
HyCUBE: A CGRA with Reconfigurable Single-cycle
Multi-hop Interconnect

Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra and Li-Shiuan Peh
National University of Singapore

{manupa,aditi,tulika,peh}@comp.nus.edu.sg

ABSTRACT
CGRAs are promising as accelerators due to their improved
energy-efficiency compared to FPGAs. Existing CGRAs
support reconfigurability for operations, but not communi-
cations because of the static neighbor-to-neighbor intercon-
nect, leading to both performance loss and increased com-
plexity of the compiler. In this paper, we introduce Hy-
CUBE, a novel CGRA architecture with a reconfigurable
interconnect providing single-cycle communications between
distant FUs, resulting in a new formulation of the applica-
tion mapping problem that leads to the design of an ef-
ficient compiler. HyCUBE achieves 1.5X and 3X better
performance-per-watt compared to a CGRA with standard
NoC and a CGRA with neighbor-to-neighbor connectivity,
respectively.

1. INTRODUCTION
Accelerators provide significantly improved power, perfor-

mance characteristics compared to general-purpose proces-
sors. Application-specific ASIC accelerators, though opti-
mal from the power-performance viewpoint, offer little flex-
ibility. In contrast, the reconfigurability of FPGAs along
with the recent development of high-level synthesis tools
have made them a popular choice as accelerators, especially
when time-to-market is of the essence. However, FPGAs
offer poor power and area efficiency due to the overhead of
bit-level reconfigurability.

Coarse-Grained Reconfigurable Arrays (CGRAs) have em-
erged as a promising alternative accelerator, providing re-
configurability at word-level, thus realizing better efficiency
than FPGAs [5]. Samsung Reconfigurable Processor [9],
based on the CGRA architecture template ADRES [12], is
one such CGRA commercially available. A CGRA consists
of an array of functional units (FU), each including an ALU,
a register file, and a configuration memory as shown in Fig
1. An FU is directly connected to its neighboring FUs. The
FUs share a data memory that can be directly accessed by a
subset of the FUs. The host processor handles data transfer
to/from the data memory in the beginning/end of execution
via DMA. CGRAs are ideal for acceleration of loop ker-
nels. The operations (including memory operations) within
a loop are scheduled on the FUs, while data flows are routed
between dependent operations, all at compile time. The op-
eration schedule and routing information per loop iteration
are loaded into the configuration memory prior to execution
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062262

Figure 1: A 4x4 CGRA connected in a 2D mesh

enabling per-cycle reconfiguration of the operations execut-
ing on each FU and the schedule is repeated for the number
of iterations.

While CGRAs support reconfigurability through the pro-
grammable FUs, most CGRAs have static links connect-
ing an FU only to its neighbors (Neighbor-to-Neighbor or
N2N connection). Thus neighbors can be reached within
a cycle, but any data transfer to a distant FU has to be
routed through intermediate FUs costing multiple cycles
and occupying the FU for communications, rendering it un-
available for compute. The design space explorations [2]
of ADRES [12] showed that optimal energy-efficiency can
be achieved through the addition of more interconnects. [15]
discussed the limitations of the connectivity among FUs that
resulted in the inability of the compiler to utilize distant FUs
for inter-dependent operations, leading to longer schedule
and lower resource utilization. It has been shown that uti-
lization can be improved by mapping multiple loops to the
CGRA [16], but at the cost of sub-optimal performance of
individual loops. The N2N connection also makes the map-
ping of loops quite challenging for the compiler. Indeed,
state-of-the-art CGRA compilers spend most of the effort
in finding appropriate routes. The DRESC [13] compiler
for ADRES adopts a time-consuming simulated annealing
approach for routing. More recent works, such as GraphMi-
nor [4], EPIMap [7] REGIMap [8], explore graph-based map-
ping that attempt to minimize routing costs and even intro-
duce re-computation of the same operation multiple times
near each of its consumer FUs simply to overcome the lim-
itations imposed by the static interconnect of conventional
CGRAs.

