
Power-Performance Modelling of Mobile Gaming
Workloads on Heterogeneous MPSoCs

Anuj Pathania*, Alexandru Eugen Irimiea†, Alok Prakash†, Tulika Mitra†

*Karlsruhe Institute of Technology, †National University of Singapore
Corresponding Author: tulika@comp.nus.edu.sg

ABSTRACT
Games have emerged as one of the most popular applications on
mobile platforms. Recent platforms are now equipped with Hetero-
geneous Multiprocessor System-on-Chips (HMPSoCs) tightly inte-
grating CPUs and GPUs on the same chip. This configuration en-
ables high-end gaming on the platform but at the cost of high power
consumption rapidly draining the underlying limited-capacity bat-
tery. The HMPSoCs are capable of independent Dynamic Voltage
and Frequency Scaling (DVFS) for CPUs and GPUs for reduction
in platform’s power consumption. State-of-the-art power manager
for mobile games on HMPSoCs oversimplifies the complex CPU-
GPU interplay. In this paper, we develop power-performance mod-
els predicting the impact of DVFS on mobile gaming workloads.
Based on our models, we propose an efficient power management
strategy and implement it on an Odroid-XU+E mobile platform.
Measurements on the platform show that our power manager pro-
vides on average 20% increase in performance per watt when com-
pared to the state-of-the-art.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Mobile processors

General Terms
Algorithms, Design, Management, Performance

Keywords
GPU, Power-Performance Model, Games

1. INTRODUCTION
Contemporary mobile platforms are equipped with Heteroge-

neous Multiprocessor System-on-Chips (HMPSoCs). HMPSoCs,
powered by tightly coupled CPUs and GPUs, allow platforms to
offer gaming performance comparable to that of desktop GPUs of
the recent past. However, these games consume lot of power and
rapidly drain the batteries of the underlying platforms [2]. Fig-
ure 1 shows the average power consumption of multi-core CPU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744894.

Edg
e Of Tom

orr
ow

Dee
r Hun

ter

Call
Of Duty

Jet
Ski

Dho
om

3

Bike
Ride

r

D-D
ay

Turb
o

M
od

ern
Com

ba
t 3

God
zil

la
0

1

2

3

To
ta

lP
ow

er
[W

]

Average CPU Power Average GPU Power

Figure 1: Average power consumption for latest mobile games.

and GPU for latest mobile games running on Odroid-XU+E [3]
mobile platform containing Exynos 5 Octa (5410) HMPSoC [1]1.
Figure 1 confirms that games use CPU (for artificial intelligence
and physics) and GPU (for 3D rendering) of the HMPSoC in tan-
dem. Hence, both of them contribute towards the HMPSoC’s total
power consumption.

A HMPSoC is capable of performing independent Dynamic Volt-
age and Frequency Scaling (DVFS) [19] for CPU and GPU. This
capability enables power efficient execution of games, specially
when their Quality of Service (QoS) is considered. The standard
QoS metric for games is Frames per Second (FPS) [16].

Default run-time power management in these platforms is per-
formed somewhat independently for CPU and GPU. CPU power
management is performed by one of the standard Linux power man-
ager [18]. Conservative power manager is the default manager for
the CPU in our platform. GPU power management is handled by
a closed source firmware. These power managers are completely
agnostic to an application’s QoS. Thus, they lack synergy and may
waste power by overclocking the CPU and/or the GPU.

Authors in [5] proposed an FPS-aware power manager for CPUs
in HMPSoCs specifically for gaming workloads. They predicted
the future CPU workloads based on the past observations and then
performed its DVFS. However, they ignored the accompanying GPU
and thereby were not required to model the CPU-GPU dynamics.

