
Improving Mobile Gaming Performance through
Cooperative CPU-GPU Thermal Management

Alok Prakash†, Hussam Amrouch§, Muhammad Shafique§, Tulika Mitra†, Jörg Henkel§
†National University of Singapore, §Karlsruhe Institute of Technology,

Corresponding Author: tulika@comp.nus.edu.sg

ABSTRACT
State-of-the-art thermal management techniques independently
throttle the frequencies of high-performance multi-core CPU and
powerful graphics processing units (GPU) on heterogeneous mul-
tiprocessor system-on-chips deployed in latest mobile devices. For
graphics-intensive gaming applications, this approach is inadequate
because both the CPU and the GPU contribute towards the over-
all application performance (frames per second or FPS) as well as
the on-chip temperature. The lack of coordination between CPU
and GPU induces recurrent frequency throttling to maintain on-
chip temperature below the permissible limit. This leads to sig-
nificantly degraded application performance and large variation in
temperature over time. We propose a control-theory based dynamic
thermal management technique that cooperatively scales CPU and
GPU frequencies to meet the thermal constraint while achieving
high performance for mobile gaming. Experimental results with
six popular Android games on a commercial mobile platform show
an average 19% performance improvement and over 90% reduction
in temperature variance compared to the original Linux approach.

1. INTRODUCTION
The continued success of Moore’s Law has enabled integration

of several high-performance compute cores into modern heteroge-
neous multiprocessor system-on-chips (MPSoCs) that drive the lat-
est smart-phones, tablet PCs, hand-held gaming consoles, etc. For
instance, the Samsung Exynos 5250 MPSoC, powering the popu-
lar Google Nexus 10 tablet, contains a multi-core ARM Cortex-
A15 CPU alongside a high-performance ARM Mali T604 GPU.
The presence of such high performance components in a portable
device enables the execution of sophisticated applications such as
video editing, immersive 3D games, etc. These applications re-
quire both the CPU and GPU to work in tandem in order to provide
a smooth user experience. However, the simultaneous utilization
of these processing units on a compact chip results in high tem-
perature for both CPU and GPU. The CPU and GPU frequency
have to be throttled to meet the thermal constraint albeit at the cost
of reduced performance [21]. In current Android devices, the CPU
frequency is controlled by the operating system, while the GPU fre-
quency is separately adjusted by the corresponding device driver.
As this approach ignores the performance coupling between CPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898031

and GPU during thermal management, it leads to significant loss
in performance and unsatisfactory user experience, especially for
gaming workloads that stress both CPU and GPU for high perfor-
mance. Moreover, the inefficient thermal management also results
in large temporal variation in temperature, which in turn raises se-
vere reliability concerns for such devices [10].

We propose a control-theoretic thermal management approach
that cooperatively performs dynamic voltage-frequency scaling
(DVFS) for CPU and GPU while running gaming workload. This
synergistic management significantly reduces the temperature vari-
ance and improves the frames per second (FPS) performance met-
ric. We focus on gaming applications because of their requirement
to use both CPU and GPU during execution. Moreover, the user
experience or performance of a gaming workload can be easily
perceived as well as quantified in the form of FPS enabling easy
evaluation of the proposed approach. Our choice of workloads and
performance metric is not a limitation; our thermal management
technique can also be adapted for other workloads and metrics. It
should also be noted that while integrated CPU-GPU DVFS has
been considered in the past for power management [7] [6], ther-
mal management poses additional challenges, as discussed in the
subsequent sections, that call for a new technique.

The novel contributions of this paper are:

1. We perform a detailed characterization of CPU and GPU
temperature profile over various combinations of DVFS set-
tings in a commercial MPSoC. This study enables us to iden-
tify the individual contribution of CPU and GPU in raising
the overall MPSoC temperature.

2. Using the results from the characterization step, we derive
models to predict the temperature of CPU, GPU as well as
the overall MPSoC.

3. We propose a cooperative, control-theoretic dynamic thermal
management technique that uses the thermal models to sig-
nificantly reduce the temperature variance while achieving
high application performance.

4. For realistic evaluations, we implement the proposed ther-
mal management approach in the Linux kernel on a commer-
cial Android platform and show its effectiveness with popu-
lar high-end mobile games.

