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Heterogeneous multiprocessor system-on-chip architectures are endowed with accelerators such as embedded
GPUs and FPGAs capable of general-purpose computation. The application developers for such platforms need
to carefully choose the accelerator with the maximum performance bene�t. For a given application, usually, the
reference code is speci�ed in a high-level single-threaded programming language such as C. The performance
of an application kernel on an accelerator is a complex interplay among the exposed parallelism, the compiler,
and the accelerator architecture. Thus, determining the performance of a kernel requires its redevelopment
into each accelerator-speci�c language, causing substantial wastage of time and e�ort. To aid the developer
in this early design decision, we present an analytical framework CGPredict to predict the performance of
a computational kernel on an embedded GPU architecture from un-optimized, single-threaded C code. The
analytical approach provides insights on application characteristics which suggest further application-speci�c
optimizations. The estimation error is as low as 2.66% (average 9%) compared to the performance of the
same kernel written in native CUDA code running on NVIDIA Kepler embedded GPU. This low performance
estimation error enables CGPredict to provide an early design recommendation of the accelerator starting
from C code.
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1 INTRODUCTION
The emergence of the heterogeneous system-on-chip platforms (e.g., Xilinx Zynq UltraScale+
MPSoC [24], Nvidia Jetson TK1 [20]) o�ers application developers diverse choice of accelerators
including Graphics Processing Unit (GPU), Field-Programmable Gate Array (FPGA), Digital Signal
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Processor (DSP), etc. on the same chip. The developers now have the opportunity and the responsi-
bility to take advantage of the unique characteristics of accelerators to improve the application
performance. The appropriate choice of an accelerator that best matches an application kernel,
however, is a challenging endeavor. The performance of an application on an accelerator is a
complex interplay among the exposed parallelism, the compiler, and the accelerator architecture.
The programmer needs to implement the kernel in di�erent accelerator-speci�c languages (CUD-
A/OpenCL for GPU, RTL for FPGA) to measure the performance of each accelerator choice. Recent
advances have somewhat alleviated this re-development e�ort. For example, High-Level Synthesis
tools (e.g., Vivado HLS [23], LegUp [4]) can automatically generate RTL from C code for FPGAs,
while [3] can perform C to CUDA transformation for GPU. There are also emerging frameworks, for
example OpenCL [8] cross-platform parallel programming for heterogeneous systems, where the
same program can run across diverse accelerators such as multi-core CPU, GPU, DSP, and FPGAs.
Unfortunately, the generality of such approaches is also their shortcoming as accelerator-speci�c
optimizations are imperative to unleash the true performance potential of a kernel on an accelerator.

Our goal is to guide the application developer in the early design choice of an accelerator without
the tedious redevelopment e�ort and optimizations. Usually, the reference code for a kernel is
speci�ed in a high-level single-threaded programming language such as C. Starting with this
sequential C code of a kernel, we aim to predict its relative performance on multiple accelerators
such that the developer can make an informed choice. They can then concentrate their e�orts
on this selected accelerator with platform-speci�c languages and optimizations. The automated
�ltering of the unsuited accelerators saves tremendous e�ort that would have been otherwise
completely wasted.

As one of the �rst steps towards achieving this goal of automated accelerator selection, we present
CGPredict (C to GPU Prediction) — an analytical framework to accurately estimate the performance
of a computational kernel on an embedded GPU architecture from unoptimized, single-threaded
C code. The GPU is a highly multi-threaded architecture that thrives on concurrent execution
of thousands of threads, which makes performance prediction from single-threaded code quite
challenging. Moreover, modern GPUs feature complex memory hierarchy including caches that
introduces considerable unpredictability in performance, making analytical memory performance
modeling rather di�cult. CGPredict builds the performance model from a dynamic execution trace
of the sequential kernel. The trace is manipulated to expose the available thread-level parallelism
that can be potentially exploited by the GPU. At the same time, the memory access trace is analyzed
against a performance model of the memory hierarchy that captures the interaction between the
cache, the DRAM memory, and the inherent memory latency hiding capability of the GPU through
zero-cost context switching of the threads when necessary.

CGPredict can estimate the performance from C code with 9% estimation error compared to the
performance of the corresponding native CUDA code on embedded NVIDIA Kepler GPU averaged
across a number of kernels. As CGPredict is based on analytical modeling, it can provide insights
regarding the characteristics of the kernel and the GPU that in�uence performance, including
coalescing of memory accesses or shared memory usage. These insights o�er opportunities for the
programmers to understand the intrinsic strengths and weakness of the architecture in the context
of a particular kernel that can facilitate further code optimizations. Also CGPredict in conjunction
with an existing FPGA performance predictor from C code [26], achieves our objective of making
the perfect choice of the accelerator (GPU or FPGA) given a kernel.

Performance estimation of general-purpose applications on GPU is a well-researched topic
[1, 2, 7, 12, 22]. But CGPredict di�ers from the state-of-the-art in two important aspects. First,
the earlier works primarily focused on performance estimation from CUDA [2, 7] or OpenCL
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Fig. 1. Jetson TK1 Kepler GPU architecture

[22] where the thread-level parallelism has already been exposed. In contrast, CGPredict provides
estimation from sequential single-threaded application.

Second, almost all existing techniques do not consider caches in the memory hierarchy and
only model the software-controlled shared memory. As the content of the shared memory is under
programmer control, the memory access latency is predictable. In contrast, state-of-art GPUs are
usually endowed with multiple level of caches, including con�gurable L1 cache and L2 cache, which
introduce unpredictable access latencies because the presence of a data element in a particular
cache cannot be guaranteed. CGPredict models the cache behavior and the interplay between the
computation latency and the memory access latency quite accurately.

2 BACKGROUND
In this section we present a brief background on the GPU architecture, the CUDA programming
model as well as the concepts essential for performance modeling.

2.1 GPU Architecture
GPUs are prevalent in heterogeneous MPSoCs. We model embedded NVIDIA Kepler GPU archi-
tecture present in Tegra K1 SoC on Jetson TK1 development board [20] (see Figure 1). Kepler
architecture is representative of the modern embedded GPUs in terms of power-performance
characteristics. The GPU we model is equipped with one Streaming Multiprocessor (SMX) unit
consisting of 192 CUDA cores, 32 special functional units, and 32 load/store units. It has 64KB
on-chip memory that can be con�gured as shared memory or L1 cache, an on-chip 128KB L2 cache,
and o�-chip global DRAM memory shared with the on-chip CPU core.

