
Instruction Cache Locking Using Temporal Reuse Profile

Yun Liang, Tulika Mitra
School of Computing, National University of Singapore

{liangyun,tulika}@comp.nus.edu.sg

ABSTRACT
The performance of most embedded systems is critically dependent
on the average memory access latency. Improving the cache hit rate
can have significant positive impact on the performance of an appli-
cation. Modern embedded processors often feature cache locking
mechanisms that allow memory blocks to be locked in the cache un-
der software control. Cache locking was primarily designed to of-
fer timing predictability for hard real-time applications. Hence, the
compiler optimization techniques focus on employing cache lock-
ing to improve worst-case execution time. However, cache locking
can be quite effective in improving the average-case execution time
of general embedded applications as well. In this paper, we ex-
plore static instruction cache locking to improve average-case pro-
gram performance. We introduce temporal reuse profile to accu-
rately and efficiently model the cost and benefit of locking memory
blocks in the cache. We propose an optimal algorithm and a heuris-
tic approach that use the temporal reuse profile to determine the
most beneficial memory blocks to be locked in the cache. Experi-
mental results show that locking heuristic achieves close to optimal
results and can improve the cache miss rate by up to 24% across a
suite of real-world benchmarks. Moreover, our heuristic provides
significant improvement compared to the state-of-the-art locking
algorithm both in terms of performance and efficiency.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache memories

General Terms
Algorithms, Performance, Design

Keywords
Cache, Cache Locking, Temporal Reuse Profile

1. INTRODUCTION
Cache memory help bridge the performance gap between the fast

processor and the slow main memory. In particular, instruction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM 978-1-4503-0002-5 ...$10.00.

cache plays a critical role in embedded systems in terms of both
performance and energy consumption as instructions are fetched
almost every clock cycle. Thus instruction cache optimizations are
of paramount importance in meeting both the performance and the
energy constraints of embedded system.

Most modern embedded processor (e.g., ARM Cortex series pro-
cessors) feature cache locking mechanisms whereby one or more
cache blocks can be locked under software control using special
lock instructions. Once a memory block is locked in the cache, it
cannot be evicted from the cache under replacement policy. Thus,
all the subsequent accesses to the locked memory blocks will be
cache hit. Only when the cache line is unlocked, the correspond-
ing memory block can be replaced. Cache locking was initially
designed to improve the timing predictability of hard real-time em-
bedded systems. As the cache content is known statically, the
memory access time of each reference can be determined accu-
rately leading to tighter worst-case execution time (WCET) anal-
ysis. Hence, most cache locking algorithms proposed in the litera-
ture target to improve the WCET of the application.

However, cache locking has the potential to significantly im-
prove the average-case performance of a general embedded appli-
cation. This can be achieved by systematically eliminating conflict
misses in the cache through locking. For example, consider two
memory blocks m0 and m1 that are mapped to the same cache set
and the sequence of memory block accesses is (m0m1)

10. Given
a direct mapped cache, all the accesses will be cache miss (20
misses) as m0 and m1 replace each other from the cache alterna-
tively. However, if either m0 or m1 is locked in the cache, then the
total number of cache misses can be reduced to 10. Note that lock-
ing a block in a cache set can negatively impact the performance
of the remaining memory blocks mapped to the same set as the ef-
fective cache capacity gets reduced. Therefore, any cache locking
algorithm should carefully balance the cost and benefit of locking.

In this paper, we explore instruction cache locking to improve the
average-case execution time. Recently, Anand and Barua [5] have
presented an instruction cache locking heuristic with the same ob-
jective. Their experiments confirm that locking is beneficial in im-
proving average case performance. However, there are two major
drawbacks in their work. First, they propose an iterative approach
where detailed cache simulation is employed in every iteration to
evaluate the cost/benefit of locking the memory blocks. Thus the
algorithm is quite inefficient specially for large benchmarks. More-
over, they employ some approximations in the cost/benefit analysis
to cut down simulation cost leading to inaccuracy.

We introduce temporal reuse profile (TRP) to accurately and
compactly capture the cost/benefit of locking each memory block.
TRP is significantly more compact compared to memory traces.
We propose two cache locking algorithms based on TRP: an op-



timal algorithm based on branch-and-bound search and a heuristic
approach. We show that our cache locking heuristic improves the
state of the art [5] in terms of both performance and efficiency and
achieves close to the optimal result.