2. RELATED WORK
The increasing demand for performance from current mobile de-

vices have pushed designers to integrate multi-core CPUs along
with high-performance GPUs within a single die. This, in turn,
resulted in high power densities as well as elevated on-chip tem-
peratures, thereby making thermal management essential in mod-
ern mobile MPSoCs in order to maintain safe temperature for users
[25]. Additionally, maintaining the system thermal behavior at run-
time within the safety limits, while achieving satisfactory user ex-
perience exacerbates the challenge.

In response to this challenge, DVFS has been effectively used
to fulfill the required thermal constraints [24]. Operating systems
used in mobile devices offer different DVFS governors for CPU,
GPU, etc. that respond to various criteria (e.g., CPU utilization) [1].
However, these governors do not target thermal management. In-
stead, they rely on independent thermal management units (TMUs)
for CPU and GPU that are triggered only after the temperature con-
straint is violated. These TMUs do not consider the performance
coupling between CPU and GPU, thereby reducing application per-
formance. In [6, 7], DVFS-based power management approach for
such architectures have been proposed in order to provide users
with flexible power-performance trade-offs, however they do not
focus on thermal management. Similarly, several works [8, 11,
9] consider coordinated CPU-GPU power management but do not
consider thermal issues.

An application-driven thermal management policy that performs
temperature-aware coding configuration selection along with fre-
quency scaling has been proposed in [12] and targeted the high
efficiency video coding. In [13], a QoS-aware DVFS technique
for GPUs has been introduced to achieve an energy reduction with
a higher QoS satisfaction rate than the on-demand DVFS policy.
However, the work does not explore thermal implications of per-
forming DVFS on GPUs embedded in mobile devices. The authors
in [21] and more recently in [20] target dynamic thermal manage-
ment on mobile devices while considering the temperature coupling
between the processor and the battery. However, these works do not
consider the interaction between the CPU and the integrated GPU
that directly impacts the application performance, for on-chip ther-
mal management.

Existing work has also targeted the thermal management issue
for multi-core processors while accounting for inter-core thermal
coupling, however, they do not focus on heterogeneous processing
cores with producer-consumer relationship that also exhibit perfor-
mance coupling [5]. Sharifi et al. in [23] propose a dynamic en-
ergy and thermal management techniques for heterogeneous em-
bedded MPSoCs, however their algorithm does not consider the
performance coupling between the various processing cores.

The authors in [16] discuss the power and thermal management
for the AMD Trinity platform that consists of a CPU and GPU
leading to performance coupling for certain applications. How-
ever, they do not control the GPU DVFS settings explicitly unlike
the proposed algorithm in this paper. Additionally, they assume
that the thermal coupling only affects the nearby cores when the
temperature approaches the critical value. Authors in [14] target
both CPU and GPU for thermal management while accounting for
the ambient variations and user interactions. However, they as-
sume that both the CPU cores and the GPU always consume equal
power. This assumption does not hold true for gaming workloads
as shown in [7] and necessitates more sophisticated distribution of
the power/thermal budget for thermal management under gaming
workloads. Recently, Singla et al. [15] has proposed a predictive
dynamic thermal and power management for heterogeneous mo-
bile platforms. They propose to turn off the big A15 cores in their
platform one by one if a thermal violation is predicted. Little A7
cores and GPU cores are throttled subsequently, if further thermal
violations are predicted. Their results show significant reduction
in temperature variance when compared to Linux albeit at a loss
in performance at similar temperature, especially for gaming work-
loads that require both CPU and GPU for high performance. In
contrast, our proposed controller achieves higher performance than
Linux while maintaining similar peak temperature and significantly
reducing the temperature variance.

3. THERMAL CHARACTERIZATION
In this section we first describe our experimental setup followed

Figure 1: Experimental setup

by characterization of CPU-GPU thermal profile.