In this paper, we introduce a novel CGRA architecture,
HyCUBE1 that has a reconfigurable interconnect support-
ing single-cycle communications across distant FUs on the
chip. The reconfigurable interconnect leads to a new formu-
lation of the application mapping problem that is efficiently
handled by our HyCUBE compiler. The contributions are:

• We propose a scalable novel CGRA architecture, HyCUBE
combining a low-power, compiler-scheduled NoC capable

1
We name our architecture HyCUBE as it is like the hypercube (a high dimen-

sional cube) composed of large neighborhoods. HyCUBE enables large virtual
neighborhoods though.

http://dx.doi.org/10.1145/3061639.3062262

(a) Example DFG (b) 2x2 CGRA

(c) N2N CGRA schedule (d) HyCUBE CGRA schedule

Figure 2: Mapping of DFG on N2N CGRA and HyCUBE.

of delivering data across multiple hops to multiple desti-
nations within a single cycle, creating a virtual dynamic
neighborhood for the FUs.
• We provide a novel formulation of the application-mapping

problem on HyCUBE, expanding the conventional mod-
ulo routing resource graph (MRRG [13]) representing the
CGRA resources to include the notion of dynamic single-
cycle paths and present a compiler that can generate near-
optimal mappings at drastically reduced compilation time.

• We implement HyCUBE architecture using TSMC 28nm
technology node. Experimental results using a range of
embedded and multimedia loop kernels show that Hy-
CUBE is, on an average, 3X better in performance-per-
watt with 137% performance gain and 60% energy savings
compared to a conventional CGRA.

2. MOTIVATING EXAMPLE
We first present the advantages of HyCUBE compared

to the conventional CGRAs with N2N connections through
a motivating example kernel. The example also illustrates
the major differences in application mapping between the
conventional CGRA and HyCUBE compiler. Fig 2a shows
the dataflow graph (DFG) corresponding to the loop body of
a kernel where the nodes represent operations and the edges
represent the dependency between two operations. Fig 2c
presents an optimal schedule of this kernel on a 2x2 CGRA
with only N2N connection shown in Fig 2b. The operation
nodes in white belong to the current loop iteration, while the
shaded nodes belong to the previous or next loop iterations.
Operation n1 is scheduled on FU: F0 in cycle 0. As F0 has
two neighbors, we only have three FUs available (F0, F1,
F2) to schedule the four dependent operations of n1 in cycle
1. Moreover, only two of these three FUs can be used to
schedule operations (n2, n3) because F1 (marked with r) is
used to route the data from n1 to the remaining dependent
operations to be scheduled in cycle 2. As a consequence, n6
is shifted to cycle 3. In addition, F2 acts as a router in cycle
2 between n3 and n6, that are scheduled 2 cycles apart in
distant FUs. According to Fig 2c, the schedule is repeated
every 3 cycles, that is, a new loop iteration can be initiated
every 3 cycles leading to initiation interval II=3.

Figure 2d shows an optimal schedule of the same DFG
on HyCUBE that can reconfigure the interconnect at each
cycle to achieve a large and dynamic neighborhood. The

single-cycle multi-hop connectivity within HyCUBE enables
scheduling all the dependent operations of n1 in cycle 1. The
single-cycle, multi-hop (if necessary) path, corresponding
to each data-dependence edge, is indicated within brackets.
For example, [013] next to the edge n1 → n5 indicates the
single-cycle path from F0 (mapped with n1) to F3 (mapped
with n5) via F1. This leads to a more efficient schedule with
II=2 without any additional routing nodes. Note that both
the edges n1 → n5 and n1 → n2 use the link between F0
and F1 in cycle 0 routing the same data. This is an example
of the multi-cast routing ability of HyCUBE interconnect.

3. HYCUBE ARCHITECTURE
HyCUBE is a CGRA architecture where the FUs are con-

nected in a 2D mesh topology as shown in Fig 3. The main
feature of HyCUBE that distinguishes itself from previous
CGRA architectures is its network. The network allows any
FU to reach far-away FU (or multiple FUs) on chip within a
single cycle and is completely statically scheduled. In other
words, the compiler determines the configuration of the net-
work at each cycle. HyCUBE’s processing substrate consists
of two types of tiles. The leftmost column (Fig 3) contains
memory-operation capable tiles connected to a 4-port data
memory and the rest are compute-only tiles. All the tiles
comprise of an ALU, a configuration memory, and a crossbar
switch. Additionally, the memory tiles contain a load-store
unit (LSU) for accessing the data memory.

Network. The heart of HyCUBE’s programmable inter-
connect is the crossbar switch. Each of the output of the
crossbar switch is driven by clockless repeaters that can be
configured to either let signals bypass asynchronously to the
next hop (N,E,W,S tile), or to stop and receive the incom-
ing data. This enables data to be sent across multiple tiles
within a single cycle. In the event of scaling the substrate
dimensions, the crossbars are not scaled since they are con-
nected only to the neighbours. Additionally, the crossbar
switch could be configured to connect the same input to
many outputs, allowing a single data to be distributed to
many distant destinations within the same clock cycle.