We also compare cache locking with a complementary technique
called procedure placement. The procedure placement techniques
improve instruction cache performance through procedure reorder-
ing such that the conflict misses in the cache can be reduced. We
show that procedure placement followed by cache locking can be
an effective strategy in enhancing the instruction cache performance.

2. RELATED WORK
Instruction cache locking has been primarily employed in hard

real time systems for better timing predictability [12, 14, 10]. In
hard real time systems, worst case execution time (WCET) is an
essential input to the schedulability analysis of mutli-tasking real
time systems. It is difficult to estimate a safe but tight WCET in the
presence of complex micro-architectural features such as caches.
By statically locking instructions in the cache, WCET becomes
more predictable. Locking has also been applied to shared caches
in multi-cores in [13].

In this paper, our aim is to improve average-case execution time
for general embedded systems through locking. Data cache locking
mechanism based on the length of the reference window for each
data-access instruction is proposed in [15]. However, they do not
model the cost/benefit of locking and there is no guarantee of per-
formance improvement. Recently, Anand and Barua proposed an
instruction cache locking algorithm for improving average-case ex-
ecution time in [5]. This work is most related to ours. However, our
approach differs in two important aspects. First, Anand and Barua’s
approach relies on simulation, while we use an accurate cache mod-
eling. More concretely, in Anand and Barua’s method, two detailed
trace simulations are employed in each iteration where an iteration
locks one memory block in the cache. In contrast, we require only
one profiling step. Secondly, in our approach, the cost/benefit of
cache locking is modeled precisely using temporal reuse profiles of
memory blocks. However, in their method, cache locking benefit
is approximated by locking dummy blocks to keep the number of
simulations reasonable. Thus our work improves over [5] both in
terms of performance and efficiency.

In this work, we introduce temporal reuse profile to model cache
behavior. Previously, reuse distance has been proposed for the same
purpose [7, 9]. Reuse distance is defined as the number of distinct
data accesses between two consecutive references to the same ad-
dress and it accurately models cache behavior of a fully associative
cache. However, to precisely model the effect of cache locking, we
need the content instead of the number (size) of the distinct data ac-
cesses between two consecutive references. TRP records both the
reuse content and their frequencies.

3. CACHE LOCKING PROBLEM
In this section, we formally define the cache locking problem.

We only consider static instruction cache locking in this work where
the instructions are locked in the cache at the beginning of pro-
gram execution and remain locked throughout the program execu-
tion. Note that the mapping of instructions to the cache sets depend
on the code memory layout. Inserting additional code for cache
locking may tamper this layout. To avoid this problem, we use
the trampolines [8] approach. The extra code to fetch and lock the
memory blocks in cache are inserted at the end of the program as a
trampoline. We leave some dummy NOP instructions at the entry
point of the program that get replaced by a call to this trampoline
after locking decision are made. As we are considering static cache

locking, the cost of executing the trampoline is negligible and we
will ignore this overhead in the rest of the discussion.

Cache Terminology. A cache memory is defined in terms of four
major parameters: block or line size L, number of sets K, associa-
tivity A, and replacement policy. The block or line size determines
the unit of transfer between the main memory and the cache. A
cache is divided intoK sets. Each cache set, in turn, is divided into
A cache blocks, where A is the associativity of the cache. For a
direct-mapped cache A = 1, for a set-associative cache A > 1,
and for a fully associative cache K = 1. In other words, a direct-
mapped cache has only one cache block per set, whereas a fully-
associative cache has only one cache set. Now the cache size is de-
fined as (K ×A× L). A memory block m can be mapped to only
one cache set given by (m modulo K). For a set-associative or
fully-associative cache, the replacement policy (e.g., LRU, FIFO,
etc.) defines the block to be evicted when a cache set is full. In this
work, we consider Least Recently Used (LRU) replacement policy
where the block replaced is the one that has been unused for the
longest time.

Two locking mechanisms are commonly used in modern embed-
ded processors — way locking and line locking. In way locking,
particular ways of a set associative cache are selected for locking
and these ways are locked for all the cache sets. Way-locking is em-
ployed by ARM processor series [3, 4]. Compared to way locking,
line locking is a fine grained locking mechanism. In line locking,
different number of lines can be locked for different cache sets.
Line locking is employed by Intel’s Xcale [1], ARM9 family and
Blackfin 5xx family processors [2]. We assume the presence of line
locking mechanism in this work.