2.2 Programming Model:
The Kelper GPU leverages CUDA [15] as its programming model. CUDA extends C by allowing
programmers to de�ne kernels that are executed in parallel by hundreds to thousands of CUDA
threads with di�erent data. A number of threads form a thread block, which is the unit for scheduling
on SMX. Each thread is identi�ed with two IDs: blockID and threadID. The threads within a block
are further grouped into warps consisting of 32 threads each. Blocks are organized into one-, two-,
or three-dimensional grid that represents the workload as shown in Figure 2.
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2.3 Warp Scheduling
The unit of scheduling within SMX is warps. The SMX consists of four warp schedulers and each
scheduler can issue two warp instructions each cycle. All the threads within a warp execute the
same warp instruction in parallel on 32 CUDA cores in lock-step, but di�erent warps can make
independent progress. The warp scheduler issues the next available warp instruction when there
are free CUDA cores available. Kepler GPUs employ aggressive latency hiding techniques when a
memory access cannot be serviced immediately. The currently executing warp is context switched
out and another available warp is scheduled instead.

Figure 3 shows a visualization of the latency hiding technique [7]. In Figure 3(a), let us assume that
the architecture can service two memory warps concurrently and there are N = 8 warps waiting to
execute their computation periods (C1, . . . ,C8) and memory periods (M1, . . . ,M8). A computation
period (comp_p) is the execution of computation instructions in a warp before a memory access. A
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memory period (mem_p) is the execution of a memory access instruction. Instead of waiting for the
warp to complete the memory access for the entire memory period, the next available computation
period of a di�erent warp is scheduled. Thus, the computations periods can be mostly hidden under
the memory periods except for the �rst two warps and the total execution time comprises of only 2
computation periods and 4 memory periods.

This e�ect can be captured by the concept of memory warp parallelism (MWP) and computation
warp parallelism (CWP) [7]. Memory periods from multiple warps can overlap depending on the
memory bandwidth and memory bank parallelism; MWP represents the maximum number of
warps per SMX that can access the memory concurrently during one memory period. Computation
periods from consecutive warps do not overlap in the model. CWP represents the number of warps
that the SMX can execute during one memory warp period plus one (the warp itself is waiting for
memory). As MWP is 2 in this example, two computation periods are required before the memory
bottleneck is reached, after which all the computation periods are hidden by memory periods.

In contrast, if the architecture can service more memory warps concurrently, memory accesses
will no longer be the bottleneck as shown in Figure 3(b). In this example, MWP = 8, i.e., the memory
can service 8 memory warps concurrently, while the CWP is still 4. Thus, the memory periods are
mostly hidden except for the last warp, while the computation periods are all exposed. The total
execution time therefore can be calculated as:

total_cycle =

{
mem_p × N

MW P + comp_p ×MWP , if CWP ≥ MWP

mem_p + comp_p × N , if CWP < MWP

2.4 Memory Access Pa�erns
Adjacent threads in a warp have high probability of accessing data from contiguous memory
addresses; thus coalescing of memory accesses within a warp helps improve performance by
reducing the number of transactions to fetch data from the memory. However, not all memory
instructions within a warp can be coalesced. An analysis of the memory access pattern of the kernel
is essential to predict the execution performance.

2.5 Shared Memory Bank Conflicts
In Kepler architecture, the on-chip shared memory has 32 banks that are each 8 bytes wide.
Successive 4-byte words are mapped to successive banks. With certain access patterns, shared
memory can have 256 bytes (32 banks × 8) bandwidth per cycle. Figure 4 shows an illustration of
shared memory bank con�guration and bank con�icts. Each box represents a word and the number
represents its address. The 32 columns represent the 32 banks present in the architecture. Words in
the same column ([0][32][64][96]) belong to the same bank. As each bank is 8 bytes wide, the words
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Fig. 5. CGPredict framework overview

within 64-word (32 banks × 2 words per 8-byte) aligned segments ([0] and [32]) can be accessed
simultaneously even if they belong to same bank. In the default 4-byte access mode, bank con�icts
occur if two or more threads access 4-byte words from the same bank that spans multiple 64-word
aligned segments ([59] and [91]). For N threads in a warp con�ict, called N -way bank con�ict, the
memory access instruction gets replayed (N − 1) times. There is no bank con�ict when accessing
di�erent banks ([96] and [35]), the same word (multiple accesses to [1]), or in the bank within one
64-word aligned segment ([1] and [33]).

3 CGPREDICT FRAMEWORK
To aid the developer in the early design decision about the accelerator, we present an analytical
framework CGPredict to predict the performance of a computational kernel on an embedded GPU
architecture from un-optimized, single-threaded C code. The overview of CGPredict is shown in
Figure 5.

CGPredict takes a computational kernel in the form of single-threaded C code as input and
generates its execution trace through a Trace Extraction phase. In order to emulate the behavior of
GPU, a Warp Formation phase is introduced to transform the single-threaded trace into its multi-
threaded equivalent. CGPredict then extracts computation (in the form of compute instructions)
and memory access information. Compute instructions are mapped to CUDA PTX ISA [16] to
predict the number of GPU instructions, and thus compute cycles in Computation Analysis stage.
To predict GPU memory cycles, CGPredict takes the memory access information and analyzes its
access patterns and cache behavior in Memory Behavior Analysis stage. The results from the
two analysis stages complete the execution characteristics we need from the kernel for performance
prediction. Lastly, together with the architectural parameters obtained by micro-benchmarking [11,
21], an Analytical Prediction Model is engaged to predict the �nal execution performance using
the computation and memory execution characteristics.
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3.1 Trace Extraction
CGPredict leverages the Low-Level Virtual Machine (LLVM) [9, 25] for trace collection. It converts
single-threaded C code into an LLVM intermediate representation (LLVM-IR). LLVM-IR is machine
independent and is the core of LLVM. CGPredict then performs instrumentation by inserting a set of
function calls in the generated LLVM-IR. These functions are used to record program characteristics
such as runtime instances of static instructions, operation types, operands, load/store addresses
and loop information (number of loops, iteration indices). The size of the trace is determined
by the input sizes de�ned in C code. While a small size is preferred to reduce trace generation
overhead, the trace generated must be large enough to fully exploit the parallelism present on
the GPU platform to reveal the actual execution characteristics (see Sec. 3.2). The designer only
needs to insert pragmas into the original C code to highlight the portion of the code that should
be analyzed by CGPredict in the trace extraction stage. Designers do not need to have prescient
knowledge regarding the suitability or parallelizability of the code fragment as CGPredict performs
the analysis automatically and informs the designer of the potential performance improvement
with GPU acceleration.

