
Dynamic Thermal Management via
Architectural Adaptation

Ramkumar Jayaseelan, Tulika Mitra
School of Computing

National University of Singapore
{ramkumar,tulika}@comp.nus.edu.sg

ABSTRACT
Exponentially rising cooling/packaging costs due to high power
density call for architectural and software-level thermal manage-
ment. Dynamic thermal management (DTM) techniques contin-
uously monitor the on-chip processor temperature. Appropriate
mechanisms (e.g., dynamic voltage or frequency scaling (DVFS),
clock gating, fetch gating, etc.) are engaged to lower the temper-
ature if it exceeds a threshold. However, all these mechanisms in-
cur significant performance penalty. We argue that runtime adapta-
tion of micro-architectural parameters, such as instruction window
size and issue width, is a more effective mechanism for DTM. If
the architectural parameters can be tailored to track the available
instruction-level parallelism of the program, the temperature is re-
duced with minimal performance degradation. Moreover, syner-
gistically combining architectural adaptation with DVFS and fetch
gating can achieve the best performance under thermal constraints.
The key difficulty in using multiple mechanisms is to select the
optimal configuration at runtime for time varying workloads. We
present a novel software-level thermal management framework that
searches through the configuration space at regular intervals to find
the best performing design point that is thermally safe. The cen-
tral components of our framework are (1) a neural-network based
classifier that filters the thermally unsafe configurations, (2) a fast
performance prediction model for any configuration, and (3) an ef-
ficient configuration space search algorithm. Experimental results
indicate that our adaptive scheme achieves 59% reduction in perfor-
mance overhead compared to DVFS and 39% reduction in overhead
compared to DVFS combined with fetch gating.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Design, Performance, Reliability

Keywords
Dynamic Thermal Management, Architecture Adaptation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

1. INTRODUCTION
Exponentially increasing power density due to technology scal-

ing has made thermal management an important aspect of computer
systems design. Traditionally, the problem of high on-chip tem-
perature has been solved by employing more advanced packaging
and cooling solutions. But modern high-performance processors
are already pushing the limits of what the cooling solutions can of-
fer. This has led to widespread interest in thermal-aware design
at all levels of the computer systems. Recently, researchers have
explored architectural and software-based techniques for thermal
management with the aim to maximize performance while main-
taining the on-chip temperature below a specified threshold. The
on-chip temperature is continuously monitored and when it ex-
ceeds a predefined threshold, appropriate mechanisms are engaged
to lower the temperature.

The most popular choice of mechanisms for thermal manage-
ment include dynamic voltage/frequency scaling (DVFS), clock gat-
ing, and fetch gating. Unfortunately, each of these mechanisms,
once engaged, is associated with significant performance degrada-
tion as well as invocation overhead. For instance, a system em-
ploying DVFS for thermal management incurs performance loss
due to lower operating frequency plus non-negligible overhead in
scaling voltage/frequency [17]. Hence, thermal management tech-
niques must be judicious in choosing the severity of the response
mechanism in proportion to the severity of the thermal stress.

We show that runtime micro-architectural adaptivity, such as scal-
ing instruction window size and issue width, is more effective at
managing thermal stress with minimal performance impact. These
mechanisms are easy to configure at runtime and have significant
impact on temperature. As most applications exhibit only limited
instruction-level parallelism (ILP), they cannot exploit the wide is-
sue width and large instruction window available in high perfor-
mance processors. If these micro-architectural parameters can be
scaled appropriately to track the available ILP of the program, we
get significant reduction in on-chip temperature (due to reduced
power dissipation) with hardly any impact on performance. On the
other hand, for an application with higher ILP, we have no choice
but to reduce the operating frequency of the processor to main-
tain on-chip temperature below the threshold. Therefore, we argue
that a combination of multiple mechanisms (architectural adapta-
tion with DVFS) can provide significantly better performance that
current techniques while still satisfying the thermal constraints.

The motivation behind exploiting an adaptive micro-architecture
(DVFS, fetch gating, issue width scaling and issue window scal-
ing) for DTM is illustrated in Figure 1. The figure shows the peak
temperature and throughput (in billion instructions per second or
BIPS) at different processor configurations for benchmark crafty.
Clearly, there exist multiple configuration points with varying per-

80

90

100

er
at
ur
e
(C
)

50

60

70

4 5 6 7 8

Pe
ak

 T
em

pe

Performance(BIPS)

Figure 1: Performance versus temperature for different configu-
ration points with benchmark crafty.

formance that result in the same peak temperature. In other words,
given a thermal constraint, appropriate choice of configuration pa-
rameters can lead to significantly higher performance.