3.1 Experimental Setup
We use Arndale development platform [2] with Samsung Exynos

5250 MPSoC, which powers the latest Google Nexus tablet, for
our experiments. The Exynos MPSoC contains a dual core ARM
Cortex-A15 processor that can be clocked between 200 MHz to
1.7 GHz at an interval of 100 MHz. This provides us with 16 fre-
quency settings for the CPU. The MPSoC also integrates a high
performance Mali T604 quad-core GPU that is capable of 7 DVFS
settings between 100 MHz to 533 MHz as shown in Table 1. The

Table 1: Available frequency settings for GPU
Frequency (MHz) 100 160 266 350 400 450 533

platform runs Android OS version 4.2.1 with kernel version 3.4.5.
The typical Linux governor, “interactive”, performs CPU DVFS
based on its utilization, while the GPU driver does the same for the
GPU.

The Exynos 5250 MPSoC incorporates only one on-chip tem-
perature sensor that is monitored by the thermal management unit
(TMU). In order to analyze CPU and GPU temperature individu-
ally, we additionally employ a thermal camera that continuously
captures the infrared images of the silicon die. The complete ex-
perimental setup along with the thermal camera is shown in Figure
1(a). Figure 1(b) shows the close-up view of the development board
under the thermal camera. It can be observed that a heat sink is at-
tached to the bottom of the device for heat dissipation. This is done
due to the removal of the heat-spreader packaging from the Exynos
MPSoC in order for the thermal camera to focus on the silicon die.
The implementation details of the built thermal setup can be found
in [4]. We use a peltier device similar to [12, 4] to appropriately
control the temperature of this heat sink to ensure that the behavior
of the modified chip remain close to the original chip. In the future,
we expect the chip manufacturers to integrate more on-chip sen-
sors in mobile MPSoCs for comprehensive thermal management.
Indeed, the XU-3 Odroid platform that contains a newer high per-
formance Exynos 5422 MPSoC incorporates temperature sensors
for both CPU and GPU. As the ambient temperature plays an im-
portant role in any thermal analysis, special care is also taken to
ensure the room temperature to always be approximately at 25 ±
0.2◦C during experimentation.

3.2 Analyzing the Thermal Profiles
Figure 2 shows the effect of thermal throttling on CPU-GPU fre-

quency and resulting performance for our experimental platform
while running Anomaly2 gaming application on Android. The top
half of Figure 2 presents the frequency and temperature of CPU,
GPU obtained from the thermal camera along with the FPS. The
bottom half of Figure 2 shows a closeup view during thermal throt-
tling and includes the GPU utilization curve that was excluded in

Figure 2: Effect of Thermal Throttling on frequency and FPS
in Linux governor.

80

70

(a) CPU is hotter than GPU

Mali T604 GPU Cortex A15 Dual Core CPU

(b) GPU is hotter than CPU

Figure 3: On-chip temperature map showing variation in CPU-
GPU temperature at different phases of gaming application.
the top figure for clarity. Every time the temperature hits the pre-
defined threshold of 70◦C, the Linux TMU throttles the CPU fre-
quency and the performance (FPS) degrades. The GPU frequency
is reduced by the device driver a little later; this reduction is not
coordinated with the CPU frequency adjustment. The net effect is
that the temperature continues to rise to around 79◦C even after
throttling CPU frequency due to thermal inertia [19]. Unlike power
consumption, the temperature of a device is not only influenced by
its current frequency, but also its past frequency values due to this
phenomenon of thermal inertia. The chip only cools down when
both CPU and GPU frequency have been throttled. Once the on-
chip temperature reaches below the lower threshold of 68◦C, the
CPU frequency is increased immediately, producing a rise in FPS.
The sudden changes or jitter in FPS is highly visible and creates an
uneven user experience. Also, the temperature continuously oscil-
lates between 68◦C and 79◦C and may create reliability issues.

Figure 3 shows infrared images, as captured by the thermal cam-
era, of the MPSoC at two instances during the execution of a 3D
gaming application. The figures clearly show that both the CPU and
GPU get hot when stressed. However, the CPU and the GPU may
get heated up at different points in time. For example, when the
CPU is creating a scene or performing artificial intelligence com-

Figure 4: CPU (or GPU) temperature rise with increasing GPU
(or CPU) frequency while CPU (or GPU) frequency is kept con-
stant.

putation, the CPU is hot while the GPU is cold. In contrast, when a
scene is being rendered, the GPU is much more hot than the CPU.