Given the LLVM-IR trace, we separate it into a Memory Trace and an Operation Trace. The
Memory Trace contains memory load/store operations with their address and loop information
(loop indices). This information is used in the Warp Formation phase for converting the single-
threaded trace to its multi-threaded equivalent as shown in Figure 6. The Operation Trace includes
the non-memory operations and is used to evaluate the computation cost in GPU execution time
prediction (Sec. 3.4).

3.2 Warp Formation
When a code segment in an application is repeatedly executed in the form of a loop, the inherent
parallelism makes it ideal candidate for acceleration through GPU. Consider a nested loop within
an application with multiple loop levels. The outer-most loop indices can be directly mapped to
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the multi-dimensional IDs of the GPU threads, and the loop body can be mapped to the thread
execution.

The following code segment presents a simple matrix multiplication in serial C code. It performs
multiplication of matrices A and B of size SIZE (= N ∗ N ) and puts the result in matrix C .

1 //Matrix multiplication C implementation
2 void mm(TYPE A[SIZE], TYPE B[SIZE], TYPE C[SIZE]) {
3 int i, j;
4 for (i = 0; i < N; i++) {
5 for (j = 0; j < N; j++) {
6 C[i*N + j] = A[i*N +j] * B[i*N + j];
7 }
8 }
9 }

For a two-dimensional grid for GPU, the outer-most two loops (loop i and j) can directly map
to the threadID.x, and threadID.y, as illustrated in Figure 6. Line 6 containing actual calculation
therefore form the kernel code, which maps to a thread execution.

The kernel execution trace (memory trace, left of Figure 6) we obtain from the trace extraction
phase is single-threaded where all the loops are unrolled because it is a dynamic execution trace.
The loop-index i and loop-index j are the outer-most loop indices. We can consider an iteration in
the innermost loop as a “pseudo-thread". In this case, a “pseudo-thread" trace is memory load of A, B
and memory write to C, shown as the �rst 3 lines in the single threaded trace. We then fold the trace
to have these “pseudo-threads" side-by-side. A group of 32 “pseudo-threads" form a “pseudo-warp".
The transformed trace (right of Figure 6) shows multiple warps executing concurrently the �rst
instruction of the “pseudo-threads".

As the mappings of threads on SMX are done in blocks, the block size setting a�ects the memory
access pattern and is re�ected in the warp formation. We assume that the warps progress in the
order of WarpIDs within a block, and blocks are scheduled sequentially [18].

Furthermore, because of the hardware restrictions of certain platforms, including thread_per_sm,
which denotes the maximum number of threads that can be concurrently executed on one SMX
(2048), the “pseudo-threads" need also be arranged in batches of 2048. Continuing with the discussion
of trace size in Section 3.1, trace size of at least 2× thread_per_sm are therefore advisable to ensure
the fully occupancy of SMX and capture the interaction of the working sets between the two
batches. For MM application, the trace should be generated for at least N = 64 to have 642 = 4096
iterations that maps into two “pseudo-thread" batches.

We consider inter-thread collaboration and synchronization cost incurred due to the shared
memory usage (Section 3.6). We assume that no inherent inter-thread communication is required
when the original C implementation is parallelized into pseudo-threads in the process of warp
formation. This assumption holds good for most kernels suitable for GPU acceleration. In the
presence of inter-thread communication, CGPredict detects and informs the developer of the
potential synchronization issues.

The formation of warps through trace transformation exposes the available thread-level par-
allelism that can be exploited by the GPU. We then extract the memory access information for
memory analysis (Section 3.3) and computation information for computation analysis (Section
3.4). Note that the transformed trace may not be the exact replica of the actual GPU trace from
equivalent CUDA code; but it is su�ciently close for performance estimation. Also, we do not need
to generate functionally correct CUDA code from C. Instead, we focus on aiding the developer with
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the high-level choice of accelerator, that is, whether the GPU is a good match for the application
kernel. Therefore, CGPredict can tolerate certain discrepancies as long as the estimated performance
is quite accurate.

3.3 Memory Behavior Analysis
From the kernel execution trace, we extract memory access address trace for memory behavior
analysis, including classi�cation of memory access patterns and cache miss performances. The
information is plugged into our memory access latency model. We consider embedded GPUs where
CPU, GPU reside on the same chip and share o�-chip DRAM. Thus, unlike discrete GPUs, we do
not need to consider data transfer overhead between the host (CPU) and the device (GPU). The
overhead of data transfer from DRAM to the on-chip memory (cache or shared memory) is modeled
carefully.

3.3.1 Memory Configuration. The micro-architecture of the GPU platform determines the exe-
cution performance. The introduction of caches into the GPU architecture improves the memory
access latency, while the unpredictability of cache access latency increases the complexity of the
performance estimation.

Name Shared Memory L1 Cache L2 Cache DRAM
Size 48/32/16 KB 16/32/48 KB 128 KB 1892 MB

Cache Line (B) - 128 64 -
Latency (cycles) 67 67 164 332

Table 1. Memory configuration of Jetson TK1 Kepler GPU

We �rst extract the cache speci�cations of the Jetson TK1 Kepler GPU. As no documentation
is available for the detailed information about caches, the con�gurations shown in Table 1 are
obtained by running micro-benchmarks. The results are cross-validated using two di�erent tools
[11, 21]. Moreover, performance estimation with our CGPredict framework using these cache
con�guration parameters produces low performance estimation error.

Given a variable, the programmer can specify the allocation of the variable in shared memory or
read-only data cache through CUDA intrinsics. If unspeci�ed, the data memory accesses by default
goes to the L2 cache and to the Global Memory if it misses in the L2 cache. The L1 cache is reserved
only for local memory accesses, such as register spills and stack data [17]. As the memory hierarchy
model is easily extendable to multiple levels of caches, to ease the explanation, we assume that the
memory hierarchy contains only the L2 cache and the DRAM (global memory) in our discussions
for ease of explanation.