The main challenge in using multiple mechanisms is to chose
at runtime an appropriate configuration for a time varying work-
load. Conventional single response DTM techniques employ feed-
back control to determine the best performing operating point (fre-
quency level) for a given workload/thermal stress [16]. Architec-
ture adaptation such as window scaling and issue width scaling
have not been exploited for thermal management but have been
used for power/performance tradeoffs. Techniques such as [4, 12]
opportunistically exploit the workload characteristics to scale mi-
cro architecture structures for power savings. However, like single
response DTM, these techniques are single point optimizations and
do not employ multiple adaptations synergistically.

To control multiple response mechanisms, we rephrase the ther-
mal management problem as a configuration space exploration prob-
lem. We design a software-based framework that identifies the
optimal configuration under thermal constraints. The configura-
tion management routine wakes up once every adaptation interval
(in the order of milliseconds) to collect workload statistics. These
statistics are used to choose the optimal configuration that is ther-
mally safe for the next interval.

As our DTM framework is prediction based (relies on neural net-
work classifier to determine if a configuration is thermally safe), we
assume the presence of a simple hardware DTM mechanism such
as clock gating as a backup technique. In case we choose a config-
uration that exceeds thermal threshold (which is very rare), clock
gating will be engaged to lower the temperature.

2. RELATED WORK
With temperature constraints becoming one of the key limiters of

performance in computer systems, there has been widespread inter-
est in the design of efficient thermal management techniques [16].
The goal is to maximize performance of the system while main-
taining the temperature below a critical point. The on-chip tem-
perature is monitored continuously and when it exceeds a thresh-
old, appropriate mechanisms are engaged to lower the temperature.
Commonly employed mechanisms to control temperature include
fetch gating [15], activity migration [18], and DVFS [7]. There
is a performance loss associated with all of these mechanisms and
the design of thermal management schemes involve adjusting the
extent of response (performance loss) to the severity of thermal
stress. Feedback controllers have been used for this purpose and
it has been shown that they achieve near optimal results [6].

We show that employing multiple mechanisms synergetically for
thermal management can provide better performance. One possible
approach to engage more than one response for thermal manage-
ment is to determine a crossover point between the thermal man-
agement techniques as in [15] where fetch gating and dynamic
voltage scaling are combined. Similarly Jung et al. [8] employ
exhaustive simulation and stochastic modeling to determine the

best power management policy with two configuration parameters,
namely, cache size and frequency. It is unclear how to determine
the cross-over point when multiple mechanisms are employed. Sim-
ilarly, the large configuration space for multiple mechanisms makes
exhaustive simulation like [8] infeasible. In our approach, we view
the thermal management problem as a configuration space explo-
ration problem and design an efficient online technique to deter-
mine the configuration that results in maximum performance for
the workload under a given temperature constraint.

Orthogonal to existing hardware based schemes, software based
thermal management have also been explored. These schemes ex-
ploit the variation in the thermal behavior of different tasks in a
multitasking scenario and perform scheduling to maintain thermal
constraints. Common approaches involve adjusting time slices be-
tween hot/cold tasks [10, 5] and migration [13]. Instead of chang-
ing the workload executing on the processor in response to a ther-
mal stress, our DTM technique alters the hardware configuration
for a given workload.

Adaptive hardware components that can change complexity at
runtime in terms of width and size have been used previously to
provide power/performance tradeoffs. Existing hardware adapta-
tion techniques are single point optimizations that rely on local in-
formation about the workload [4] to reduce power. We use mul-
tiple adaptations synergistically along with frequency scaling for
thermal management. [17] is the only other work that uses architec-
tural adaptivity for thermal management. However, it uses off-line
profiling to guide adaptation and hence is only applicable for mul-
timedia applications. In contrast, ours is an online technique that is
applicable to any workload (including multimedia applications).

3. ADAPTIVE MICRO-ARCHITECTURE
The micro-architectural parameters that we control at runtime for

effective thermal management are (1) instruction window size, (2)
issue width, and (3) fetch gating. These structures have been cho-
sen as (a) it is easy to reconfigure them at runtime, and (b) they con-
tribute (either directly or indirectly) to the thermal hotspots of the
processor. In addition, we also scale the operating frequency/voltage.