Modeling Cache Locking. Cache misses can be broadly catego-
rized into cold (compulsory) misses, capacity misses, and conflicts
misses. Cold misses are caused by the first reference to a mem-
ory block. Cache locking eliminates the cold miss, but at the same
time introduces additional overhead to fetch and lock the memory
block at the beginning of program execution (through the trampo-
line). As discussed before, we ignore the cost of execution of the
trampoline, which is negligible. Capacity misses are incurred due
to the limited cache size and cannot be mitigated through locking.
Indeed, locking a memory block in the cache reduces the cache
capacity available to the remaining memory blocks and may nega-
tively impact their hit rates. So cache locking primarily targets to
eliminate conflict misses while minimizing the negative impact on
the unlocked memory blocks.

Let T be the memory trace (sequence of memory block refer-
ences) generated by executing a program on the target architecture.
We use Mi to denote the set of all the memory blocks that are
mapped to ith cache set Ci. Also given a memory block m, it is
only mapped to set (m modulo K). Thus, for any two cache sets
Ci, Cj , we haveMi∩Mj = φ. That is, there is no interference be-
tween the cache sets and they can be modeled independently to ar-
rive at locking decisions. Therefore, the trace T can be partitioned
into K traces T1, . . . , TK — one corresponding to each cache set.
The trace Ti corresponding to cache set Ci only contains the mem-
ory blocks Mi from the original trace T . Finally, given a memory
block m ∈ Mi, let us define the jth reference of m in the trace Ti
as m[j].

A memory block m benefits from cache locking as all its refer-
ences will be cache hits. It is straightforward to quantize this benefit
of cache locking. Let access(m) be the total number of accesses
to memory block m. Then by locking m, we will get access(m)
cache hits. That is

num_hit(m) = access(m) if m is locked



Hi Hit Hi

m2 m1 m2 m2m0 m0m1 m1m0

Hit

Hit

Hit

Memory blocks sequence

MissMiss

Memory blocks Access Temporal Reuse Profiles
m0 3

Memory blocks sequence

}1})({},{{ >=< φφ f0

m1 3
m2 3

}})({}{{ φφ f

}1})({},{{ 00 >=< mfm

}1})({},{,1})({},{{ 1100 >=<>=< mfmmfm

Figure 1: Temporal reuse profiles from a sequence of memory access
for a 2-way set associative cache. Memory blocks m0,m1 and m2 are
mapped to the same set. Cache hits and misses are highlighted.

However, locking memory block m ∈ Mi in cache set Ci will
have negative impact on the memory blocks Mi\{m}. We will
now proceed to characterize this impact accurately.

THEOREM 3.1. Given two memory blocksm,m′ ∈Mi, ifm[j]
is a cache miss before locking m′, then m[j] will remain a cache
miss after locking m′ in cache set Ci.

PROOF. The proof follows directly from the inclusion property
for LRU replacement policy. The inclusion property states that after
any series of references, a smaller store always contains a subset of
the blocks in the larger store. After locking m′, the number of
available cache blocks in set Ci reduces by one. Clearly, if m[j]
(jth reference of m in the trace) was a miss (i.e., not present in the
cache set) originally with more cache blocks, it will be a miss with
one fewer cache block.

DEFINITION 1 (Temporal Conflict Set (TCS)). Given a mem-
ory reference m[j] (j > 1) in the trace where m ∈ Mi, its tempo-
ral conflict TCSm[j] is defined as the set of unique memory blocks
referenced between m[j − 1] and m[j] in Ti. If there is no such
reference, then TCSm[j] = ∅.

For example, in Figure 1, the temporal conflict set of memory
block m2 is {m1} for its second reference and {m0} for its third
reference. The temporal conflict set determines whether the mem-
ory block reference will be a cache hit or a cache miss.

THEOREM 3.2. If |TCSm[j]| ≥ A for memory block m ∈Mi,
then the reference m[j] will be a cache miss.