In our previous work [4], we proposed an integrated CPU-GPU
power manager to minimise power consumption of HMPSoCs, while
achieving user-defined FPS ranges for operating games. It was
based on a reactive online heuristic where CPU-GPU DVFS was

1The details of the experimental setup are described in Section 3.

performed based on their respective cost functions defined as util-
isation × frequency. However, this manager assumed that FPS is
independently proportional to the CPU- and GPU cost. Thus, each
component was frequency scaled independently based on its cur-
rent cost. This is a simplistic assumption because different games
have different levels of sensitivity towards CPU and GPU vis-a-vis
FPS. Some games are more CPU dependent, while others are more
dependent on GPU. Either component can become a bottleneck
during gameplay and increasing frequency of the non-bottlenecked
component in hope of increasing FPS leads to power wastage. We
rectify this shortcoming in this work by developing models that can
identify the bottlenecked component. Power managers based on
our models can increase the frequency of bottlenecked component,
while keeping non-bottlenecked component frequency untouched
or even reduce its frequency to further save power.

Further, the power manager in [4] also assumes perfectly linear
relationship between FPS and CPU-GPU costs with slope equal
to 1 (i.e., a 45-degree line). This assumption is not always true
and leads to power inefficiency. Instead, we employ linear re-
gression models to characterise the complex relationship between
power, performance, utilisation, and frequency at various operat-
ing points. Our offline regression analysis with ten popular and
compute-intensive mobile games identifies the appropriate slope
for each relationship. We also integrate an on-line learning mech-
anism that further refines the parameters during gameplay, making
the models more accurate progressively. We employ these models
to design a power manager that strives to achieve a targeted FPS
with minimal power consumption.

We implement our power manager in the Android OS of the
Odroid-XU+E [3] mobile platform. Measurements on the platform
show that our power manager provides on average 20% increase in
performance per watt compared to the state-of-the-art [4].

2. RELATED WORK
Existing research have so far mostly focused on developing power

models for General Purpose Computing on Graphics Processing
Units (GPGPU)- [8] and gaming applications [13] for PC-class
GPUs designed for high performance computing. Unlike GPGPU
workload, a gaming workload is not interchangeable between CPU
and GPU, and requires them to work in tandem. The embedded
CPU-GPU architecture is also significantly different from its PC-
class counter part [9].

A detailed characterisation of mobile games for PC-class- and
embedded GPUs was performed in [20] and [7], respectively. Au-
thors in [6] developed microbenchmarks that stressed the various
stages of graphics pipeline of an embedded GPU to study its im-
pact on power consumption of an underlying platform, but the work
neither provided any mathematical formulation for the observed be-
haviour nor evaluated any mobile game.

Foremost power mangers ([14], [12] and [11]) for mobile games
were based on information derived directly from the source code of
the games. These managers are not practical as most of the present
popular games are closed source. Recent FPS-aware power man-
agers ([5], [4]) can operate with closed source commercial games
and have been described in detail in Section 1.

3. EXPERIMENTAL SETUP
We use Odroid-XU+E mobile platform [3] for our experiments.

The platform is built around Exynos 5 Octa (5410) HMPSoC [1]
currently deployed in Samsung Galaxy S4 smartphones. HMPSoC
integrates a CPU based on ARM’s big.LITTLE [10] asymmet-
ric multi-core architecture and PowerVR SGX544MP3 GPU on

CPU Frequency (MHz) CPU Voltage (V)
800, 900, 1000 0.9

1100, 1200, 1300 1.0
1400, 1500, 1600 1.1

Table 1: Cortex-A15 CPU frequencies and corresponding voltages.

GPU Frequency (MHz) GPU Voltage (V)
177, 266, 350 0.9

480 1.0
532 ,640 1.1

Table 2: PowerVR GPU frequencies and corresponding voltages.

the same chip. The CPU contains a quad-core Cortex-A7 and a
quad-core Cortex-A15 cluster, but only one cluster can operate at
a time. We experiment with graphics intensive games for which
the low power-performance A7 cluster is insufficient to support the
expected level of performance. Thus, we only use the high power-
performance A15 cluster, while the A7 cluster is powered down.