We model an adaptive instruction window similar to the design
in [4] that contains four partitions each of which can be enabled
or disabled at runtime. The issue width can be altered between two
and six instructions per cycle. When the issue width is reduced, the
additional functional units are disabled and the corresponding reg-
ister file ports are not precharged. The fetch unit is controlled by
setting the appropriate gating level. Fetch gating level T implies in-
struction fetch is halted once after every T cycles. We assume spe-
cial instructions to resize the adaptive structures in software [17].

Moving along each axis in our configuration space has differ-
ent impact on performance and temperature. Fetch gating lowers
the active power dissipation by reducing the number of instructions
delivered to the back-end. Scaling the window size and issue width
changes the power dissipation per operation (adaptive structures
consume less power when scaled down) in addition to altering the
activity factor (less number of instructions are issued per cycle at
smaller issue width and window size). Finally, power dissipation
reduces with reduced operating voltage/frequency.

4. DYNAMIC THERMAL MANAGEMENT
We now present our software-based DTM framework. Figure 2

presents the components of our software-based dynamic thermal
management framework that exploits the adaptive micro-architecture
presented in Section 3. The configuration management routine (on
the right in Figure 2) runs in software. It collects the performance

Performance
Prediction Classifier

safe/

unsafe

Pe
rf

or
man

ce

Configuration

Co
nf

igu
ra

tio
n

Configuration search

Instr. Issue/
cycle

Performance
counters

Optimal
configuration

Figure 2: Components of the Adaptive DTM Framework.

counters from the processor once every adaptation interval (107 cy-
cles or 2.8 ms at 3.6 GHz). As temperature change occurs slowly
[16], the adaptation interval is set in the order of milliseconds,
which is the period for timer interrupts in many systems. These
workload statistics are used to guide the choice of configuration pa-
rameters for the next interval. The goal of the configuration search
routine is to find the configuration with the maximal performance
that satisfies the thermal constraints. At a particular configuration
C ′ in the search space, we need to answer two questions.

1. What is the expected performance of this configuration? For
this purpose, we develop a model (Section 4.2) that predicts
the performance of configuration C ′ given the counter values
for the currently running configuration C .

2. Is the configuration C ′ thermally safe? We design a neural
network classifier (Section 4.1) that takes in configuration C ′
plus the number of instructions of each class (integer, floating
point, branch, and load/store) issued per cycle as input and
predicts if C ′ is thermally safe.

Note that the classifier requires the number of instructions issued
per cycle as input as the temperature depends on the issued instruc-
tions. The performance, on the other hand, is determined only by
the committed instructions. To bridge this gap, our performance
model also estimates the number of instructions of each class is-
sued per cycle corresponding to configuration C ′.

The configuration space of our adaptive micro-architecture con-
sists of 1,280 points (8 fetch gating levels × 4 window sizes ×
5 issue widths × 8 frequency levels). Clearly, it is not feasible to
evaluate all the configurations and find the optimal one. Instead, we
design an efficient search strategy (Section 4.3) that (a) reduces the
four-dimensional configuration space (fetch gating levels, windows
sizes, issue widths, frequency levels) to two dimensions (IPC and
frequency levels) based on insights gained from the performance
model, and (b) further prunes the two-dimensional configuration
space based on some properties of the space. Due to these opti-
mizations, our search strategy evaluates only a small subset of the
configuration space (32 points in the worst case).

4.1 Neural Network Classifier
While searching for the optimal configuration, we need to deter-

mine if a particular configuration is thermally safe. The thermal
profile of a processor typically shows large variations among the
different components of the processor (up to 15oC difference) [16].
In our adaptive micro-architecture, the temperature of a processor
component depends both on the configuration parameters as well
as the usage pattern of the component (workload). However, an
analytical framework to determine the temperature of the different
components is too computationally expensive to be employed in an
online DTM framework like ours. Instead, we model the problem
of determining if a particular configuration is thermally safe for the
current workload as a classification problem. A classification prob-
lem consists of a set of input features, output classes and a trained
classifier. When an input is given (i.e., the input features are as-
signed values), the classifier predicts the class to which the input

belongs. In our framework, we design a neural network classifier
that partitions the {configuration, workload} pairs into thermally
safe and thermally unsafe classes.