PROOF. The proof follows directly from the definition of LRU
replacement policy. As we bring in A or more unique memory
blocks into the cache set, memory block m will be replaced from
the cache and will incur miss in its next reference.
Moreover, following Theorem 3.1, if |TCSm[j]| ≥ A, then the
m[j] will be cache miss irrespective of locking other memory blocks
in the cache. Therefore, we can eliminate TCSm[j] from further
consideration as far as cache locking decisions are concerned. For
example, in Figure 1, the second reference to memory block m1 is
cache miss and its temporal conflict set can be removed.

Let Locki be the set of memory blocks locked in cache set Ci.
Clearly, |Locki| ≤ A.

THEOREM 3.3. If |TCSm[j]| < A for m ∈ Mi\Locki, then
m[j] will be cache miss only when |Locki ∪ TCSm[j]| ≥ A.

PROOF. As |TCSm[j]| < A, the reference m[j] will be cache
hit in the original cache. Now as we lock memory blocks into
the cache set Ci, the space available to accommodate the unlocked
cache blocks will reduce. m[j] will be cache miss when the num-
ber of conflicting blocks and the locked blocks together exceeds the
associativity of the cache. That is, m[j] will be cache miss when
|Locki ∪ TCSm[j]| ≥ A.

For example, in Figure 1, the second reference of memory block
m2 will be cache miss if m0 is locked, because |{m0,m1}| ≥ 2.
However, it will remain as a cache hit if m1 is locked.

Let Rm = {TCSm[j] : j > 1, |TCSm[j]| < A}, i.e., Rm is
the set of TCS for reference of m that result in hits in the original
cache.

DEFINITION 2 (Temporal Reuse Profile). The temporal reuse
profile TRPm of a memory block m is defined as a set of 2-tuples
{〈s, f(s)〉} where s ∈ Rm and f(s) denotes the frequency of the
temporal conflict set s in the trace.

Figure 1 shows an example of temporal reuse profiles given a trace
of memory block access. There are three memory blocks in the
trace and the number of access for each of them is collected. More
importantly, for each memory block, only the TCS which results in
cache hits is kept in the profiles. The TCS of second reference of
memory blockm1 is not kept, because it is a cache miss in a 2-way
set associative cache ( both m0 and m2 are in between).

Given the temporal reuse profile for a program execution and the
locked memory blocks per cache set Locki : i = 1 . . .K, we can
now accurately compute the number of cache hit/miss for the entire
trace. For a memory block m ∈Mi

{num_hit(m)|Locki} =

{ ∑
∀〈s,f(s)〉∈TRPm
|s∪Locki|<A

f(s) if m /∈ Locki

access(m) otherwise

The total number of cache hits for a cache set Ci is

{num_hit(Ti)|Locki} =
∑

m∈Mi

{num_hit(m)|Locki}

and the total number of cache hits for the entire program

num_hit(T ) =
K∑
i=1

{num_hit(Ti)|Locki}

Problem Statement. The goal of static instruction cache locking
is to determine the set of memory blocks to be locked per cache set
Locki : i = 1 . . .K such that num_hit(T ) is maximized.

4. CACHE LOCKING ALGORITHMS
Our cache locking algorithm consists of two phases: profiling

and locking.

Profiling Phase. The profiling phase creates the temporal reuse
profile (TRP) for each memory block in the program. This profiling
can be achieved either by simulating the application or by executing
the application on the target platform with a representative set of
inputs. The simulation or execution creates the instruction address
trace. The temporal reuse profile can be generated by a single pass
through the instruction address trace.

Locking Phase. The locking phase determines the set of memory
blocks to be locked in each cache set such that the number of cache
hits is maximized. We propose two algorithms to select the mem-
ory blocks to be locked. One is an optimal solution based on branch
and bound search and the other one is an iterative heuristic.

4.1 Optimal Algorithm
Our optimal cache locking algorithm is presented in Algorithm 1.

Each cache set is analyzed individually. For each memory blockm,
we have to decide whether to lock it or not. Thus, the entire search
space can be seen as a binary decision tree. Algorithm 1 covers
the entire search space and is guaranteed to find the optimal solu-
tion. However, in the worst case, its complexity is as high as that
of exhaustive search.



