gain. Still,
this gain is less than the sum of their individual gains, which
is due to communication bottlenecks present in the interac-
tion among kernels.

Next, we evaluate the power behavior of LOCUS com-
pared to 16-core shared-memory baseline. The power con-
sumption of CPU and NoC are obtained by feeding the
configurations and statistics from gem5 to McPAT [43]
and DSENT [50], respectively. Figure 11 shows that for
most kernels, LOCUS consumes less power than the 16-
core shared-memory baseline, because it eliminates the co-
herence traffic and bypasses the routers in NoC. Even for
the non-communicating kernels (i.e., 2D Convolution and

Haar Transformation) whose power saving in CPU and NoC
cannot compensate the power losing in SFU, the increased
power consumption is negligible.

Figure 12: Reduction of dynamic instructions in LO-
CUS after replacing frequently occurring compute-
communication patterns with custom instructions

Figure 12 shows the reduction in number of dynamic in-
structions in LOCUS after replacing the frequently occurring
computational patterns with custom instructions. The less
instructions are executed, the less is the execution time (Fig-
ure 10). On an average, the number of dynamic instructions
decreases by 13.6% across different representative kernels.

Finally, we evaluate the number of flits transferred in the
NoC and their corresponding latency. As seen in Figure 13,
LOCUS saves more than 50% of flits transferred in the NoC
when compared to the baseline. AES and AES Decrypt save
most flit transfers due to explicit message passing, which
effectively alleviates the lock contention happening in the
shared memory baseline. LOCUS cannot save flits trans-
ferred in NoC for 2D Convolution and Haar Transformation
because there is no communication inside these data parallel
kernels. The flits transferred for A Star and SVM in LO-



Figure 13: Normalized number of flits and transfer
latency with respect to the 16-core shared memory
baseline
CUS are not significantly decreased as their communications
are implemented in the synchronous cache-to-cache transfer
fashion. Moreover, the flit transfer latency on LOCUS de-
creases by 70% on an average compared to the baseline due
to the single-cycle path generated by SMART NoC.

6. CONCLUSION
In this paper, we propose LOCUS — a low-power, cus-

tomizable, many-core processor for next-generation wear-
able devices. Instead of relying on the smart phones, gate-
ways or cloud servers, LOCUS can satisfy performance re-
quirements of applications in-situ under the typical power
budget of hundreds of milliwatts, to improve the real-
time processing capability and sensing fidelity. By using
lightweight message-passing, a customizable interconnect
and customizable compute cores, LOCUS achieves an av-
erage 3.1x performance/watt improvement compared to the
quad-core ARM processor used in the state-of-the-art wear-
able devices. A combination of full-system simulation and
RTL synthesis of the architecture with representative wear-
able applications shows that LOCUS achieves an average
1.52x performance/watt gain over a conventional shared-
memory many-core architecture with the same core count.
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