3.3.2 Classification of Memory Access Pa�erns. The memory access patterns observed in the
kernels can be categorized as:

• Coalesced Access: The memory accesses within a warp are accessing adjacent memory
addresses and therefore can be coalesced together as one (or a few) memory transactions.
• Uncoalesced Access: The memory accesses within a warp are accessing non-adjacent

memory addresses and thus cannot be coalesced to few memory transactions. Generally, 32
(number of threads in a warp) memory transactions are required to complete the memory
operation.
• Constant Access: All the 32 threads in a warp are accessing the same memory address and

therefore only one memory transaction is required.
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The di�erent access types can be analyzed from the multi-threaded memory access information
obtained from warp formation. This is achieved by calculating the memory access stride of the
memory instructions within a “pseudo-warp". Memory warp instructions with maximum access
stride of one data element (4 byte) are classi�ed as coalesced access, maximum access stride of 0
are classi�ed as constant access, while the remaining ones are classi�ed as uncoalesced access.

3.3.3 Memory Access Latency Estimation. With memory access pattern information, we then
analyze their e�ects on memory access latencies in the hierarchical memory architecture. As
discussed in previous sections, we consider the memory hierarchy containing the L2 cache and the
DRAM (global memory). The cache behavior of the three types of memory instructions will largely
a�ect the execution performance, mainly in terms of memory access time (mem_l) and time delay
between consecutive memory accesses (depature_del). The memory access behavior within a warp
for di�erent memory access patterns are shown in Figure 7. The parameters used in the discussion
are summarized in Table 3.

As three types of memory access patterns exist in the applications, taking an average across all
the di�erent memory instructions will not lead to a good estimation. While memory instructions
with di�erent types may have very di�erent access latencies, the memory instructions with the same
access pattern (for example coalesced accesses) have roughly similar execution times. Therefore,
for a more accurate estimation, we estimate the average behavior of the memory instructions with
similar access patterns. Here we explain the detailed model of a warp memory instruction at thread
level for the three di�erent memory access patterns, as shown in Figure 7.

Coalesced and Un-coalesced Access. In coalesced accesses, the memory accesses are coalesced into
one or more memory transactions to fetch the data from the cache in cache line size granularity. As
shown in Figure 7(a), an L2 cache line contains 16 data elements. Therefore, two cache transactions
are generated from one coalesced memory warp instruction with 32 memory operations. If any
of these cache transactions results in a cache miss, then a memory transaction to the o�-chip
global DRAM memory will be initiated. For un-coalesced accesses, as the memory addresses are not
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adjacent, each thread generates an independent memory transaction to the L2 cache and possibly
to DRAM, as shown in Figure 7(b).

In both cases, the memory access time is determined by how many memory transactions are
generated per warp for coalesced/uncoalesced access (no_(un)coal_pw) and how many DRAM
transactions (no_dram_trans_(un)coal ) are generated per warp due to the cache misses. Therefore,
the memory access time and the departure delay (the minimum time interval between the initia-
tion of two memory transactions to the same memory) for coalesced and un-coalesced memory
instructions per warp can be calculated as:

if no_dram_trans_(un)coal ≤ 1,

mem_l_(un)coal =mem_ld_L2 + (no_(un)coal_pw − 1) × dd_L2 (1)

if no_dram_trans_(un)coal > 1,

mem_l_(un)coal =mem_ld_L2 +mem_ld_dram + (no_dram_trans_(un)coal − 1) × dd_dram (2)

dep_del_(un)coal =max{no_(un)coal_pw × dd_L2,no_dram_trans_(un)coal × dd_dram} (3)

Constant Access. For constant access patterns, as shown in Figure 7 (c), only one memory address is
accessed by all the threads in a warp. Thus only one memory transactions is generated. The number
of DRAM transactions per warp for constant access pattern, denoted as no_dram_trans_const , can
therefore only have the value of 0 (cache hit) or 1 (cache miss).

mem_l_const =mem_ld_L2 + no_dram_trans_const ×mem_ld_dram (4)
dep_del_const = no_const_pw × dd_l2 + no_dram_trans_const × dd_dram (5)

With the detailed access time information of the three di�erent memory access types, we can
then have a more accurate estimation of the total memory access latency mem_cycles, the average
memory access latency per memory warp instruction across all access types mem_l, and the average
departure delay for a warp memory instruction across all access types departure_delay.

mem_cycles =mem_l_coal × no_coal_insts +mem_l_uncoal × no_uncoal_insts (6)
+mem_l_const × no_const_insts

mem_l =mem_cycles / no_mem_insts (7)
depature_delay = (dep_del_coal × no_coal_insts + dep_del_uncoal × no_uncoal_insts (8)

+ dep_del_const × no_const_insts) / no_mem_insts

3.3.4 Cache Miss Estimation. We design a cache analyzer to estimate the number of o�-chip
DRAM transactions for di�erent memory instruction types. The cache analyzer predicts the behavior
of the L2 cache given the cache con�guration and the memory traces using the reuse distance
theory. It can thus estimate the L2 cache miss rate and generate the number of DRAM accesses per
warp memory instruction, averaged across all memory instructions of same memory access types.

There are three major parameters for a cache con�guration: cache block size B, number of sets K
and associativity A. The cache size can be calculated as (K ×A × B). Letτ be the input memory
address trace in Section 3.2. The accesses to memory are in granularity of blocks with size B. Thus
τ is �rst converted into a block address trace T by eliminating the least signi�cant (loд2B) bits. A
memory block address m is mapped into the ith cache set Ci , where i =mmodulo K and i ∈ [0,K).
We use Mi to denote the set of all memory blocks that are mapped to Ci . There is no interference
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between di�erent cache sets. Therefore the cache miss behavior can be analyzed independently
for each set. Trace T can be partitioned into K traces: T1, T2, ... ,TK , one for each cache set. For a
given memory block address m ∈ Mi , we de�ne m[j] to be the jth reference and Nm to be the total
number of references ofm in the sub-trace Ti .

We borrow the concept of Temporal Con�ict Set (TCS) from [10]: Given a memory block reference
m[j] in the subtrace Ti , where j > 1, i ∈ [0,K) and m ∈ Mi , the temporal con�ict set TCSm[j] is
de�ned as the set of unique memory blocks referenced betweenm[j −1] andm[j] inTi .TCSm[j] = ∅
indicates no such references.