Algorithm 1: Optimal cache locking algorithm

foreach set Ci in the cache do1
optimalSoln := ∅;Maxhit := {num_hit(Ti)|∅} ;2
search(Mi, ∅);3

Function(search(M, Lock))4
if |Lock| = A or M = ∅ then5

Newhit := {num_hit(Ti)|Lock};6
if Newhit > Maxhit then7

optimalSoln := Lock;8
Maxhit := Newhit;9

return;10
Let m be any memory block from M ;11
Lock := Lock ∪m;M := M\m; /* impact of locking m */12
Curhit :=

∑
m′∈Mi\M

{num_hit(m′)|Lock};
Let M ′ be set of A− |Lock| memory blocks from M with maximum access ;13
Bound :=

∑
m′∈M′ access(m

′);14
M ′′ := ∅;15
while |M ′|+ |M ′′| < |M | do16

find m′ s.t {num_hit(m′)|Lock} =17
maxm∈M\M′′{num_hit(m)|Lock};
Bound := Bound + {num_hit(m′)|Lock};18
M ′′ := M ′′ ∪m′;19

Bound := min(Bound,
∑

m′∈M access(m′));20
if Curhit + Bound > Maxhit then21

search(M,Lock); /* branching decision for m */22
search(M,Lock\m);23

Each level in the binary search tree corresponds to locking deci-
sion for one memory block in the set. We obtain a solution when a
leaf node is reached or the entire cache set is locked (line 5). The
number of cache hits is computed based on the cache modeling de-
scribed in Section 3 and only the best solution (the lock list) is kept
(line 6-9). At each level i, we use Curhit to represent the cache
hits from level 1 to i given the current lock list Lock. Curhit is an
upper bound of the number of cache hits from level 1 to i as some of
the hits might become miss as more blocks are locked while explor-
ing the lower levels. We define Bound as the maximum possible
number of cache hits from the remaining levels. This bound is es-
timated by adding the accesses of A− |Lock| memory blocks with
the maximum number of accesses (corresponds to locking the re-
maining cache lines with most profitable memory blocks) and the
hits of |M | − (A − |Lock|) memory blocks with the maximum
number of hits given the current lock list (corresponds to not lock-
ing remaining cache lines). If Curhit+Bound ≤Maxhit, then
the search space rooted at current node will be pruned.

4.2 Heuristic Approach
Our heuristic is iterative in nature and exploits the modeling of

cache locking described in Section 3. As each cache set can be
modeled independently, the iterative algorithm is applied for each
cache set separately. So given a cache set Ci, our goal is to deter-
mine Locki such that num_hit(Ti) is maximized.

Initially, we set Locki = ∅ and compute the number of cache
hits in the original cache

current_hit = {num_hit(Ti)|∅}

In each iteration, we go through all the unlocked memory blocks
in the cache set m ∈Mi\Locki and compute the number of cache
hits if m was locked in the cache.

new_hitm = {num_hit(Ti)|Locki ∪ {m}}

Let

benefit = max
m∈Mi\Locki

(new_hitm − current_hit)

If benefit ≤ 0, then locking any of the cache blocks would worsen
the memory performance and we should terminate our iterative al-

Algorithm 2: Heuristic cache locking algorithm

foreach set Ci in the cache do1
Locki := ∅; flag := TRUE;2
current_hit := {num_hit(Ti)|Locki};3
while flag do4

benefit := 0;5
foreach m ∈Mi\Locki do6

new_hitm := {num_hit(Ti)|Locki ∪ {m}};7
if (new_hitm − current_hit) > benefit then8

benefit := new_hitm − current_hit;9
selected_block := m;10

11
if benefit > 0 then12

Locki := Locki ∪ selected_block;13
else14

flag := FALSE;15
if |Locki| = A then16

flag := FALSE;17
18
19
20

Benchmark Trace TRP Runtime (sec)
(MB) (KB) Our-Heuristic Anand-Barua

Adpcm 220 4.43 11.68 1649
Sha 103 6.43 5.41 803

Rijndael 147 10.58 8.25 1936
Blowfish 318 9.68 17.44 2666
Dijkstra 293 10.01 15.82 2304
Bitcnts 170 3.08 9.45 1146

Basicmath 1400 28.92 80.75 13590
Qsort 360 11.78 20.52 2722
Susan 220 9.98 11.80 1645

Stringsearch 39 9.76 2.16 327
FFT 790 25.58 48.63 7436
Jpeg 235 50.58 14.89 1583
Lame 965 124.08 80.14 7255
Gsm 297 21.00 16.99 3293

Mpeg2dec 222 39.42 12.88 1883

Table 1: Characteristics of Benchmarks.

gorithm. Otherwise, we choose the memory blockmwith the max-
imum benefit, i.e., benefit = new_hitm − current_hit. We
break ties arbitrarily. The algorithm also terminates when |Locki| =
A, i.e., we have locked all the blocks in the cache set. Our cache
locking algorithm is detailed in Algorithm 2.