Integer/Cycle

FP/Cycle
w1

w2

Ld/St/Cycle

Branch/Cycle ∑
w2

w3

w4

5
xe−+1

1 ∑ 0,0
0,1

<
≥
x
x 1

0

Thermally Unsafe

w8

Win Size

Frequency

w5

w6

w7

Bias(b1)

,

Bias(b2)

0

Thermally SafeSigmod
Function

Threshold
Function

Issue Width

Input Layer Hidden Layer Output Layer

Figure 3: Neural network classifier architecture.

Classifier Architecture. Figure 3 shows the structure of our
neural network classifier. The input features consist of three con-
figuration parameters: (1) instruction window size, (2) issue width,
(3) operating frequency plus four workload parameters: number of
integer, branch, load/store and floating point instructions issued per
cycle. We choose the workload features that correlate well with the
usage pattern of the branch predictor and the execution core (in-
struction window, register file, and execution units) — the hottest
components of the processor [16]. We verify this by employing
principal component analysis [1], and observe that these features
account for 98% of the variance in the observed temperature.

The values of the workload features vary according to the config-
uration as well as the workload. For example, the number of integer
instructions issued per cycle depends on the issue width, instruction
window size as well as fetch gating level. Given a configuration,
the workload parameters are obtained from the performance predic-
tion model (see Section 4.2). Fetch gating level is excluded from
input features of the classifier as it only alters the usage patterns
of the processor components, which is reflected sufficiently in the
four workload features. The rest of the configuration parameters,
on the other hand, also impact power consumption per usage.

We use a neural classifier with a single hidden layer and one
neuron in the hidden layer as shown in Figure 3. The hidden layer
neuron uses a sigmod transfer function and the output layer neuron
uses a threshold transfer function. Our classifier architecture results
in high prediction accuracy with minimal classification time.

Training the Classifier. We use the Levenberg-Marquardt train-
ing algorithm [1] for training our classifier. The training algorithm
is an iterative off-line procedure that adjusts the weights and bias
values in the neural classifier to minimize the classification error.
We train the classifier during system installation and/or when the
system conditions (heat sinks, ambient conditions, etc.) change.

The training set is generated by running a set of micro-benchmarks
under different configurations and checking if the resulting execu-
tion hits the thermal threshold. Each micro-benchmark consists of
a loop body with 100 instructions. The number of loop iterations is
large enough to ensure that the loop execution time is longer than
the thermal time constant of the different processor components.
The loop body of each micro-benchmark contains a mix of integer,
floating point, load/store, and branch instructions. The shares of
the instruction classes in this mix are generated randomly for each
micro-benchmark.

Accuracy of the Classifier. We first train the classifier with
30 micro-benchmarks each running on 10 randomly chosen config-
urations from the configuration space. After training, we test the
accuracy of our classifier for real programs by comparing the clas-
sification results against actual benchmark runs. We simulate each

benchmark at 160 configuration points and determine if the execu-
tion hits threshold temperature and compare it with the correspond-
ing classifier prediction. The results show that our neural network
is highly accurate at predicting if a {workload,configuration} pair
is thermally safe. The average classification error is less than 3%.
Wrong classifications are of two types: (a) the classifier predicts a
thermally safe configuration as unsafe (false positive), (b) the clas-
sifier predicts a thermally unsafe configuration as thermally safe
(false negatives). In the case of false negative errors, the fail safe
hardware DTM (clock gating) is engaged if the corresponding con-
figuration is chosen by our search algorithm. False negative errors
are observed only for 1.14% of the configurations and hence the
backup hardware mechanism is rarely engaged in our scheme.

4.2 Performance Prediction Model
The performance prediction model is used as part of the config-

uration search process to predict the performance at a given con-
figuration. It uses the performance counter values collected in the
previous interval as input to characterize the workload and predict
the performance for this workload under any given configuration.

First, we present the input and output parameters of the perfor-
mance model. Let C = 〈T, IW,W,F〉 denote the configuration in the
current adaptation interval, where T is the fetch gating level, IW is
the issue width, W is the instruction window size, and F is the fre-
quency level. We collect the following statistics from performance
counters: Number of committed instructions Nuse f ul(C), Number
of cycles in the interval Cycles, Number of committed instructions
of type X : NX

use f ul(C) where X can be of type integer, floating point,
branch, or load/store, Instruction cache misses ICmiss, Data cache
misses DCmiss and Branch mispredictions Brmiss.