Clearly, if |TCSm[j] | ≥ A, reference m[j] will be a cache miss; if |TCSm[j] | < A, reference m[j]
will be a cache hit. The analysis of TCSm[j] is performed for all Nm references ofm in Ti .

hit(m[j]) =

{
1, if |TCSm[j] | < A and j > 1
0, otherwise

num_hit(m) =
Nm∑
j=1

hit(m[j]) (9)

The total number of cache hits for a cache set Ci and the entire memory trace are therefore:

num_hit(Ti ) =
∑
m∈Mi

num_hit(m) (10)

num_hit(T ) =
K∑
i=1

num_hit(Ti ) (11)

We compare the performance of the cache analyzer against a commonly used cache simulator
Dinero [5] and verify that our cache analyzer has 99% prediction accuracy.

3.4 Computation Analysis
Regardless of the execution platform, the computations and memory operations performed by CPU
and GPU are quite similar. We obtain the CPU computation instructions (LLVM-IR) information
from the trace and predict the GPU computation instructions performance.

Parallel Thread Execution (PTX) is a pseudo-assembly language used in NVIDIA’s CUDA pro-
gramming environment [16]. The binary code to be run on the GPU processing cores are translated
from PTX code by a compiler in the graphics driver. Although PTX code is not a direct representa-
tion of the actual machine code, it is an accurate enough representation of the native CUDA code
that captures more GPU characteristics. After careful consideration, we �nd the mapping from
LLVM-IR to CUDA PTX instructions as shown in Table 2. From the instruction counts, comp_cycles
can therefore be calculated as shown in the following equation:

comp_cycles = inst_cycle × no_total_insts (12)

3.5 Pu�ing it All Together
So far, we have discussed how we can extract the application features into execution parameters
through analytical methods taking into consideration the platform-speci�c hardware parameters.
We have performed this analysis separately for memory operations and computation operations.
Finally, CGPredict engages an analytical model to estimate the overall program execution time.

Table 3 summarizes all the parameters required in the model. The �rst part includes platform-
dependent parameters that are obtained by carefully examining the hardware platform, running
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LLVM-IR Instruction PTX Instruction GPU Instruction
load, store ld, st memory instruction

add, mul, shl, br add, mul, shl, br compute instruction
fmul + fadd fma compute instruction

loop 1 add and 1 branch compute instruction
Table 2. Instruction mapping between LLVM-IR and PTX

devicequery and micro-benchmarks [11][21] on the platform . The second part summarizes the
kernel execution parameters that are obtained from the trace analysis as described in the previous
sections.

We adopt the analytical model presented in [7] with the concept of MWP (memory warp
parallelism) and CWP (computation warp parallelism) as discussed in Section 2. The idea is to
model the e�ect of latency hiding of either the computation operations or the memory operations
depending on the availability of memory-level parallelism versus computational parallelism. The
model is given below wheremem_l and departure_delay are calculated from Section 3.3.3 through
cache and DRAM analysis.

MWP =
mem_l

departure_delay
(13)

CWP =
mem_cycles + comp_cycles

comp_cycles
(14)

In addition, the value of MWP and CWP are bounded by N, the number of active running
warps existing on one SMX. The number of active running blocks (B) and N can be estimated
with application kernel settings (problem size, block size, shared memory usage) and architecture
support (maximum number of threads per block, available shared memory size), as suggested in
CUDA occupancy calculator [14]. The number of batches of thread execution (batch) can therefore
be calculated by Eqn (15) with the total number of blocks for the kernel (no_blocks) and B. We can
then calculate the execution cycles from MWP and CWP by Eqn. (16, 17) and �nally the execution
time in seconds with platform frequency information.

batch = no_blocks/B (15)

if CWP ≥ MWP

exec_cycles =mem_cycles ×
N

MWP
+

comp_cycles
no_mem_insts

×MWP × batch (16)

if CWP < MWP

exec_cycles =mem_l + comp_cycles × N × batch (17)
exec_time = exec_cycles / f req (18)

3.6 Shared Memory Consideration
Although the cache hierarchy brings the data closer to the GPU, the limited size of the caches
as well as the memory access patterns of certain kernels may still result in minimal bene�t from
caching. For applications that can be tiled, the utilization of the shared memory can largely reduce
the data access latencies. Programming e�orts are required in determining the portion of data to
be put into shared memory and the tile size. The algorithm may also need to be modi�ed to be tiled
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Parameter Name De�nition From/Value
freq clock frequency of GPU 852 MHz
inst_cycle average number of cycles to execute one instruction 0.5
mem_ld_L2 access latency of L2 cache 164
mem_ld_dram access latency of DRAM 332
mem_ld_smem access latency of shared memory (which shares the

same physical on-chip storage as L1 cache)
67

smem_load_const latency for loading from main memory to shared mem-
ory

506

dd_L2 departure delay, the delay between two memory trans-
actions to L2 cache

2

dd_dram departure delay, the delay between two memory trans-
actions to DRAM

10

X_uncoal, X_coal,
X_const

X -way bank con�ict caused by uncoalesced, coalesced
or constant memory accesses

16 / 1 / 1

no_uncoal_pw,
no_coal_pw,
no_const_pw

number of L2 transactions generated for a warp mem-
ory access instruction of uncoalesced, coalesced or
constant memory access pattern

32 / 2 / 1

no_dram_trans_uncoal,
no_dram_trans_coal,
no_dram_trans_const

number of DRAM transactions generated from a warp
memory instruction of uncoalesced, coalesced or con-
stant memory access pattern

Sec. 3.3

dep_del_uncoal,
dep_del_coal,
dep_del_const

depature delay, the delay between two warp memory
instruction dispatches of uncoalesced, coalesced or
constant memory access pattern

Sec. 3.3

mem_l_uncoal,
mem_l_coal,
mem_l_const

memory access latency for a warp memory instruc-
tion of uncoalesced, coalesced or constant memory
access pattern

Sec. 3.3

no_mem_insts number of total memory instructions Sec. 3.4
no_uncoal_insts,
no_coal_insts,
no_const_insts

number of memory instructions of uncoalesced, coa-
lesced or constant memory access pattern

Sec. 3.4

no_comp_insts number of total compute instructions Sec. 3.4
no_smem_insts number of total share memory access instructions Sec. 3.6
no_sync_insts number of total synchronization instructions Sec. 3.6
no_total_insts number of all instructions (mem, comp) Sec. 3.4
B, N B: no of active running blocks per SMX, N: no of active

running warps per SMX
Sec. 3.5, [14]

Table 3. Summary of model parameters

in some cases. The decisions are to be made based on the data usage of the application and the
share memory size available for the architecture. The loop tiling is performed on the sequential
code. Given these hints by the programmer (regarding data elements that should be brought into
shared memory and the tiling information), the accesses to the shared memory can be extracted
out from the sequential memory access trace.
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In a shared memory implementation, each thread in a block brings in one (or more) data element
from main memory. Together all the threads in a block bring in all the data elements required for
execution in this block. The latency of these memory accesses is predictable and can be estimated
with a �xed load latency (Eqn. 19). A thread barrier is inserted to ensure all the data elements are
loaded before execution.