The A15 cluster can operate at nine different frequency levels,
while the GPU can operate at six different frequency levels. Ta-
bles 1 and 2 show the available CPU and GPU frequencies along
with their corresponding operating voltages, respectively.

We install Android 4.2.2v with Linux kernel 3.4.5v on the plat-
form and select twenty compute-intensive (in terms of either CPU
or GPU workload) popular mobile games for this work.

We perform DVFS by writing the desired frequency into the
exposed configuration files of CPU and GPU drivers, which then
switch the voltages accordingly. We measure FPS by intercept-
ing the frame composition logs generated by Android’s “Surface
Flinger” service. The utilisations of CPU cores are obtained from
the kernel activity logs. The utilisation of the GPU is obtained
from a software counter provided by the GPU driver. The on-board
Texas Instrument INA231 sensors allow us to obtain current mea-
surements for CPU and GPU, independently.

4. POWER-PERFORMANCE MODEL
We propose a predictive power manager in Section 5, which esti-

mates the performance (FPS) and power consumption of a gaming
workload at different CPU-GPU DVFS combinations. To achieve
this objective, we develop predictive regression models. We use
a learning set of ten games to build the regression models. The
models are evaluated using a disjointed set of ten test games.

4.1 Power Model
Let CPU (or GPU) frequency be represented by FC (or FG).

VFC
C (or VFG

G) represents CPU (or GPU) voltage at frequency
level FC (or FG). CPU (or GPU) voltages corresponding to CPU
(or GPU) frequencies can be obtained from Table 1 (or Table 2).
Let I(FC,FG)

C (or I(FC,FG)
G) represent CPU (or GPU) current drawn

at CPU-GPU frequency combination (FC , FG). CPU and GPU
power, represented by P

(FC,FG)
C and P

(FC,FG)
G is given by Equa-

tion (1) and (2), respectively.

P
(FC ,FG)
C = V FC

C I
(FC ,FG)
C (1)

P
(FC ,FG)
G = V FG

G I
(FC ,FG)
G (2)

The current drawn by the CPU (or GPU) also depends upon fre-
quency level of GPU (or CPU) because of their performance cou-
pling. For example, at higher frequencies CPU may generate more
work for GPU leading to a higher current draw for GPU.

20 40 60 80 100
0.5

1

1.5

CPU Utilisation [%]

C
PU

C
ur

re
nt

[A
]

(a) CPU current drawn at different CPU utilisation

40 60 80 100
0.5

1

1.5

GPU Utilisation [%]

G
PU

C
ur

re
nt

[A
]

(b) GPU current drawn at different GPU utilisation

Figure 2: Current drawn for different utilisations at max. frequency

The dynamic power of a component can be modelled asACV 2f ,
where A is Activity Factor, C is capacitance, V is voltage, and f is
frequency. The leakage power is estimated as V Ileak, where Ileak
is the leakage current. Therefore, the total power can be modelled
as P = ACV 2f + V Ileak [17]. C and Ileak are platform-specific
constants. As power equals voltage times current, dividing the total
power P by voltage V gives Equation (3) for the current drawn I .

I = ACV f + Ileak (3)
Due to lack of software-visible performance counters in our plat-

form, we are restricted to using the CPU utilisation level as an ap-
proximate representation of a workload’s activity factor.

Figures 2(a) and 2(b) plot the current drawn at different util-
isation levels for CPU and GPU, respectively. For Figure 2(a)
(or 2(b)), we keep CPU (or GPU) at maximum frequency but vary
workloads and GPU (or CPU) frequency to obtain different CPU
(or GPU) utilisations and current draws. The Figure 2(a) (or 2(b))
shows a near-linear relationship of current drawn by CPU (or GPU)
with its utilisation and establish that utilisation can faithfully model
its activity factorA. Let U(FC,FG)

C (or U(FC,FG)
G) represents CPU

(or GPU) utilisation at CPU-GPU frequency combination (FC , FG).
Therefore, based on Equation (3), CPU and GPU current draws can
be modelled using Equation (4) and (5), respectively.