5. EXPERIMENTAL EVALUATION
Experimental Setup. We select benchmarks from MiBench and
MediaBench for evaluation purposes. The benchmarks and their
characteristics are shown in Table 1. We conduct our experiments
using SimpleScalar framework [6]. We generate the instruction
trace of each benchmark using sim-profile, a functional simulator.
Given the address trace and the cache configuration, we can eas-
ily create the temporal reuse profile (TRP). Both the trace size and
TRP size are shown in Table 1. Note that the TRP size depends
on the cache configuration. The table shows the average TRP size
across all evaluated cache configurations. The temporal reuse pro-
file is significantly more compact compared to the address trace
(KB vs. MB).

We evaluate the effectiveness of our algorithms with different
cache parameters. We vary the cache size (2KB, 4KB, 8KB) and
associativity (1, 2, 4, 8), but keep the block size constant (32 bytes).
The extra code to fetch and lock memory blocks are inserted at the
end of the program as a trampoline. Thus, it will not affect the
original program layout. Cache hit latency is assumed to be 1 cycle
and cache miss penalty is assumed to be 100 cycles. We perform
all the experiments on a 3GHz Pentium 4 CPU with 2GB memory.
We propose two algorithms for cache locking: an optimal solution



2K Cache 1-way 2-way 4K Cache 1-way 2-way 8K Cache 1-way 2-way

50%
en

t
2K Cache y y

4-way 8-way
80%

4K Cache 4-way 8-way
80%

8K Cache 4-way 8-way

40%

ve
m

e

60% 60%

30%

pr
ov

40% 40%
20%

e 
im

p

20% 20%

0%

10%

ra
te

0%

20%

0%

20%

0%

M
is

s 0% 0%

M

Figure 2: Miss rate improvement (percentage) over cache without locking for various cache configurations.

40%
50%

ro
ve

m
en

t 4K Cache 1-way 2-way

4-way 8-way

0%
10%
20%
30%

tio
n 

tim
e 

im
p

0%

E
xe

cu
t

Figure 3: Execution time improvement (percentage) over cache with-
out locking for 4K cache configurations.

and a heuristic approach. We present the results for the heuristic
first, followed by a comparison of the two algorithms.

Miss Rate Improvement. The instruction cache miss rate improve-
ment with locking (heuristic) over a cache without locking is shown
in Figure 2 for different cache size (2KB, 4KB and 8KB). For each
cache size, we vary the associativity from 1 to 8. For any cache
size, the miss rate improvement for direct mapped cache is min-
imal. This is expected as only one block is available per cache
set and locking that block implies miss for all the remaining mem-
ory blocks mapped to the cache set. However, for set associative
caches, our locking algorithm achieves significant performance im-
provement across all the benchmarks. We obtain 14% improvement
on an average for 2KB cache, 20% improvement on an average for
4KB cache, and 24% improvement on an average for 8KB cache.

Execution Time Improvement. Figure 3 shows the execution time
improvement due to locking for 4KB cache. Similar trend can be
seen for other cache sizes. Some benchmarks do not gain consid-
erable execution time improvement even though cache miss rate is
improved. This is because for these benchmarks the absolute cache
miss number without cache locking is very small. Thus, improve-
ment in cache miss rate will not contribute much to the overall exe-
cution time reduction. We obtain 10% improvement on an average
for 2KB cache, 12% improvement on an average for 4KB cache,
and 10% improvement on an average for 8KB cache.