Secondly, during the execution, the latency of a shared memory access depends on bank con�icts.
A X -way bank con�ict will result in X times longer latency than zero bank con�ict case. To predict
bank con�icts, an access pattern analysis similar to the discussion in Section 3.3.2 is performed for
the memory access trace. This analysis determines the number of warp memory instructions with
X -way bank con�ict where X can vary from 1 to 32. The access latency can then be estimated with
(Eqn. 20). The rest of the analysis then follows the same way as discussed in the previous sections.

In addition, as synchronization barriers are required in shared memory implementation, addi-
tional synchronization cost (sync_cost) is added to the �nal execution time. The synchronization
cost is calculated as the departure delay of memory instructions times the number of warps that
can access the memory concurrently. This is essentially the waiting time of warps that have �n-
ished the current memory period but cannot schedule the next memory period. This value is
further multiplied by the number of synchronization instructions and the number of active running
blocks [14].

smem_load_cycles = no_smem_load_inst × smem_load_const (19)
smem_cycles =mem_ld_smem × X_uncoal × no_uncoal_insts

+mem_ld_smem × X_coal × no_coal_insts
+mem_ld_smem × X_const × no_const_insts (20)

mem_cycles =mem_cycles + smem_load_cycles (21)
comp_cycles = comp_cycles + smem_cycles (22)

sync_cost = departure_delay × (MWP − 1) × no_synch_insts × B × batch (23)

3.7 Limitations
CGPredict, similar to any dynamic analysis tools based on pro�ling, may not achieve accurate
performance estimation if the behavior of the application varies signi�cantly across di�erent
inputs. In such cases, it is imperative to carefully select representative program inputs for trace
generation. Fortunately, application kernels that can potentially bene�t from GPU acceleration
present relatively stable behavior across di�erent inputs. Moreover, as explained in Section 3.2,
CGPredict ensures that the input trace is of su�cient size to capture the interaction among the
threads and their memory behavior. Note that CGPredict can accurately estimate performance
for di�erent input sizes irrespective of the pro�ling input size. In addition, CGPredict targets the
NVIDIA GPU architecture and can be easily re-targeted to any NVIDIA GPU architecture by simply
changing the hardware-speci�c parameters in the �rst part of Table 3. These parameters can be
easily obtained through standard benchmarking and/or from architectural speci�cations. However,
the architecture of non-NVIDIA GPUs, for example, ARM Mali GPU, can be vastly di�erent requiring
substantial changes to our framework. Furthermore, CGPredict works well for applications ideally
suited for GPUs with inherent data parallelism and little inter-thread dependencies. For applications
requiring data sharing among pseudo-threads after warp formation in Section 3.2, CGPredict reports
this dependency but currently cannot insert the synchronization primitives automatically. The
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developer needs to manually insert the synchronizations to accurately evaluate the feasibility of
GPU acceleration for the application.

4 EXPERIMENTAL EVALUATION
We now evaluate CGPredict framework on an embedded GPU.

4.1 GPU Performance Prediction �ality
To evaluate the estimation accuracy of CGPredict, we use the NVIDIA embedded Kelper GPU on
Jestson TK1 development board [20]. For benchmark applications, we select Polybench benchmark
suite [6] because each application is available in both sequential C version and the corresponding
CUDA code. Di�erent implementations of the same algorithm on di�erent platforms ensure the
fairness when comparing the predicted performance obtained through CGPredict analyzing the
single-threaded C code against the real execution time of the threaded CUDA code on Jetson TK1.

Table 4 shows the characteristics of the benchmarks as well as the estimation accuracy. The
column Work Size is the size of workload in a single dimension. The Work Size of 4096 in a two-
dimensional grid means that the total work size is 4096 × 4096, while in a one-dimensional grid
means 4096× 1. The block size is set to be 32× 32 and 256× 1 for 1D and 2D grid, respectively. Note
that CGPredict estimates the execution time based on a trace generated by a small portion of the
workload (and not the entire workload) as mentioned in Section 3.2. The average estimation error
for CGPredict is 9.00% across all the 15 kernels, demonstrating the high accuracy of CGPredict.

The analysis time of CGPredict includes the generation and analysis of traces, including trace
transformation and cache analysis. The trace generation from C code usually takes seconds to
minutes depending on the trace size, shown in Table 4. Though the whole trace is generated for
the application, CGPredict only extracts part of the trace for warp formation and cache analysis,
resulting in short analysis time. CGPredict trace generation plus analysis time ranges from 1 to 5
minutes for all the benchmarks.

Looking into the details of the evaluation results, we can make some interesting observations.
For example, SYRK and GEMM have very similar algorithms in C implementation. However, their
GPU performances are quite di�erent. From the memory behavior analysis of CGPredict, we can
infer that half of the memory instructions in GEMM are coalesced access type, while the other
half are constant access type. In contrast for SYRK, half of the memory instructions are constant
access with the other half being uncoalesced access. With this coalescing information, CGPredict
predicts MWP of GEMM to be 54.45, which is higher than the MWP of SYRK (5.97), and leads to
a much shorter execution time. This can be further justi�ed by the pro�ling information of the
CUDA version of the two benchmarks from nvprof [14]. While the same instruction counts are
observed, SYRK generates more global memory transactions compared to GEMM due to extensive
uncoalesced memory accesses. Thus, SYRK has much worse performance. This suggests possible
coalescing of such memory accesses to achieve better performance.