Additionally, unlike power consumption, due to the close prox-
imity of CPU and GPU, even a moderate increase in the temper-
ature of one directly influences the temperature rise in the other.
This phenomenon is known as thermal coupling and makes it chal-
lenging to predict the thermal behavior of the individual processing
elements [16]. In order to gain further insights into the correlation
between CPU-GPU frequencies and the resulting MPSoC tempera-
ture, we observe temperature profile at all possible frequency com-
binations of CPU and GPU. The CPU frequency is set between 500
MHz to 1700 MHz1 and GPU frequency between 100 MHz to 533
MHz. Therefore, we have (13 ∗ 7 = 91) frequency combinations
for the characterization step. We use Epic Citadel gaming appli-
cation for this characterization because it can create reproducible
workload during each run and is powered by the popular gaming
engine, “Unreal Engine 3” [3] that stresses both CPU and GPU. At
each CPU-GPU frequency setting, we cool down the chip to a fixed
temperature for consistency in the experiments. We record the on-
chip temperature sensor and the thermal camera values averaged
across the entire benchmark run. We modify and recompile the
original Android kernel to disable CPU frequency throttling until
on-chip temperature reaches 100◦C, thereby enabling us to clearly
observe the correlation between CPU-GPU frequency and temper-
ature without the interference of TMU.

Figure 4 shows the observed reading for the CPU and GPU from
the thermal camera for 91 CPU-GPU frequency combinations. Fig-
ure 4(a) shows the change in CPU temperature during the applica-
tion execution when CPU frequency is kept constant at 1700 MHz
while the frequency of the GPU is varied from 100 MHz to 533
MHz. Similarly, Figure 4(b) shows the change in GPU temperature
when its frequency is kept constant at 533 MHz while the CPU fre-
quency is changed. It can be seen from these figures that due to the
close proximity of the CPU and GPU in this MPSoC, the variation
in the frequency and thus temperature, of one processing element
directly and significantly influences the temperature of the other
component. This confirms our motivation that in a mobile MPSoC,
that closely packs such high performance components, we must
perform cooperative thermal management for these components.

In summary, two key observations can be made here:

• The MPSoC temperature continues to increase past the
threshold due to the uncoordinated thermal management of
CPU and GPU as well as thermal inertia. This eventually
leads to a significant throttling of both the CPU and GPU
frequencies, as shown in Figure 2, in order to reduce the chip
temperature. This, in turn, results in high variance in on-
chip temperature, which cycles between approximately 68 to
79◦C in a short span of time and may lead to reliability issues
[10]. Additionally, the lack of coordination between CPU

1Frequency setting below 500 MHz is not used as it is too low for
the demanding gaming applications to execute correctly and hangs
the board.

and GPU throttling significantly degrades application perfor-
mance. Existing work has shown that applications, such as
games, that employ both CPU and GPU concurrently must
manage their frequencies in a coordinated manner in order to
achieve high performance [6, 7].

• Secondly, the thermal coupling between the CPU and GPU
due to their close proximity in a mobile MPSoC, also ne-
cessitates cooperative thermal management because even a
moderate increase of temperature in one has direct and sig-
nificant influence on the temperature of the other processing
element.

4. TEMPERATURE MODEL FOR CPU
AND GPU

In order to propose a dynamic thermal management (DTM) al-
gorithm, we develop models to estimate the temperature of each
processing element while considering their power dissipation.

The estimation model is generated based on the results from the
characterization step discussed in the previous section. During the
characterization step, a benchmark application is executed on the
platform running at various frequency combinations of CPU and
GPU, while logging various metrics such as the CPU-GPU fre-
quencies, their utilization, temperature, etc. It should be noted that
the temperature is observed and logged from two different sources,
namely, the single on-chip temperature sensor and externally by us-
ing the infrared thermal camera as shown in Figure 3. We use the
maximum temperature values for the CPU and GPU regions for the
purpose of thermal analysis.