I
(FC ,FG)
C = α1V

FC
C U

(FC ,FG)
C FC + α2 (4)

I
(FC ,FG)
G = β1V

FG
G U

(FC ,FG)
G FG + β2 (5)

Here α1 (or β1) denotes the capacitance C and α2 (or β2) de-
notes the leakage current Ileak of CPU (or GPU). We fix the values
of α1, α2, β1 and β2 through linear regression for our platform.

4.2 Performance Model
A gaming workload’s performance (FPS) depends upon frequen-

cies and utilisations of both CPU and GPU [4]. Figure 3(a) (or 3(d))
plots FPS against different CPU (or GPU) frequencies for a fixed
GPU (or CPU) frequency. Figure 3(b) (or 3(e)) plots CPU (or GPU)
utilisation against different CPU (or GPU) frequencies for a fixed
GPU (or CPU) frequency. Figure 3(c) (or 3(f)) plots CPU (or GPU)
utilisation against different GPU (or CPU) frequencies for a fixed
CPU (or GPU) frequency.

Figure 3(a) (or 3(d)) shows that increasing CPU (or GPU) fre-
quency causes increase in FPS for most of the games. However,
there are certain exceptions. For example, we observe that the FPS
for Deer Hunter workload remains fixed at 60 FPS. Android lim-
its FPS to the refresh rate of the display, which is 60 FPS in our
platform. Some games also employ internal FPS control that lim-
its the highest achievable FPS for them. In case of Deer Hunter,
FPS reaches the limit (60 FPS) at the lowest CPU-GPU frequency
combination. Therefore, there is no scope for any further increase.

In Figure 3(a), we observe that Bike Rider workload does not
respond to increase in CPU frequency. This is because the GPU
utilisation of this workload is nearly always at 100% (Figure 3(f))
making it GPU bound. GPU bound games will not respond to CPU
DVFS. Similarly in Figure 3(d), Edge of Tomorrow workload does
not respond to GPU DVFS at 480 MHz or higher. The CPU utili-
sation for this workload is 100% throughout (Figure 3(c)) making
it CPU bound. For this workload, below the GPU frequency of
480MHz, both CPU and GPU are bottlenecks and it responds to in-
crease in GPU frequency. But beyond 480MHz, CPU becomes the
only bottleneck and FPS is unresponsive to any further increase.

In summary, a game’s FPS increases with increase in a compo-
nent’s (CPU or GPU) frequency except when (a) the game reaches
the maximum FPS defined either by platform OS or by the game
developer, or (b) the other component becomes a bottleneck.

We assume that we can measure the FPS Q(FC,FG) and utili-
sation values U (FC ,FG)

C , U (FC ,FG)
G at the current CPU-GPU fre-

quency combination (FC , FG). Given the observations from the
characterisation study, we now proceed to estimate the FPS at a
higher CPU and GPU frequency level F ′

C and F ′
G, respectively.

The linear relationship between FPS and CPU-GPU frequencies
can be modelled as follows.

Q(F ′
C ,FG) = Q(FC ,FG) + γ1(F

′
C − FC) (6)

Q(FC ,F ′
G) = Q(FC ,FG) + γ2(F

′
G − FG) (7)

To model the FPS limit, let Q̂ be the maximum FPS a game can
attain. We can obtain Q̂ for a game by setting both CPU and GPU
together at their respective highest frequencies during the execu-
tion. The following equations model the FPS bottleneck.

Q(F ′
C ,FG) = min

(
Q̂, (Q(FC ,FG) + γ1(F

′
C − FC)

)
(8)

Q(FC ,F ′
G) = min

(
Q̂,Q(FC ,FG) + γ2(F

′
G − FG)

)
(9)

Next, in order to model the bottleneck in the other component,
let ÛC and ÛG be the maximum CPU and GPU utilisation for a
game, respectively. Theoretically maximum value for utilisation
is 100% but in practice we may observe a lower upper bound be-
cause of memory access latency or memory bandwidth saturation.
We can obtain ÛC (or ÛG) for a game by setting CPU (or GPU)
at the lowest frequency while keeping GPU (or CPU) at the high-
est frequency. Utilisation bottlenecks are described by following
equations.