Clockless repeater links have been shown to be able to
traverse up to 11 hops (across tiles that are 1mm apart,
i.e., 11mm) within 1ns in a 32nm process in the SMART
NoC [10]. While HyCUBE’s interconnect similarly harnesses
clockless repeaters, it is not a dynamically routed NoC like
SMART, and is instead completely controlled by the com-
piler. As such, HyCUBE’s interconnect comprises of only
the crossbar switch and do not need any routing or flow-
control logic. It also only has a single register at each port
instead of buffer queues, with the register source selected at
compile time. This makes for an extremely lightweight inter-

Figure 3: A 4x4 HyCUBE Architecture, with a single-cycle
multi-hop multi-cast path between tiles, scheduled com-
pletely at compile time.

connect that is compatible with the stringent power budget
of CGRAs. The configuration for the switch is a part of the
HyCUBE instruction that is loaded each cycle from the con-
figuration memory of each tile. This instruction essentially
defines the interconnections between tiles dynamically on a
cycle-by-cycle basis. To the best of our knowledge, this is the
first work that introduces a CGRA capable of reconfiguring
its interconnect dynamically.

Registers. The single-cycle, multi-hop interconnect has the
additional benefit that the register file (RF) per tile (Fig 1)
can be eliminated. In typical CGRAs, the register file is
used to retain data in the current tile that will be con-
sumed or routed away in future cycles. The addressing of
the register file per cycle for reads and writes adds control
overhead. Moreover, additional move operations need to be
inserted to transfer data in and out of the register file for
inter-dependent operations. However, in HyCUBE, the reg-
isters are moved directly into the incoming wires from each
direction North, East, West and South (N,E,W,S) and Hy-
CUBE instructions control the reads and writes to registers
from/to each directional input in each cycle. The distribu-
tion of registers improve power and area efficiency.

For example (Fig 3), the LOAD operation scheduled on
tile 12, needs to send the output to dependent child op-
erations: SUB and ADD, scheduled on tile 6 and tile 11,
respectively. Within a single cycle, the LOAD operation
fetches the data (from the data memory) that bypasses the
ALU output register RES, ejects from the crossbar towards
east, bypasses registers at the input ports of tile 13 and tile
14, takes a turn towards north and enters the crossbar of
tile 10 bypassing the register at the input port. From here,
the data multicasts towards north and east, bypasses the
registers of input ports and finally gets latched into input
operand registers of the ALU (I1 or I2) of tile 6 and tile 11.

If the dependent operation (ADD or SUB) is not scheduled
on the next cycle (because another operand for the opera-
tion is yet to arrive), the result of LOAD can be saved in
one of the registers that were bypassed at the input of cross-
bars. In the cycle prior to the execution of the dependent
operation, the data needs to be read from the register into
the input operand registers of the ALU (I1 or I2). The input
port associated with the register, remains disabled for any
other communication in the cycle that the register is read.
Similarly, the registers at input ports can be used to hold the
data if the outgoing link is not immediately available due to
contention, breaking up the single-cycle path into multiple
cycles, if necessary.

Predication. The loops with control divergence form a Con-
trol Data Flow Graph (CDFG), having both control and
data dependency edges. The control dependency edge is
treated as a data dependency edge when the dependent
instruction supports predication. HyCUBE supports such
predication without requiring an explicit predicate register
file. So the ALU has three input registers: predicate (P) and
two operands (I1 and I2). Each operand of HyCUBE is 33-
bits wide that includes an additional 1-bit predication signal.
An operation can be executed only if the predicate register
value is true and the embedded predicates of both input
operands are also true. For example, suppose an ADD and
SUB instruction are dependent upon a BRANCH instruction
along the true and false path, respectively. The BRANCH
output is routed to both the FUs (where ADD and SUB have

been mapped) as the predicate input. This leads to execu-
tion and production of data with valid predicate for only
one of them, followed by a SELECT instruction (selecting
the result with the embedded valid predicate) that supplies
the valid data to any further dependent instructions. The
default value for the predicate input of ALU is always set to
true. If the predicate data is received (probably from branch
instruction executed anywhere in the substrate) from the
crossbar switch, the default value is overridden, supporting
partial predication in the architecture.

Configuration Memory. As illustrated in the motivating
example, when loop kernels are mapped to a CGRA, the
same schedule is repeated after Initiation Interval (II) cy-
cles. This is the number of cycles between the initiation
of two consecutive loop iterations in the fabric. Thus the
configuration memory is required to store instructions (con-
figurations) for II cycles. Each HyCUBE instruction encodes
control information for the ALU, LSU, crossbar switch and
register read/write enable signals based on the static sched-
ule of the loop. The configuration memory also holds con-
stants required by the operations.