Both dynamic and static power dissipations contribute to the
thermal phenomenon in a system. However, it has been shown ear-
lier that static power consumption can be modeled as a constant
term while also adjusting the coefficients of the dynamic power
component, without significant loss in accuracy [5]. Moreover,
similar to [5], our model is based on the experimental data obtained
directly from the platform while executing the test application. This
further ensures the capturing of thermal contribution of the static
power dissipation. Hence, considering the cubic-frequency rela-
tionship between power and frequency [22], the temperature of the
CPU and GPU at a fixed frequency can be estimated with the fol-
lowing expressions:

Tc = αc ∗ Uc ∗ F 3
c + δc (1)

Tg = αg ∗ Ug ∗ F 3
g + δg (2)

Ts = βc ∗ Tc + βg ∗ Tg (3)

where, Tc, Uc, Fc, Tg, Ug and Fg denote the estimated tempera-
ture, current utilization and frequency values of the CPU and GPU
respectively, whereas αc, δc, βc, αg, δg and βg denote the platform-
specific constants. The utilization values are used to approximate
the activity factor during the calculation of the dynamic power con-
sumption. Equation 1 and 2 refer to the contribution of power dis-
sipation towards the temperature of the individual processing ele-
ments. Next, the individual contribution of the processing elements
towards the overall MPSoC temperature can be modeled by using
equation 3. The constants for equation 1, 2 and 3 are calculated
by performing curve fitting in MATLAB on the data obtained from
multiple executions of 4 popular Android games. The average error
for this training set of games as well as the 6 other games used for
the experimental evaluation later in section 6 is 1.5%.

Using equations 1 and 2 at two frequency values F and F ′, tem-
perature T ′ of a component can also be estimated at a different
frequency F ′ and utilization U ′ using the following equations:

T ′
c = Tc + σc ∗ (U ′

c ∗ F ′3
c − Uc ∗ F 3

c) (4)

T ′
g = Tg + σg ∗ (U ′

g ∗ F ′3
g − Ug ∗ F 3

g) (5)

The constant terms for the temperature models described in
equations 4 and 5 were also obtained from a regression analysis on
the data from the characterization step in section 3.2 using MAT-
LAB and achieved an average error of less than 4.47% and 3%
for CPU and GPU respectively across all applications. The next
section uses these equations to propose a control-theory based co-
operative dynamic thermal management algorithm that controls the
CPU and GPU DVFS settings in order to maintain the temperature
of each processing element within a target threshold value.

5. DYNAMIC THERMAL MANAGEMENT
ALGORITHM

The proposed control-theory based DTM algorithm is shown in
Figure 5. It strives to keep the MPSoC temperature at or close to
a pre-defined threshold by estimating and allocating the available
thermal headroom individually to both CPU and GPU based on
their utilization values. Due to the absence of individual sensors,
the algorithm starts by estimating the CPU and GPU temperatures,
T c
est(t) and T g

est(t), at time step (t) from the current temperature
measured by the on-chip sensor T s

meas(t) and the reference CPU
and GPU temperature T c

ref (t− 1) and T g
ref (t− 1), set in the pre-

vious iteration. To this end, we first calculate the estimated on-chip
temperature T s

est(t) using T c
ref (t − 1) and T g

ref (t − 1) in equa-
tion 3, as follows:

T s
est(t) = βc ∗ T c

ref (t− 1) + βg ∗ T g
ref (t− 1) (6)

T c
est(t) and T g

est(t) can be calculated as:

T c
est(t) = T c

ref (t− 1) ∗ (T s
meas(t)/T

s
est(t)) &

T g
est(t) = T g

ref (t− 1) ∗ (T s
meas(t)/T

s
est(t)) (7)

We also measure the current CPU and GPU utilization as well as
frequency, Uc

meas(t), F
c
meas(t) and Ug

meas(t), F
g
meas(t) respec-

tively. These measured values are obtained at the end of the pre-
vious iteration. Next, we calculate the target frequency settings,
F c
target(t + 1) and F g

target(t + 1), for time step (t + 1), for both
CPU and GPU in order to maintain a pre-defined utilization target.
Hence, assuming a linear relationship between frequency and uti-
lization, F c

target(t + 1) and F g
target(t + 1) can be calculated as:

F c
target(t+ 1) = F c

meas(t) ∗ (Uc
meas(t)/U

c
target) &

F g
target(t+ 1) = F g

meas(t) ∗ (Ug
meas(t)/U

g
target), (8)

where Uc
target and Ug

target are pre-defined utilization target values
to avoid either CPU or GPU to become a bottleneck or run at an un-
necessarily high frequency [6]. Next, we use the current estimated
temperature, T c

est(t) and T g
est(t), and equations 4 and 5, to pre-

dict the temperatures, T c
pred(t+ 1) and T g

pred(t+ 1), at the target
frequency settings as follows:

T c
pred(t+ 1) = T c

est(t) + σc ∗ (Uc
target ∗ (F c

target(t+ 1))3

− Uc
meas(t) ∗ (F c

meas(t))
3) &

T g
pred(t+ 1) = T g

est(t) + σg ∗ (Ug
target ∗ (F g

target(t+ 1))3

− Ug
meas(t) ∗ (F g

meas(t))
3) (9)

The predicted temperature values are used in the “Temperature
Allocator” block to find the reference temperatures, T c

ref (t + 1)
and T g

ref (t + 1), for CPU and GPU based on their utilization val-
ues while ensuring that the overall MPSoC temperature stays at or
close to the pre-defined threshold value, T s

thres. In the proposed
controller, the reference temperature for the CPU is identified first
as it provides much finer (13 DVFS settings) level of frequency and
hence, temperature control than the GPU (only 7 DVFS settings).

Figure 5: Cooperative Control-theory based DTM.

Hence, the reference temperature of the CPU is calculated as fol-
lows:

T c
ref (t+ 1) = MIN(T c

pred(t+ 1), T c
thres) (10)

where T c
thres is the threshold temperature for the CPU.

The reference temperature for the GPU depends on the selected
reference temperature for the CPU in order to maintain the overall
chip temperature at the desired value. Hence, using equation 3, we
first calculate the maximum permissible GPU temperature given
the CPU temperature, as follows:

T g
max(t+ 1) = (1/βg)(T

s
thres − βc ∗ T c

ref (t+ 1)) (11)

Next, the reference temperature for the GPU is calculated as:

T g
ref (t+ 1) = MIN(T g

pred(t+ 1), T g
max(t+ 1)) (12)

In order to ensure the stability of the PID controller, the refer-
ence temperature values are chosen close to individual pre-defined
threshold values of CPU and GPU temperature, while satisfying
equation 3. These reference temperature values are then fed into
the PID controller along with the current estimated temperatures of
CPU and GPU, T c

est(t) and T g
est(t), to find the suitable frequencies

for the CPU and GPU, F c
set(t + 1) and F g

set(t + 1), for the time
step (t+1). The algorithm sets the CPU and GPU frequencies and
similar to [15], waits for 1 second before measuring the frequency,
utilization and temperature values for the next iteration. A cycle
period of 1 sec is chosen empirically because the chip temperature
rises or falls slowly after applying the necessary frequency settings.
The threshold values for temperature (74◦C, 75◦C for CPU and the
chip respectively) and the target utilization (70% and 85% for CPU
and GPU respectively) are also obtained empirically from extensive
experimentation on the platform to ensure that the MPSoC does not
violate the thermal constraints, while still achieving high perfor-
mance. The proposed DTM algorithm is implemented in our target
platform for verification and the results obtained are discussed in
the next section.

6. EXPERIMENTS AND RESULTS
To showcase the effectiveness of the proposed coordinated

control-theory based thermal management technique, we compare
it against the following state-of-the-art solutions.

• Linux: The original Linux TMU on this platform (Refer Sec-
tion 3.2).

• Naive: An un-coordinated control theory based approach that
does not consider the contribution of CPU and GPU on either
the resulting chip temperature or the performance. The indi-
vidual PID controllers, one each for CPU and GPU, simply

(a) Performance improvement of cooperative solu-
tion versus other approaches

(b) Temperature Variance Reduction

Figure 6: Improvement in FPS and Temperature Variance.

strive to maintain the CPU and GPU temperature indepen-
dently at pre-defined threshold values. The results from this
controller serve as a baseline for comparison with the pro-
posed co-operative thermal management solution that also
accounts for CPU and GPU dependencies on the contradic-
tory requirements of both performance (FPS) as well as ther-
mal management.