Moreover, to test the sensitivity of CGPredict to input workload size, we evaluate the estimation
accuracy of CGPredict by changing the input workload size for 10 benchmarks, as shown in Figure
8. The Input Size bar stands for the estimation error as reported in Table 4. The other two bars
are with workload size that are a half and a quarter of the workload size reported in Table 4. The
estimation error remains low with varying input workload size, demonstrating that the prediction
accuracy of CGPredict is stable across di�erent input size.
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Benchmark Work Grid Trace Actual Estimated Estimation
Name Size Dim. Size Time (ms) Time (ms) Error (%)

2DCONV 4096 2 512 29.52 28.01 5.13
2MM 4096 2 128 16294.07 15518.11 4.76

3DCONV 4096 2 64 84.54 68.30 19.20
3MM 2048 2 128 5990.76 5819.73 2.86

ATAX 4096 1 1024 201.70 193.04 4.29
BICG 4096 1 1024 237.69 199.22 16.19

CORR 1024 1 128 3071.66 2678.05 12.81
COVAR 1024 1 128 3073.58 3465.71 12.76

FDTD-2D 4096 2 64 1492.23 1243.21 16.69
GEMM 1024 2 128 249.16 242.53 2.66

GESUMMV 4096 1 1024 680.85 769.69 13.05
GRAMSCHM 8192 1 512 43.79 45.58 4.09

MVT 4096 1 1024 215.96 193.04 10.61
SYR2K 1024 2 128 5430.54 5204.73 4.16
SYRK 1024 2 128 2762.50 2605.45 5.69

Average Estimation Error 9.00
Table 4. CGPredict GPU performance estimation accuracy

Fig. 8. Sensitivity of CGPredict estimation accuracy to input workload size

4.2 Cache Modeling
One of the important contributions of CGPredict is to analyze the cache behavior of the architecture.
In order to evaluate the accuracy of the cache model of CGPredict, we compare the estimation
accuracy of CGPreidct (with cache modeling) against a baseline estimation method with simplistic
cache modeling. The baseline estimation methods have the same architectural parameters and same
application parameter inputs as CGPredict. The analytical model used in the baseline estimation
approach is similar to [7], which is also used by CGPredict in the �nal stage. Instead of the detailed
cache and DRAM modeling of CGPredict, a simple cache miss rate value obtained by cache simulator
Dinero [5] is used in the baseline model. The memory access latencies and departure delay values
are calculated as a simple weighted average of the respective values of the L2 cache and the main
memory, as show in Eqn. (24,25), where M stands for the di�erent memory access patterns (uncoal ,
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Fig. 9. Esimation error comparison of CGPredict and baseline (simple cache model)

Benchmark Work Tile Smem Actual Estimated Estimation
Name Size Size Size (B) Time (ms) Time (ms) Error (%)
2MM 4096 32 8192 7019.37 6748.05 3.87
3MM 2048 32 8192 2538.99 2530.52 0.33

GEMM 1024 32 8192 112.44 105.75 5.96
SYR2K 1024 32 16384 1468.68 1445.48 1.58
SYRK 1024 32 8192 721.89 713.42 1.17

Table 5. CGPredict estimation accuracy with shared memory

coal , const , respectively) as discussed in Section 3.3. Figure 9 shows that CGPredict reduces the
estimation error signi�cantly compared to the baseline model.

mem_l_M =mem_ld_L2 × (1 − L2_miss) +mem_ld_dram × L2_miss (24)
depature_delay_M = dd_L2 × (1 − L2_miss) + dd_dram × L2_miss (25)

4.3 Shared Memory Modeling
To evaluate the accuracy of CGPredict in the presence of shared memory, we select few two-
dimensional benchmarks from the Polybench benchmark suite. In order for CGPredict to work
with the shared memory, the C implementation of each benchmark is manually modi�ed to be tiled
with tile size (32 × 32). The CUDA version of the benchmarks are also manually transformed for
shared memory usage. Table 5 shows the estimation accuracy.

In general, usage of shared memory results in 2X to 4X performance improvement for the
applications. But more importantly, CGPredict is able to predict the performance of the shared
memory implementation from the tiled C code with high accuracy. For SYRK benchmark, though
the shared memory version eliminates the uncoalesced accesses to the cache and the global memory,
the inherent uncoalesced data access pattern causes signi�cant bank con�icts in shared memory
accesses. Thus, the performance of SYRK is worse compared to GEMM even with shared memory
version.
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Name SYRK GEMM
Execution Time 2762.50 ms 249.16 ms
Optimization Memory access coalescing Shared memory
Estimated Optimized Time 237.53 ms 105.75 ms
Actual Optimized Time 250.37 ms 112.44 ms
Estimation Error 5.13 % 5.96 %
Performance Improvement ∼11X ∼2X

Table 6. Results for application-specific optimizations

4.4 Suggestions for Optimizations
CGPredict can not only generate the performance prediction for a kernel on a GPU platform
accurately with short analysis time, it can further provide insights for users to develop application-
speci�c optimizations. CGPredict analyzes the memory access pattern of the application, provides
information about memory coalescing, and suggests possible bottlenecks. With these information,
the programmer can further develop optimizations including shared memory and coalescing of
memory accesses. Table 6 shows two examples of such optimizations to achieve better performance.

4.4.1 Coalescing of Memory Accesses. Continuing the discussion in Section 4.1, although SYRK
and GEMM have similar algorithmic structures, their execution times are very di�erent. CGPredict
evaluates the memory access patterns of all the memory instructions, and points out the bottleneck
of the execution through MWP and CWP values. For SYRK, there are in total 2048 memory
instructions (per thread), of which 2014 instructions are uncoalesced accesses. These uncoalesced
memory accesses result in a very low MWP value (5.97) compared to CWP value (64).

To improve the performance of SYRK, we can coalesce the memory accesses by manipulating
the memory access patterns. We observe that the threads within a warp in SYRK are accessing a
matrix in a column-wise direction, resulting in uncoalesced accesses. To coalesce such accesses, we
can pre-transpose the matrix before the actual kernel execution to have row-wise coalesced access
pattern within a warp. We modify the original C code to have the matrix transposed and estimate the
performance again using CGPredict. The estimated execution time reduces to 237.53 ms, from the
original estimated execution time of 2605.45 ms. To verify the e�ectiveness of coalescing of memory
accesses as well as the estimation accuracy, we also manually modify the CUDA implementation.
The actual execution time of the optimized application is shown in table 6. The performance of
SYRK is improved by 11X through the coalescing of the previously uncoalesced memory accesses.