The model is used to produce two outputs. First, it estimates
performance for each configuration C ′ = 〈T ′, IW ′,W ′,F ′〉 that is
visited; the performance is expressed as number of useful instruc-
tions committed per second (to include the effect of frequency scal-
ing). Second, given a configuration C ′, the neural network classifier
needs the number of instructions issued per cycle for each instruc-
tion class to predict if C ′ is thermally safe. Therefore, the perfor-
mance prediction model has to estimate number of issued integer,
floating point, branch, and load/store instructions per cycle. Note
that number of issued instructions is typically more than the num-
ber of committed instructions due to branch misprediction.

Our performance prediction model is an extension of the inter-
val analysis [9] by Karkhanis and Smith. Interval analysis is based
on the notion that any superscalar processor has a sustained back-
ground level of performance that is interrupted by miss events such
as cache misses and branch misprediction. Based on this assump-
tion, the CPI (cycles per instruction) of a processor is

CPI = CPIsteady +CPImiss

where CPIsteady is the background sustainable performance when
there are no miss events and CPImiss is the loss in performance due
to branch mispredictions, instruction cache misses and data cache
misses. For the current configuration C , we get

CPIsteady(C)=CPI(C)−CPImiss(C) where CPI(C)=
Cycles

Nuse f ul(C)

CPImiss can be computed from the number of miss events and
their corresponding latencies and is largely independent of the con-
figuration [9] because changing window size, fetch gating level or
issue width has minimal impact on miss ratios and their penalties.

CPImiss = CPImiss(C ′) = CPImiss(C)

Now the CPI of configuration C ′ for which we are estimating the
performance can be expressed as
CPI(C ′) = CPIsteady(C ′)+CPImiss(C ′) = CPIsteady(C ′)+CPImiss

Thus for C ′, we only need to compute the steady background per-
formance CPIsteady(C ′) or IPCsteady(C ′) = 1

CPIsteady(C ′) .
Karkhanis and Smith [9] observe that the IPC in the absence of

miss-events and unbounded issue width is approximately
√

(W).
Under limited issue width, the IPC follows the unbounded charac-
teristics and saturates at the issue width. Thus

IPCsteady(IW,W) = min(IW,
√

W)

The fetch gating level affects steady IPC by changing the number
of instructions delivered to the window. When the throttling level
is T, the fetch unit is inactive one cycle after every T cycles of ac-
tivity and T

T+1 ×FW instructions are delivered per cycle, where
FW is the fetch width. At steady state, the number of instruc-
tions fetched per cycle should be equal to the number of instruc-
tions issued per cycle. Therefore, the steady IPC at configuration
C ′ = 〈T ′, IW ′,W ′,F ′〉 can be expressed as

IPCideal
steady(C

′) = min(
T ′

T ′+1
×FW ′, IW ′,

√
W ′)

We call this ideal IPC as the characterization does not account for
non-unit latency instructions, limited number of functional units of
different types, and commit of multi-cycle operations [9]. To factor
in these effects on the steady IPC, we compute a ratio η between
ideal steady IPC and observed steady IPC for configuration C .

η =
IPCsteady(C)
IPCideal

steady(C)
=

1
CPIsteady(C)× IPCideal

steady(C)

As we do not adapt the latency of the functional units etc., the factor
η remains constant across different configurations. So

IPCsteady(C ′)= η×IPCideal
steady(C

′)= η×min(
T ′

T ′+1
×FW ′, IW ′,

√
W ′)

(1)

CPI(C ′) =
1

IPCsteady(C ′)
+CPImiss;

Finally, the performance for C ′ is estimated in terms of the number
of instructions committed per second

Per f ormance(C ′) = IPC(C ′)×F ′ =
1

CPI(C ′)
×F ′

Estimating Issued Instructions. We also estimate the num-
ber of instructions issued per cycle at configuration C ′ (IPCissue(C ′))
by extending our model to count both correct path and wrong path
instructions [9]. The instruction mix at issue needed by the neural
classifier can be computed as

IPCX
issue(C ′) = IPCissue(C ′)×

NX
use f ul(C)

Nuse f ul(C)

where IPCX
issue(C ′) is the number of instructions of type X issued

per cycle and X can be of type integer, floating point, branch, or
load/store. NX

use f ul(C) are input to the performance model.