Heuristic versus Optimal. The cache miss improvement compar-
ison of heuristic and optimal solution for 2-way set associative
caches is shown in Figure 4. The cache miss improvement is an
average value across all the cache sizes. As shown, the heuristic re-
turns close to optimal solutions. For 2-way set associative caches,
our heuristic improves instruction cache miss rate by 15.6% on an
average, while the optimal solution improves it by 15.8%. For di-
rect mapped caches, both heuristic and optimal solution achieve
marginal improvement. For 4-way associative cache, the heuris-
tic achieves 21.1% miss rate improvement on an average, while the
optimal solution returns 21.4% improvement. As for runtime of the
algorithms, the heuristic is 1−273 times faster than optimal for low
associativity caches (≤ 4). For 8-way associative cache, the heuris-
tic returns solutions quite fast (Table 1), but optimal algorithm fails
to terminate within 10 hours for some big benchmarks.

25%

30%

35%

at
e 

t

Heuristic Optimal

5%

10%

15%

20%

ra
ge

  m
is

s r
m

pr
ov

em
en

t

0%

5%

Av
er im

Figure 4: Cache miss rate improvement comparison of heuristic and
optimal algorithm for 2-way set associative cache.

Comparison with Anand-Barua Method. We compare our heuris-
tic with Anand-Barua method [5] — the only other approach in
the literature targeting cache locking for average-case program per-
formance improvement. Their proposal is an iterative simulation-
based heuristics and needs feedback (cache performance) from trace
driven simulator in each iteration. We implement their algorithm
and compare against our heuristic both in terms of performance
(cache miss rate improvement) and efficiency (algorithm runtime).

In terms of cache miss rate improvement, our approach gener-
ally performs better or at least equal compared to Anand-Barua’s
method for every cache configuration. Figure 5 shows the average
instruction cache miss rate improvement for 2KB, 4KB and 8KB
cache sizes. The miss rate improvement shown in Figure 5 is the
average across all set-associative caches (2, 4 and 8 way) as both
the methods do not gain much for direct mapped caches. As evident
from Figure 5, our heuristic achieves higher cache miss rate im-
provement than Anand-Barua’s method across all the benchmarks
and cache configurations. For benchmarks blowfish and stringsearch,
the improvement over Anand-Barua’s method are more than 20%
for some configurations. This is because our cache modeling is
accurate whereas it is approximated in Anand-Barua’s work.

Anand-Barua method invokes cache simulation in each iteration.
However, cache simulation can be very slow for large traces. In ad-
dition, the number of simulations required grows linearly with the
total number of locked memory blocks. When, the number of mem-
ory blocks to be locked is not that small, simulation based approach
may not be feasible. In contrast, we only need one round of profil-
ing and the subsequent analysis relies only on those compact pro-
files. The runtime comparison of our heuristic and Anana-Barua’s
method is detailed in Table 1 under column Runtime. The time
presented is the average runtime across 12 cache configurations.
Our approach is 91− 234 times faster compared to Anand-Barua’s
method.

Code Memory Layout. The performance of the cache locking al-
gorithm critically depends on the code memory layout. In the dis-
cussion so far, we have assumed that we start with the “natural"
code layout. However, instruction cache performance can be im-
proved significantly throughout procedure placement — reordering
procedures so that cache conflicts are reduced [11]. Clearly, proce-
dure placement and cache locking are complementary approaches.



2K Cache
A d B

4K Cache
A d B

8K Cache
ours Anand Barua

35%
40%

te
 

ours Anand-Barua
60%

ours Anand-Barua
60%

ours Anand-Barua

30%
35%

is
s r

at
nt 40%

50%

40%

50%

20%
25%

he
 m

i
ve

m
en

30%

40%

30%

40%

10%
15%

e 
ca

ch
m

pr
ov

20% 20%

0%
5%
10%

ve
ra

ge im

0%

10%

0%

10%

0%Av 0% 0%

Figure 5: Average cache miss rate improvement comparison.

Jpeg locking
layout Lame

locking
layout Mpeg2dec locking

layout
90%e 

p g layout
layout+locking 90%

y
layout+locking

70%

layout
layout+locking

70%s r
at

e
m

en
t

70%
50%

50%

e 
m

is
ro

ve
m

50%
30%

50%

30%

C
ac

h
im

p r 30%
30%

10%

C

10% 10%

-10% 1way 2way 4way 8way -10% 1way 2way 4way 8way -10% 1way 2way 4way 8way

Figure 6: Procedure placement (TPCM) vs Cache locking. Cache size is 8K.