Q(F ′
C ,FG) =

{
min (Q̂, (Q(FC ,FG) + γ1(F ′

C − FC)) if UFC ,FG
G 6= ÛG

Q(FC ,FG) otherwise
(10)

Edge of Tomorrow Deer Hunter Bike Rider D-Day Turbo

800 1,000 1,200 1,400 1,600

30

40

50

60

CPU Frequency [MHz]

Fr
am

es
pe

rS
ec

on
d

(a) FPS vs. CPU frequency

800 1,000 1,200 1,400 1,600

60

80

100

CPU Frequency [MHz]

C
PU

U
til

is
at

io
n

[%
]

(b) CPU utilisation vs. CPU frequency

200 400 600

40

60

80

100

GPU Frequency [MHz]

C
PU

U
til

is
at

io
n

[%
]

(c) CPU utilisation vs. GPU frequency

200 400 600
20

30

40

50

60

GPU Frequency [MHz]

Fr
am

es
pe

rS
ec

on
d

(d) FPS vs. GPU frequency

200 400 600
40

60

80

100

GPU Frequency [MHz]

G
PU

U
til

is
at

io
n

[%
]

(e) GPU utilisation vs. GPU frequency

800 1,000 1,200 1,400 1,600
40

60

80

100

CPU Frequency [MHz]

G
PU

U
til

is
at

io
n

[%
]

(f) GPU utilisation vs. CPU frequency

Figure 3: Effects of CPU (or GPU) DVFS on FPS, CPU- and GPU utilisations of games, when GPU (or CPU) is kept at maximum frequency.

Q(FC ,F ′
G) =

{
min (Q̂,Q(FC ,FG) + γ2(F ′

G − FG)) if UFC ,FG
C 6= ÛC

Q(FC ,FG) otherwise
(11)

Figure 3(b) (or 3(e)) shows that CPU (or GPU) utilisation de-
creases with increase in its frequency but with some exceptions.
The workload Edge of Tomorrow is CPU bound with 100% utilisa-
tion (Figure 3(b)) and increasing the CPU frequency merely helps it
to do more processing to achieve higher FPS and the utilisation still
remains at 100%. The GPU is also a bottleneck for this workload
upto 350MHz frequency (Figure 3(e)) but beyond that GPU util-
isation decreases with increasing GPU frequency. The workloads
Bike Rider and D-Day are mostly GPU bound and remain at 100%
utilisation even with increase in GPU frequency.

In summary, the utilisation of a component decreases with in-
crease in frequency unless the component is a bottleneck with close
to 100% utilisation. The linear relationship between a component’s
utilisation and its frequency can be modelled as follows.

UC
(F ′

C ,FG) =

{
UC

(FC ,FG) + α3(F
′
C − FC) if UFC ,FG

C 6= ÛC

UC
(FC ,FG) otherwise

(12)

UG
(FC ,F ′

G) =

{
UG

(FC ,FG) + β3(F
′
G − FG) if UFC ,FG

G 6= ÛG

UG
(FC ,FG) otherwise

(13)
The utilisation of the CPU (or GPU) is also impacted by change

in GPU (or CPU) frequency even if the CPU (or GPU) frequency
is kept constant. Figure 3(c) shows an increase in CPU utilisa-
tion with increase in GPU frequency as long as there is a parallel

increase in FPS (Figure 3(d)). The increase in FPS forces CPU to
process additional frames at the same frequency, thereby increasing
its utilisation. Similar observations can be made for GPU utilisation
with increase in CPU frequency in Figure 3(f). We conceptualise
the impact of cross-component frequency variations on utilisations
using the following equations.