Accuracy of the Performance Prediction Model. We eval-
uated the accuracy of our performance model for 64 randomly se-
lected configuration points. The error is less than 5% for any bench-
mark and the average error for all the benchmarks is only 3.8%.

4.3 Configuration Search Strategy
We perform an intelligent search of the configuration space to de-

termine the best performing configuration that is within the thermal
limit. The search process explores the configuration space employ-
ing the neural classifier and the performance model.

Reducing Search Space. An exhaustive evaluation of all the
1,280 points in the configuration space is infeasible. We exploit
insights derived from the performance prediction model in Section
4.2 to reduce the search space. From Equation 1 it is clear that that
the steady IPC is constrained either by the fetch gating level (T),
the window size (W) or the issue width (IW). Therefore, the perfor-
mance of a processor cannot be improved by over-designing along
one of the configuration parameters while restricting the other pa-
rameters — a balanced architecture provides the best performance.
In other words, given a target steady IPC, we can compute appro-
priate values of T,W , and IW from Equation 1 as follows.

W =
(

IPCsteady

η

)2
; IW =

IPCsteady

η
;

T =
K

1−K
where K =

IPCsteady

η×FW

So we can reduce the four dimensional configuration space (T , W ,
IW and frequency F) into a two dimensional search space consist-
ing of only frequency and steady IPC (see Figure 4).

Window size

Issue width

Fetch gating

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Steady IPC

C C

Steady IPC

1 2 3 4 5 6 7 8

F1

F2

F3

F4

Fr
eq

ue
nc

y

Evaluated thermally unsafe
Evaluated thermally safe

Pruned by binary search

Pruned by higher frequency*

*

*
*

* Selected IPC

Figure 4: Pruning of the configuration search space.
Pruning Search Space. In the reduced search space {steady
IPC, Frequency}, any increase in either steady IPC or Frequency
would result in both higher temperature and higher performance.
We exploits this to further prune the search space.

1. If a configuration 〈F, IPC〉 is thermally unsafe, then all the
configurations 〈F,X〉 where X > IPC are also thermally un-
safe and can be pruned.

2. If 〈F, IPC〉 is thermally safe, then all the configurations 〈F,X〉
where X < IPC have lower performance than the known ther-
mally safe point 〈F, IPC〉 and can be pruned.

3. If 〈F, IPC〉 is the highest performing, thermally safe config-
uration at frequency level F , then we can prune all the con-
figurations 〈F ′, IPC′〉 where F ′ < F and IPC′ ≤ IPC as they
are guaranteed to have lower performance than 〈F, IPC〉.

We perform a linear search along the frequency dimension and bi-
nary search along the steady IPC dimension. Our search strategy
for a hypothetical search space with four frequency levels and eight
IPC values is shown in Figure 4. The search starts at the highest fre-
quency F4. It evaluates 〈F4,5〉, which is the midpoint of the IPC
space and determines that it is thermally safe. Therefore, points
with lower values along the IPC axis are pruned. The search pro-
ceeds to the remaining points along the IPC axis and evaluates the
midpoint 〈F4,7〉 as thermally unsafe. Now the higher IPC part
(〈F4,8〉) of the search space is pruned because they will be ther-
mally unsafe. The search returns 〈F4,5〉 as the feasible point with

highest IPC at frequency F4. At the next frequency level, the con-
figuration space 〈F3,1〉 . . .〈F3,5〉 is pruned as the points within
this space are guaranteed to have lower performance than the point
〈F4,5〉. In this fashion, the search selects the best performing ther-
mally safe point at each frequency level and finally chooses the
highest performing point among them.

Complexity of Search Algorithm. Our algorithm has a worst
case complexity of O(L f × ln(LIPC)) where L f and LIPC are the
number of frequency levels and steady IPC levels. In our imple-
mentation, L f = 8 and LIPC = 9 (between 2 and 6 in increments of
0.5) resulting in 32 configuration points in the worst case. Our
optimized search routine (with key optimizations such as using
constants and pre-computations wherever possible, fast exponen-
tiation [14], etc.) takes around 8,000 cycles on our simulated ar-
chitecture in the worst case (32 search points). This represents an
overhead of about 0.3% for a configuration interval of 1 ms.