In the following, we evaluate the effects of these two techniques on
cache performance. For procedure placement, we choose TPCM [11]
— a state of the art procedure placement technique. TPCM does not
guarantee improvement of instruction cache performance after pro-
cedure reordering. In contrast, our cache locking algorithm, by de-
sign, is guaranteed to either improve the performance or keep it the
same. Moreover, procedure placement techniques are effective for
applications with substantial number of procedures such as Jpeg,
Lame, and Mpeg2dec. Figure 6 shows the comparison of TPCM
with cache locking in terms of cache miss rate improvement.

We note that procedure placement performs very well for direct
mapped caches, while cache locking achieves very small or no im-
provement at all. In general, procedure placement is a good choice
for low associativity caches (1 or 2), while locking is more suit-
able for higher associativity caches (2, 4 and 8). Procedure place-
ment may not be good choice for higher associativity caches due
to the following reasons. First, higher associativity leads to fewer
cache sets leaving little opportunity for procedure reordering. In
contrast, higher associativity provides more opportunity for cache
locking. Moreover, procedure placement may incur performance
loss (see Mpeg2dec) due to coarse grained performance modeling,
while our cache locking heuristic is guaranteed not to degrade the
performance.

Clearly, procedure placement and locking are complementary
approaches and the cache performance can benefit significantly through
a combination of these two approaches. To validate our hypothe-
sis, we first performed procedure placement for each benchmark. If
the newly generated layout degrades the performance, we eliminate
the layout and revert back to the original layout for cache locking.
Otherwise, we perform cache locking based on the new layout. Fig-
ure 6 shows the miss rate improvement using this combined strat-
egy. As evident from the figure, layout combined with locking can
achieve significant improvement for some benchmarks.

6. CONCLUSION
In this paper, we propose two cache locking algorithms — an op-

timal algorithm and a heuristic approach — to improve the average-
case instruction cache performance. We introduce temporal reuse
profiles (TRP) to model the cost and benefit of cache locking pre-

cisely and efficiently and exploit TRP in both the algorithms. Ex-
periment results indicate that our heuristic can improve cache miss
rate by as much as 24% and achieves close to the optimal results.
In addition, compared to the state of the art approach, our heuristic
is better both in terms of performance and efficiency.

7. ACKNOWLEDGMENTS
This work was partially supported by research grants R-252-000-

387-112 & MOE academic research fund Tier 2 MOE2009-T2-1-
033.

8. REFERENCES
[1] 3rd Generation Intel Xscale Microarchitecture Developers’s Manual. Intel, May

2007. http://www.intel.com/design/intelxscale.
[2] ADSP-BF533 Processor Hardware Reference. Analog Devices, April 2009.

http://www.analog.com/static/imported-files/
processor_manuals/bf533_hwr_Rev3.4.pdf.

[3] ARM Cortex A-8 Technical Reference Manual. ARM, Revised March 2004.
http://www.arm.com/products/CPUs/families/
ARMCortexFamily.html.

[4] ARM1156T2-S Technical Reference Manual. ARM, Revised July 2007.
http://www.arm.com/products/CPUs/families/
ARM11Family.html.

[5] K. Anand and R. Barua. Instruction cache locking inside a binary rewriter. In
CASES, 2009.

[6] T. Austin et al. Simplescalar: An infrastructure for computer system modeling.
Computer, 35(2):59–67, 2002.

[7] K. Beyls and E.H. D‘Hollander. Reuse distance as a metric for cache behavior.
In Proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Systems, 2001.

[8] B. Bryan and J. K. Hollingsworth. An API for runtime code patching. Int. J.
High Perform. Comput. Appl., 14(4), 2000.

[9] C. Ding and Y. T. Zhong. Predicting whole-program locality through reuse
distance analysis. SIGPLAN Not., 38(5), 2003.

[10] H. Falk et al. Compile-time decided instruction cache locking using worst-case
execution paths. In CODES+ISSS, 2007.

[11] N. Gloy and M. D. Smith. Procedure placement using temporal-ordering
information. ACM Trans. Program. Lang. Syst., 21(5):977–1027, 1999.

[12] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In RTSS, 2002.

[13] V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable
shared caches on multi-cores. In DAC, 2008.

[14] X. Vera et al. Data cache locking for higher program predictability. In
SIGMETRICS, 2003.

[15] H. Yang et al. Improving power efficiency with compiler-assisted cache
replacement. J. Embedded Comput., 1(4):487–499, 2005.