UC
(FC ,F ′

G) = UC
(FC ,FG) + α4(Q

(FC ,F ′
G) −Q(FC ,FG)) (14)

UG
(F ′

C ,FG) = UC
(FC ,FG) + β4(Q

(F ′
C ,FG) −Q(FC ,FG)) (15)

4.3 Evaluation of the Models
We evaluate our models with a set of twenty games, where ten

games form the learning set on which the regression models are
built upon, while the remaining ten games form the test set. Ta-
bles 3 and 4 show the average predictive errors for the games in
learning- and test set across all different frequency combinations,
respectively. The average errors in predicting CPU and GPU power
consumptions are 6.42% and 7.86%, respectively. In comparison,
the regression based predictive models presented in [13], which
also predict GPU power for ten benchmarks, have an average error
of 12.56%. The average error in predicting performance (FPS) is
3.87%. We believe ours is the first work to predict FPS for games.

We are limited by the availability of only high-level utilisation
counters in our platform. Some of the games we test show sub-
stantial variability that cannot be explained just with their CPU and
GPU utilisations, and requires knowledge of lower level hardware
activity. We plan to build more accurate models once detailed coun-
ters become available in the future.

Edge of Tomorrow Deer Hunter Call of Duty Jet Ski Dhoom 3 Bike Rider D-Day Turbo MC3 Godzilla
PC 5.43% 5.14% 6.70% 7.51% 6.22% 6.62% 5.19% 3.94% 6.62% 5.53%
PG 7.03% 9.57% 7.06% 5.32% 10.26% 6.69% 6.98% 6.68% 6.69% 7.05%
Q 2.39% 0.08% 2.11% 3.63% 3.48% 11.41% 3.32% 13.91% 11.41% 1.30%

Table 3: Prediction errors for CPU power, GPU power, and FPS in learning set

Farmville Contract Killer RoboCop Dark Meadow Revolt AVP Asphalt I, Gladiator Call of Dead B&G
PC 4.96% 4.70% 9.49% 6.16% 4.59% 5.63% 6.37% 4.86% 5.60% 13.98%
PG 5.23% 15.12% 11.96% 11.65% 14.28% 6.16% 5.80% 3.96% 6.83% 5.84%
Q 0.26% 0.21% 5.23% 5.48% 4.58% 0.02% 0.09% 7.64% 4.90% 1.02%

Table 4: Prediction errors for CPU power, GPU power, and FPS in test set

5. POWER MANAGEMENT
We now utilise the power-performance models to propose a power

manager for mobile games running on HMPSoCs. The objective of
the manager is to achieve the target FPS with minimal total power
consumption using CPU-GPU DVFS.

In this work, we aim for maximum FPS, but our manager is capa-
ble of targeting any FPS. It has been already shown in [4] that con-
siderable power saving can be achieved by reducing FPS in games.
Further, it was observed in [4] and [5] that for same FPS, it is more
power efficient to run at higher utilisation and lower frequency than
lower utilisation and higher frequency. Power models for our plat-
form also make the same prediction for both CPU and GPU irre-
spective of the games. Therefore, we design a power manager that
tries to achieve maximum FPS with CPU and GPU in state of high-
est utilisations.

A game is composed of series of playable scenes. Power man-
agement is initialised at the start of every scene in the game. Start
of a scene can be detected by changes in rendered textures [5] or
CPU-GPU utilisation patterns [4].

When a new scene starts, we take three samples (each of one
second duration) to obtain the game specific upper bound constants
ÛC , ÛG and Q̂. Sampling for these constants has minimal impact
on user’s experience because a scene lasts quite long [4] and hence
the sampling cost can be amortised over the scene duration. On
the other hand, this sampling greatly enhances the accuracy of the
algorithm and enables us to avoid any prior offline profiling.

Initially, in the model we use coefficients obtained from our learn-
ing set. This results in some prediction inaccuracy to begin with,
however the effect on a user’s experience is negligible because even
with error, we are often very close to the target. As the scene pro-
gresses, we continue to sample instantaneous values to get new
data. This data is then used online to further refine the coefficients
using regression and make the models tailored to the scene being
currently rendered. The runtime regression has very low overhead
of approximately 0.08% additional CPU utilisation. Gaming, be-
ing a dynamic workload, can change in complexity and thereby
requiring very different DVFS setting. The updating of our model
in background also helps us to adapt to these changes.