5. EXPERIMENTAL RESULTS
We now present our experimental methodology and an evalua-

tion of our software-based DTM management scheme against state-
of-the-art DTM management techniques.

5.1 Processor Model and Workloads
We use Simple Scalar-3.0 simulator with Wattch power mod-

els [2, 3] for our experimental evaluation. We model an out-of or-
der superscalar processor with an issue width of 6 instructions per
cycle, 128 entry active list (reorder buffer), 64 entry issue window
and 64 KB instruction and data caches. The model also includes a
128 entry fully associative TLB, 2MB unified L2-cache, and 4KB
entry bimod branch predictor. As mentioned earlier, our adaptive
architecture has four possible window sizes (16,32,48,64), five pos-
sible issue widths (2–6), and eight fetch gating levels.

We use linear scaling in Wattch to obtain the power consump-
tion with a supply voltage of 1.4 Volt and a frequency of 3.6 GHz
at 100 nm, which corresponds to the supply voltage and frequency
of the Pentium 4 processor. The power consumption at different
window sizes are obtained based on [17]. When the issue width is
altered, we assume that the additional functional units are switched
off (no leakage power) and the corresponding lines of the wake-
up logic and register ports are not driven [17]. For dynamic volt-
age/frequency scaling, we consider eight different levels between
3.6 GHz and 2.5 GHz. We obtain the corresponding supply volt-
ages following the methodology proposed in [16]. We assume a
penalty of 10µs per frequency/voltage transition [16].

We use HotSpot-3.0 [16] for thermal simulation with a floor-plan
similar to Alpha floor-plan scaled to 100 nm and a convection resis-
tance of 1.0 K/W. The power values are collected once every 2.8µs
(104 cycles at 3.6 GHz). We feed the power trace to the thermal
model and calculate the temperatures. The leakage power is ob-
tained based on a simple model that computes the ratio between the
active power and leakage power as a function of temperature [16].
The maximum allowed temperature is 85oC and adjusting for sen-
sor placement and reading errors, we get a threshold of 82oC.

We use 14 benchmarks from the SPEC 2000 benchmark suite.
For each of these benchmarks, we fast forward to the simulation
point specified by [11] and simulate a total of 500 million instruc-
tions. Our simulation consists of an architectural warmup phase
and a thermal warmup phase after which the statistics are collected.

5.2 Dynamic Thermal Managements Schemes
We compare our software-based thermal management scheme

exploiting architectural adaptation (called adaptive DTM) against

two state-of-the-art hardware based schemes namely DVS and hy-
brid DTM (DVS + fetch gating). We use a PI-control based DVS
scheme and use Matlab to design a PI controller with a set point
of 81.8oC which includes a low-pass filter to prevent frequent volt-
age transitions [16]. The hybrid DTM scheme [15] combines fetch
gating and DVS for thermal management.

As discussed earlier, the configuration search algorithm (imple-
mented in software) of adaptive DTM has worst-case overhead of
8,000 cycles. In our experiments, we assume this worst-case over-
head for each invocation of the search routine. Another important
parameter for adaptive DTM is the configuration interval or the in-
terval at which the search routine is invoked. We set the configura-
tion interval to 2.8ms (107 cycles at 3.6GHz).

5.3 Performance Comparison

25.00%

30.00%

35.00%

40.00%

ow
n

DVS

Hybrid DTM

Adatptive DTM

0.00%

5.00%

10.00%

15.00%

20.00%

Sl
ow

do

Figure 5: Performance comparison of different DTM schemes.

Figure 5 plots the slowdown of the three DTM schemes com-
pared to the baseline architecture operating at the maximum fre-
quency (i.e., without any thermal constraints). Any DTM schemes
incurs some slowdown when the temperature of the processor ex-
ceeds the threshold. It is clear that adaptive DTM has significant
performance benefit (lower slowdown) compared to the existing
DTM schemes. On an average, adaptive DTM has 11.68% slow-
down while DVS and hybrid DTM have 24.4% and 19.37% slow-
down, respectively. In other words, adaptive DTM has 52% reduc-
tion in slowdown compared to DVS and 39% reduction in slow-
down compared to hybrid DTM. Next, we try to explain where this
performance benefit of adaptive DTM is coming from.