4. HYCUBE COMPILER
In this section, we present the HyCUBE compiler that

maps application kernels onto the architecture.

4.1 Mapping Problem Formulation
Modulo Routing Resource Graph (MRRG). Given a
DFG and a CGRA, the application mapping is performed
through modulo scheduling where a new loop iteration can
initiate execution every initiation interval (II). We first de-
termine the lower bound on II, denoted by Minimum II
(MII), as the maximum of the resource minimum II (ResMII)
and recurrence minimum II (RecMII) [17]. For each II value,
we create a time-extended (II cycles) resource graph of the
CGRA, known as Modulo Routing Resource Graph (MRRG)
[14]. As the schedule repeats after II cycles, the resources
at cycle II-1 have connectivity with the resources at cycle 0
in the MRRG and hence the name “modulo”. The compiler
attempts to find a mapping of the DFG onto the MRRG
with minimum II value.

In the MRRG for conventional CGRAs, the FUs and regis-
ters are replicated as resource nodes every cycle and the link
between FU : F to its neighbor FU : F ′ is represented as uni-
directional edge from F in cycle i to F ′ in cycle (i+1)mod II
for 0 ≤ i ≤ II − 1 [8]. The routing of a data-dependency
edge, where the source and sink nodes are scheduled on dis-
tant FUs, is mapped as a multi-cycle path in the MRRG,
utilizing one or more intermediate FU resource nodes for
routing (e.g., n1→ n5 in Figure 2c).

In contrast, HyCUBE introduces reconfigurability in the
interconnect on a cycle-by-cycle basis. Thus, it additionally
needs to represent the links (between FUs) as resource nodes
acquired to form single-cycle, multi-hop paths. The links
form a routing fabric facilitating data transfer between FUs
shown in the high-level view of the MRRG with II=2 (Figure
4b) for 2x2 HyCUBE in Figure 4a. The details of the routing
fabric appears in Figure 4c. The HyCUBE instance has two
circular paths, [01320] and [10231], illustrated with the link
resource nodes (oval nodes) constituting the paths. Each FU
is connected to two link nodes in this instance and also itself
(dashed edges) in consecutive cycles. Similarly, each FU has
three incoming edges (dotted edges) and the computation

(a) 2x2 HyCUBE

F0 F1 F3 F2

F0 F1 F3 F2

Cycle i

Cycle i+1

Routing Fabric

Routing Fabric

Routing Fabric

(b) HyCUBE MRRG: High-level view

(c) Expanded view of the routing fabric with detailed
connections between FUs and routing links.

(d) Partial mapping of DFG (Fig 2a) on HyCUBE
MRRG.

Figure 4: MRRG of HyCUBE with single-cycle routing.

in the FUs as well as the data transfer through the routing
fabric can happen within a single cycle.

Problem Definition. Given a DFG D = (VD, ED) and
a HyCUBE instance, the problem is to construct a mini-
mally time-extended MRRG of the HyCUBE instanceHII =
(VH , EH) that consists of two type of nodes: FUs (square
nodes, V F

H) and links (oval nodes, V L
H) for which there exists

a mapping φ = (φV , φE) from D:

• Operation mapping φV : each node v ∈ VD should have
one-to-one mapping to a node φV (v) ∈ V F

H .

• Data dependence mapping φE : each edge epq ∈ ED (con-
necting nodes vp, vq ∈ VD) should map to a set of links
(Spq ⊂ V L

H) connecting φV (vp) and φV (vq).

Let us define vr as another child of vp and hence sib-
ling of vq. When selecting a set of links Spq to connect
φV (vp) and φV (vq), Spq ∩ Spr need not to be empty be-
cause the links will be carrying the same data (output of
vp) to all of its children. In the example mapping shown in
Figure 4d, φV (n1) = (F0,0), φV (n2) = (F1,1) and φV (n5)
= (F3,1) where (Fx,i) refers to FU x at cycle i. When
mapping the DFG edges n1 → n5 and n1 → n2, the sets
of links Sn1n5={(L01, 0),(L13, 0)} and Sn1n2={(L01, 0)} are
used, respectively where Sn1n5 ∩ Sn1n2 = {L01}.