5.1 Power Management Algorithm
Now we present our power management algorithm. There are

two possibilities at current frequency combination (FC , FG). We
can be either below the maximum FPS (Q(FC ,FG) < Q̂) or at it
(Q(FC ,FG) = Q̂).

Meeting Performance Demand. If Q(FC ,FG) < Q̂, then ei-
ther CPU is the bottleneck (U (FC ,FG)

C = ÛC) or GPU is the bot-
tleneck (U (FC ,FG)

G = ÛG). We need to increase the bottlenecked

component’s frequency to increase FPS. Let the required frequency
combination be (F ′

C , F
′
G), where F ′

C ≥ FC and F ′
G ≥ FG.

If CPU is the bottleneck, we choose F ′
C using Equation (16),

derived from Equation (10).

F ′
C =

Q̂−Q(FC ,FG)

γ1
+ FC (16)

This increase in FPS forces GPU to do more work, increasing
its utilisation. Also, it may happen that we may fail to achieve Q̂
even after increasing CPU frequency because of an intermediate
GPU bottleneck. The estimated UG at Q̂ would be given by the
Equation (17), based on Equation (15).

U
(F ′

C ,FG)

G = U
(FC ,FG)
G + β4(Q̂−Q(FC ,FG)) (17)

GPU will become a bottleneck if U (F ′
C ,FG)

G > ÛG and in that
case, we have to increase the GPU frequency to F ′

G given by Equa-
tion (18), derived from Equation (13).

F ′
G =

U
(F ′

C ,FG)

G − ÛG

β3
+ FG (18)

Similarly, if GPU was the bottleneck to begin with, then we
would have evaluated F ′

G first using Equation (11). We would have
checked for a possible CPU bottleneck using Equation (14) and if
required set it to a higher frequency F ′

C , found using Equation (12).
Saving Power. Now, if Q(FC ,FG) = Q̂, then we are achieving

maximum FPS, but we may be wasting power by being at higher
frequency combination than required.

While achieving FPS, if CPU or GPU is not operating at its max-
imum utilisation (U (FC ,FG)

C 6= ÛC) or (U (FC ,FG)
G 6= ÛG) then we

can save power by reducing CPU or GPU frequency to F ′′
C or F ′′

G,
respectively. We can obtain F ′′

C and F ′′
G from the Equation (19)

and (20), derived from Equation (12) and (13), respectively.

F ′′
C =

ÛC − U (FC ,FG)
C

α3
+ FC (19)

F ′′
G =

ÛG − U (FC ,FG)
G

β3
+ FG (20)

5.2 Comparative Evaluation
We test our manager on all the games but report results for ten

games, with five games each chosen from our learning- and test
set, due to space limitations. We compare our proposed manager
(Predictive) with the default onboard CPU-GPU power managers
(Linux) [18] and the state-of-the-art (Integrated) power manager
for mobile games [4]. Please refer to Section 1 for discussion on
these comparative baselines.

Figure 4(a) plots the average FPS achieved and corresponding

Edg
e Of Tom

orr
ow

Dee
r Hun

ter

Call
Of Duty

Jet
Ski

Dho
om

3

Farm
vil

le

Con
tra

ct
Kille

r

Rob
oc

op

Dark
M

ea
do

w
Rev

olt
0

0.5

1

0

20

40

60

N
or

m
al

is
ed

Po
w

er

FP
S

Linux Power Integrated Power Predictive Power
Linux FPS Integrated FPS Proposed FPS

(a) Power Comparisons

Edg
e Of Tom

orr
ow

Dee
r Hun

ter

Call
Of Duty

Jet
Ski

Dho
om

3

Farm
vil

le

Con
tra

ct
Kille

r

Rob
oc

op

Dark
M

ea
do

w
Rev

olt
0

0.5

1

1.5

N
or

m
al

is
ed

FP
S/

W

Linux [18] Integrated [4] Predictive (Proposed)