5.4 Temperature Profiles and Throughput

78

83

88

93

98

103

Time

Te
m

pe
ra

tu
re

 (o
C

)

5

6

7

8

9

10

11

Time

Pe
rf

or
m

an
ce

 (B
IP

S)

5

6

7

8

9

10

11

Time

Pe
rf

or
m

an
ce

 (B
IP

S)

Figure 6: Temperature profile and throughput for crafty.

Figure 6 plots the time varying temperature profiles and through-
put for benchmark crafty. The temperature of the baseline con-
figuration remains above the thermal threshold for the entire du-
ration of execution. The DTM mechanisms keep the temperature
below the threshold. The corresponding performance plots show
that keeping the temperature below the threshold results in loss of
performance (billion instructions per second or BIPS). The perfor-
mance of all three DTM schemes are lower than the baseline. How-
ever, the performance of adaptive DTM is higher than DVS and hy-
brid DTM for most points in the plot.

3

3.1

3.2

3.3

3.4

3.5

3.6

Time

Fr
eq

ue
nc

y
(G

hz
)

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Time

IP
C

Figure 7: Operating Frequency and IPC plots for crafty.
We further analyzed the loss in performance in terms of fre-

quency and IPC components. Figure 7 shows the IPC and fre-
quency plots for crafty. Clearly, adaptive DTM resulted in a higher
operating frequency than DVS and hybrid DTM for the same ther-
mal constraint and this results in an improved performance. This in
because unlike the other DTM schemes, adaptive DTM scales the
micro-architecture structures in conjunction with frequency scal-
ing. However, this impacts IPC. Our configuration search strat-
egy optimizes along both the frequency and IPC axes and hence
achieves better performance than existing techniques.

6. CONCLUSIONS
In this paper, we explore micro-architectural adaptivity, such as

scaling instruction window size and issue width, for dynamic ther-
mal management (DTM). We formulate the thermal management
issue as a configuration space exploration problem and present a
software-based framework that determines the best performing con-
figuration under thermal constraints. Our method results in 59%
reduction in performance overhead in comparison to DVS based
DTM scheme and 39% reduction in comparison to a hybrid scheme
that combines fetch gating and DVS.

7. REFERENCES
[1] Matlab Neural Network Toolbox. www.mathworks.com/access/helpdesk/

help/pdf_doc/nnet/nnet.pdf.
[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for

Computer System Modeling. IEEE Computer, 35(2), 2002.
[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architectural-level Power Analysis and Optimizations. In ISCA 2000.
[4] A. Buyuktosunoglu et al. A Circuit Level Implementation of an Adaptive Issue

Queue for Power-Aware Microprocessors. In GLSVLSI, 2001.
[5] J. Choi et al. Thermal-aware task scheduling at the system software level. In

ISLPED 2007.
[6] A. Cohen et al. On Estimating Optimal Performance of CPU Dynamic Thermal

Management. IEEE Computer Architecture Letters, 2, 2003.
[7] H. Hanson et al. Thermal response to DVFS: Analysis with an Intel Pentium M.

In ISLPED 2007.
[8] H. Jung, P. Rong, and M. Pedram. Stochastic modeling of a thermally-managed

multi-core system. In DAC 2008.
[9] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model. In

ISCA 2004.
[10] A. Kumar et al. HybDTM: A Coordinated Hardware-Software Approach for

Dynamic Thermal Management. In DAC 2006.
[11] E. Perelman, G. Hamerly, and B. Calder. Picking Statistically Valid and Early

Simulation Points. In PACT 2003.
[12] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing Power Requirements of

Instruction Scheduling through Dynamic Allocation of Multiple Datapath
Resources. In MICRO 2001.

[13] R. Rao, S. Vrudhula, and K. Berezowski. Analytical results for design space
exploration of multi-core processors employing thread migration. In ISLPED
2008.

[14] N. N. Schraudolph. A Fast, Compact Approximation of the Exponential
Function. In Technical Report INDISA-07-98.

[15] K. Skadron. Hybrid Architectural Dynamic Thermal Management. In DATE
2004.

[16] K. Skadron et al. Temperature-aware Microarchitecture: Modeling and
Implementation. ACM TACO, 1(1), 2004.

[17] J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal Management for
Multimedia Applications. In ICS 2003.

[18] X. Zhou, C. Yu, and P. Petrov. Compiler-driven register re-assignment for
register file power-density and temperature reduction. In DAC 2008.