• Ref [15]: A state-of-the-art technique proposed recently that
does not take into account the dependency of CPU and GPU
on the resulting application performance. This controller has
been detailed in Section 2.

• Co-op: The proposed technique presented in this paper.

We choose 6 popular games from the Android Play Store to test the
proposed techniques. These games are different from the ones used
to create the models for Equations 1 to 5.

Figure 6(a) shows the increase in FPS, the performance metric
used for gaming workloads, for the various games by using the
proposed controller over Linux, Naive and the Ref [15] solutions
respectively. It is noteworthy that the proposed controller achieves
an average of over 19%, 17% and 23% improvement in FPS when
compared to the Linux, Naive and the Ref [15] solutions respec-
tively. While the authors in [15] also targeted both CPU and GPU
for thermal management, they lacked the coordination between the
two processing elements that is essential to achieve better perfor-
mance for applications, such as games that employ both CPU and
GPU. Instead, they proposed to perform DVFS for CPU and GPU
sequentially, starting from the high performance Cortex A15 CPU
and only reducing the GPU frequency as a last resort. In contrast,
the proposed cooperative approach in this work manages the DVFS
settings for both CPU and GPU based on their utilization as well
as the thermal contribution at every step. This strategy not only
helps in achieving higher performance, but also stabilizes the chip
temperature as confirmed by Figure 6(b) that shows the statistical
variance in the temperature samples over time.

In addition, as can be observed from Columns 2 through 5 of
Table 2, the proposed approach also manages to achieve similar
average temperature for all the games as the Naive and Ref [15]
controllers. It is also worth noting that the applications show two
distinct behaviors. The first four games in the table, exhibit lower

Table 2: Average And Max Temperature Comparison
Average Temperature Max Temperature

Apps Linux Naive Ref[15] Co-op Linux Naive Ref[15] Co-op

Epic 77 75 76 75 83 79 79 76

Dday 75 75 76 75 79 80 79 77

Anomaly 78 75 76 75 83 77 79 77

Bikerally 76 75 76 75 80 80 79 77

Robocop 74 76 76 75 78 78 79 77

Farmville 74 75 75 75 77 77 76 76

or similar average temperature as Linux while using the proposed
controller. These games are highly graphics intensive and hence
they run at a very high temperature both in Linux as well as the
proposed controller. However, the key difference is that, while the
temperature in Linux varies rapidly by more than 10◦C, the pro-
posed controller maintains it tightly around the defined threshold
and hence reduces the temperature variance over time as confirmed
from Figure 6.(b). In fact, it can be seen that even the Naive and Ref
[15] controllers reduce the variance in temperature to a large extent
for all applications, however the proposed cooperative controller
consistently performs similar or better than the existing solutions.

On the other hand, the applications Robocop and Farmville, are
not as intensive and hence run at a lower temperature in the Linux
controller. The proposed controller still strives to maintain the MP-
SoC temperature at its pre-defined threshold, thereby resulting in a
slight increase in average temperature when compared to Linux. It
should be noted that the increase in temperature for these two appli-
cations is just over 1-2% in the worst case. Moreover, the average
temperature is still below the threshold and the proposed controller
successfully mitigates the rapid variation in temperature that can
raise reliability concerns. Lastly, it can be observed from columns
6 through 9 in Table 2 that unlike the Linux, Naive and the Ref
[15] solutions, the cooperative thermal management strategy also
does not allow the chip to heat up significantly at any point during
the gameplay, as the overall chip temperature is taken into account
while selecting the DVFS settings for the CPU and GPU at each
control step. These results clearly shows the strength of the pro-
posed coordinated approach for CPU-GPU thermal management
for mobile games or even other applications that stress both the
CPU and GPU during execution.