4.4.2 Usage of Shared Memory. For benchmarks like GEMM, we observe from CGPredict that
the memory accesses are already coalesced. As GEMM can be tiled, additional optimizations can be
performed using the shared memory as shown in Table 6.

4.5 Choice of Accelerator
With the emergence of heterogeneous architectures (e.g., XILINX ZYNQ UltraSCALE+ [24]) con-
sisting of CPU, GPU and FPGAs, assisting the designers in selecting the appropriate accelerator
(GPU or FPGA) for a given application is of great importance. We now evaluate the potential usage
of CGPredict in conjunction with an FPGA performance predictor [26]. The performance predictor
can accurately estimate FPGA performance in the early design stage starting with single-threaded
C code. We use �ve benchmarks from [26] in this set of experiments. Equivalent CUDA code are
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Benchmark Input Estimated Time (ms) Actual Time (ms) Choice of
Name Size GPU FPGA GPU FPGA Platform

MM 1024 242.51 1180 250.27 1450 GPU
MVT 2048 48.31 9.09 42.371 10.41 FPGA

GEMVER1 2048 2.61 16.55 4.57 19.81 GPU
DERICHE1 1024 0.95 2.99 1.53 3.37 GPU

DCT1D 1024 2697.75 636.47 2685.362 650.8 FPGA
Table 7. Accelerator choice between GPU and FPGA

implemented manually and executed on the Jetson TK1 for veri�cation. We use an embedded FPGA,
Xilinx ZC702 [24] with 100MHz frequency.

Table 7 shows that CGPredict along with the FPGA performance predictor can suggest the correct
accelerator (GPU or FPGA) for each application. For MM, GEMVER1 and DERICHE1, GPU is better
choice than FPGA because (a) GPU in TK1 has much higher frequency (852MHz) compared to
FPGA (100MHz); (b) TK1 has much higher memory bandwidth (17GB/s) compared to FPGA in
ZC702 (4GB/s); and (c) the coalesced memory access pattern of MM, GEMVER1 and DERICHE1
can signi�cantly reduce memory transactions of GPU implementations and improve performance.

For MVT and DCT1D, the FPGA is better compared to the GPU. Both MVT and DCT1D have
uncoalesced memory access patterns and GPU su�ers from extensive memory transactions. Dif-
ferent from GPU implementations, FPGA accelerator �rst loads input data of several tiles into its
local memory and start computation. Memory access patterns do not have large impact on FPGA
performance, as access latency of FPGA local memory is quite small. It should be noted that GPU
performance could be improved by several optimizations such as data layout transformation, loop
tiling with shared memory and vectorization. However, the reference CUDA code that we are
comparing against do not include such optimizations and hence we refrain from using them.

In addition, for MM, MVT and DCT1D in Table 7, the estimation errors of GPU performance
prediction are quite low. For GEMVER1 and DERICHE1, the error is relatively high. These two
benchmarks have quite small runtime compared to the others, and are thus highly sensitive to
small di�erences in actual runtime due to external factors. But both are still reasonable estimations.

5 RELATED WORKS
Lots of research e�orts have been put into the performance estimation on GPU platforms [2, 7, 18, 22].
Hong in [7] proposed an analytical model for GPU architecture to predict execution performance
from CUDA codes. The model approximates the execution of GPU kernels as computation phases
of equal length with memory accesses in between. The concept of memory warp parallelism (MWP)
and computation warp parallelism (CWP) works well in evaluating the workload bottleneck and
modelling the e�ect of latency hiding. The computational part of the kernel is estimated by a simple
mapping from PTX code. The shared memory accesses are assumed to have no bank con�icts and
as fast as accessing register �le. This model is created for a early GPU architectures for which the
access latencies of memory instructions do not vary. State-of-art GPUs are usually endowed with
multiple level of caches, which introduces randomness in access latencies. Each memory access
may go to di�erent hierarchy of memory, resulting in di�erent access latencies. Thus, such model
is not applicable to state-of-art GPU architectures. GPU Cache behaviour can be anaylsed and
modelled based on reuse distance theory [10, 13, 19] to predict cache misses and thus performance.
Another work [18] builds on a simpli�ed model of [7], and model cache behaviour from the memory
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request queue maintained at every memory hierarchy level. Since the predictions are from CUDA
code where the thread-level parallelism has been exposed, the memory trace generated are highly
accurate compared to the actual GPU memory access trace. Furthermore, the usage of memory
request queue limits the portability since such real-time information is not made known in other
architectures. In comparison, CGPredicts works with sequential C code and the cache behaviour is
modelled accurately with sequential traces and cache con�gurations of the hardware.

Cross-platform performance prediction has been explored in several works [1, 12]. GROPHECY
[12], based on [7] in GPU modeling from CUDA, proposed a GPU performance projection framework
from skeleton CPU code for various optimizations including staging, folding, shared memory and
loop unrolling. However, the generation of code skeletons requires manual development of a
parallel version, which, in turn demands good understanding to implement CUDA equivalent
of a given piece of CPU code. XAPP [1] proposed a machine-learning (ML) based framework to
predict GPU performance from single-threaded CPU implementation. The framework formulates
program properties as variables and GPU hardware characteristics as coe�cients into an established
ML technique. However, machine learning approaches cannot provide much insights about the
application characteristics. As an anlytical approach, CGPredict not only can accurately predict
the performance, but also provide performance bottlenecks of the application which can suggest
further hardware speci�c optimizations.

6 CONCLUSION
With the emergence of heterogeneous system-on-chip platforms, developers are now able to
achieve better performance by porting part of the execution onto accelerators. In order to facilitate
this process, we present CGPredict, a C-to-GPU performance estimation framework based on an
analytical approach to aid the application developers in making early design decisions regarding
the choice of accelerators, which will save tremendous time and e�ort spent to redevelop the
application into platform-speci�c programming languages. CGPreict can estimate in seconds to
minutes the performance of applications on GPU platforms starting with single-threaded C code.
Experimental results show that CGPredict can accurately estimate GPU performance with an
average 9% estimation error across a range of kernels. In addition, CGPredicts performs detailed
memory access pattern and cache behaviour analysis which provides developers with insights for
further optimizations. Furthermore, CGPredict in conjunction with an existing FPGA estimator is
able to guide application developers in choosing the right accelerator platforms (GPU or FPGA).
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