(b) FPS/Watt Comparisons

Figure 4: Results of operating games with different managers.

normalised power consumption while running the games with three
different power managers on Odroid-XU+E platform [3]. The three
managers achieve almost equivalent performance in all games but
with different power consumptions. As the performance is almost
identical, FPS/Watt metric clearly quantifies the power-efficiency
of the different managers. Figure 4(b) plots the respective nor-
malised FPS/Watt. Figure shows that on average, our Predictive
manager is able to achieve 29% and 20% higher FPS/Watt com-
pared to Linux [18] and Integrated [4] managers, respectively.

6. CONCLUSION
In this work, we characterised the relationship of mobile gam-

ing workload performance and power consumption with CPU-GPU
DVFS on a real-world mobile platform with a HMPSoC. Based

on our observations, we developed power-performance models us-
ing linear regression that captured the complex dynamics involved.
Next, we used our models to design a power manager. We imple-
mented the proposed manger on Odroid-XU+E [3] platform. Mea-
surements on the platform show that our manager provides on aver-
age 20% higher power-efficiency compared to state-of-the-art [4].
The improved power efficiency will allow mobile platforms to op-
erate games for longer durations.

7. ACKNOWLEDGEMENT
This work was partially supported by Singapore Ministry of Ed-

ucation Academic Research Fund Tier 2 MOE2012-T2-1-115.

8. REFERENCES
[1] Exynos 5 Octa (5422). www.samsung.com/exynos/
[2] M. Shafique, et al. Dark silicon as a challenge for

hardware/software co-design. In ISSS, 2014.
[3] M. Hahnel and H. Hartig. Heterogeneity by the numbers. In

HotPower, 2014.
[4] A. Pathania, et al. Integrated CPU-GPU power management

for 3D mobile games. In DAC, 2014.
[5] B. Dietrich and S. Chakraborty. Lightweight graphics

instrumentation for game state-specific power management in
Android. In Multimedia Systems, 2014

[6] J. Park, et al. Quality-aware mobile graphics workload
characterization for energy-efficient DVFS design. In
ESTIMedia, 2014.

[7] X. Ma, et al. Characterizing the performance and power
consumption of 3D mobile games. In IEEE Computer, 2013

[8] J. Leng, et al. Gpuwattch: Enabling energy optimizations in
GPGPUs. In ISCA, 2013.

[9] A. Maghazeh, et al. General purpose computing on low-power
embedded GPUs: Has it come of age? In SAMOS, 2013

[10] P. Greenhalgh. Big.little processing with Arm Cortex-A15 &
Cortex-A7. An ARM White paper, 2011.

[11] B. Anand, et al. "Game action based power management for
multiplayer online game." In MobiHeld, 2009.

[12] D. Zhang-Jian, et al. Power estimation for interactive 3D
Game using an efficient hierarchical-based frame workload
prediction. In APSIPA ASC, 2009

[13] X. Ma, et al. Statistical power consumption analysis and
modeling for GPU-based computing. In HotPower, 2009.

[14] Y.Gu. Power management for interactive 3D games. PHD
Thesis, 2008.

[15] K. Moiseev, et al. Timing-aware power-optimal ordering of
signals. In TODAES, 2008.

[16] M. Claypool, et al. The effects of frame rate and resolution
on users playing first person shooter games. In Electronic
Imaging, 2006.

[17] T. Mudge. Power: A first class design constraint for future
architectures. In HiPC, 2000.

[18] V. Pallipadi and A. Starikovskiy. The ondemand governor. In
Linux Symposium, 2006.

[19] G. Semeraro, et.al. Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency
scaling. In HPCA, 2002.

[20] T. Mitra and T.Chiueh. Dynamic 3d graphics workload
characterization and the architectural implications. In MICRO,
1999.