7. CONCLUSION
In this paper, we performed a detailed characterization of the

thermal behaviour of the CPU and GPU in a commercial mobile
MPSoC and showed that both CPU and GPU contribute towards
the rise in chip temperature and hence must be managed cooper-
atively to achieve high performance with robust thermal manage-
ment. We also derived models to estimate the temperature of CPU
and GPU as well as the overall MPSoC with an estimation error
of less than 5%. Next, we proposed a control-theoretic approach
for cooperative CPU-GPU thermal management and verified it on
a commercial mobile MPSoC. Our approach reduced the variance
in on-chip temperature by more than 90% along with a reduction
in the maximum temperature. At the same time, the average FPS
performance increased by 19%, 17% and 23% when compared to
the existing Linux-, an un-coordinated control-theory based Naive-
and a recently proposed (Ref [15])- technique, respectively.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr Thannirmalai Muthukarup-

pan for his invaluable support during the initial set up of the experi-
mental platform together with the team at KIT, Germany. This work
was partially supported by the Singapore Ministry of Education
Academic Research Fund Tier 2 MOE2012-T2-1-115, the German
Research Foundation (DFG) as part of the Transregional Collabo-

rative Research Centre Invasive Computing [18](SFB/TR 89, B3-
http://invasic.de) and the priority program Dependable Embedded
Systems [17](SPP 1500, VirTherm3D- http://spp1500.itec.kit.edu).

9. REFERENCES
[1] Android Governors. http://goo.gl/8j1Eqo.
[2] Arndale board 5250. http://goo.gl/1ZCSNX.
[3] Epic Citadel, Unreal Engine. http://goo.gl/xdsQMr.
[4] H. Amrouch and J. Henkel. Lucid infrared thermography of

thermally-constrained processors. In ISLPED, 2015.
[5] A. Bartolini et al. Thermal and Energy Management of

High-Performance Multicores: Distributed and
Self-Calibrating Model-Predictive Controller. Parallel and
Distributed Systems, IEEE Trans., 2013.

[6] A. Pathania et al. Integrated CPU-GPU power management
for 3D mobile games. In DAC, 2014.

[7] A. Pathania et al. Power-performance modelling of mobile
gaming workloads on heterogeneous mpsocs. In DAC, 2015.

[8] C. Wei-Ming et al. A User-Centric CPU-GPU Governing
Framework for 3D Games on Mobile Devices. In ICCAD,
2015.

[9] C. Y. Hsieh et al. Memory-aware cooperative CPU-GPU
DVFS governor for mobile games. In ESTIMedia, 2015.

[10] D. Brooks et al. Power, thermal, and reliability modeling in
nanometer-scale microprocessors. IEEE Micro, 2007.

[11] D. Kadjo et al. A Control-theoretic Approach for Energy
Efficient CPU-GPU Subsystem in Mobile Platforms. In
DAC, 2015.

[12] D. Palomino et al. hevcDTM: Application-driven dynamic
thermal management for high efficiency video coding. In
DATE, 2014.

[13] D. You et al. Quality of service-aware dynamic voltage and
frequency scaling for embedded GPUs. Computer
Architecture Letters, 2014.

[14] F. Paterna et al. Modeling and Mitigation of Extra-SoC
Thermal Coupling Effects and Heat Transfer Variations in
Mobile Devices. In ICCAD, 2015.

[15] G. Singla et al. Predictive dynamic thermal and power
management for heterogeneous mobile platforms. In DATE,
2015.

[16] I. Paul et al. Cooperative boosting: Needy versus greedy
power management. In ISCA, 2013.

[17] J. Henkel et al. Design and architectures for dependable
embedded systems. In CODES+ISSS, 2011.

[18] J. Henkel et al. Invasive manycore architectures. In ASP-
DAC, 2012.

[19] M. Frankiewicz et al. Investigation of heat transfer in
integrated circuits. Metrology and Measurement Systems,
2014.

[20] O. Sahin et al. On the impacts of greedy thermal
management in mobile devices. Embedded Systems Letters,
IEEE, 2015.

[21] Q. Xie et al. Dynamic thermal management in mobile
devices considering the thermal coupling between battery
and application processor. In ICCAD, 2013.

[22] R. Ahmed et al. Temperature minimization using power
redistribution in embedded systems. In VLSI Design, 2014.

[23] S. Sharifi et al. Hybrid dynamic energy and thermal
management in heterogeneous embedded multiprocessor
socs. In ASP-DAC, 2010.

[24] Y. Lei et al. Happe: Human and application-driven frequency
scaling for processor power efficiency. Mobile Computing,
IEEE Trans., 2013.

[25] K. Sekar. Power and thermal challenges in mobile devices. In
MobiCom, 2013.