4.2 Mapping Algorithm
Algorithm 1: HyCUBE Mapping Algorithm

Data: DFG, HyCUBE
Result: DFG mapped on minimally extended MRRG

1 orderedNodes = TopologicalOrder(DFG);
2 RecMII = AnalyzeRecurrenceEdges(DFG);

3 ResMII = #Nodes in DFG
#FUs in HyCUBE

;

4 II = Max(RecMII,ResMII);
5 while Mapping is not valid do
6 MRRG = CreateMRRG(HyCUBE,II);
7 foreach node of orderedNodes do
8 foreach Unmapped FU of MRRG do
9 FUsWithCost.insert(FindRoutingCost(node,FU)

10 end
11 OptimalFU = min(FUsWithCost);
12 ScheduleAndRoute(node,OptimalFU);

13 end
14 II = II + 1;

15 end

We propose an algorithm (Algorithm 1) to find the map-
ping described in the problem definition guided by different
cost functions. Initially, all the nodes of the DFG are sorted
based on the topological order and MII is found by analyzing
the DFG (lines 2-4). We incrementally increase the II value
for time-extended MRRGs of the HyCUBE (lines 6-14), until
a valid mapping is found between the DFG and the MRRG.
For each node and for each possible unmapped FU, minimal
cost (based on cost function) path to route the data depen-
dencies from the node’s parents is calculated (line 9) using
O(N2) Dijkstra’s shortest path algorithm, where N = |VD|.
In the worst-case, II = N (sequential execution) and num-
ber of FU nodes is O(L ×W × II)), where L and W are
length and width of the CGRA mesh, respectively.

The cost functions play a vital role in selecting the sets
of links to map DFG edges (ED) and FUs for DFG nodes
(VD). Let us define vn ∈ VD as the node currently being
mapped and vp ∈ VD as its parent. When mapping vn to
a new unmapped FU: φv(vn), sets of links (Spn) need to be
selected connecting FUs φv(vp) and φv(vn). The choice of
links and FUs are guided by the following cost functions.

Static Routing Cost (SRC) In selecting the set of links
Spn for vp → vn, the number of previously unmapped links
that needs to be introduced is considered as the static rout-
ing cost. The set of links (Spn) may contain other links
belonging to already mapped children of vp and SRC will
promote more intersection (Spr∩Spn) with other Spr, where
vr is an already mapped child of vp. Thus, it will minimize
the usage of links and preserve links for the remaining nodes.

Used Adjacent Resources Cost (UARC) Each pre-
viously unmapped link included in the set of links (Spn) will
have different number of adjacent resources (links/FUs) that
it could connect to. UARC is the total number of used ad-
jacent resources of each previously unmapped link. UARC
discourages the use of links in congested area, where more
of their adjacent resources have been consumed.

Memory Resource Cost (MRC) The memory opera-
tions could only be executed on leftmost tiles as these are
the only ones connected to the memory. The use of these
leftmost tiles for non-memory operations is thus discour-
aged, because it increases the probability of mapping failure
for currently unmapped memory nodes. When selecting a
memory tile φv(vn) for non-memory node vn ∈ VD of the
DFG, a cost will be introduced that is defined as follows :

MRC = |UnmappedMemoryNodes: vm∈V (D)|
|UnusedMemoryFUs: um∈V F

H
|

5. EXPERIMENTAL EVALUATION
We implemented the 4x4 HyCUBE architecture in RTL

and mapped it onto TSMC 28nm process, using Synopsys
Design Compiler for synthesis and Cadence Encounter for
Place and Route of the design. The HyCUBE compiler is
implemented as a pass in LLVM 3.9 [11] that generates Hy-
CUBE instruction streams for loop kernel after performing
the mapping based on the algorithm presented in Section
4. These instruction streams are used in our RTL simula-
tions for estimating the power consumption. The represen-
tative loops (Table 1) are selected from MiBench [6] and
CortexSuite [18]. A comparison is done against two baseline
architectures: CGRA with a standard NoC (StdNoC), and
CGRA with N2N Connections (N2N).

StdNoC differs from HyCUBE tile shown in Fig 5a in just
one aspect: The clockless repeaters are replaced by clocked
ones in the links; so data has to be latched at each hop,
taking one cycle per hop. The ALU is still freed from com-
munications, as the compiler schedules the crossbar switch
and registers. Fig 5b shows the tile of a CGRA with N2N
connections that has an explicit register file for storage of in-
termediary data. All the architectures have three registers
in front of the ALU to hold predicate and input operands
(P,I1,I2) and are synthesized with 4KB data memory for
the entire chip and 256 Byte configuration memory per tile
that can support II <= 32 (Mappings that have II beyond
32, will need to be partitioned). We restrict the maximum
number of hops to 4 (adequate for most kernels) for 4x4 Hy-
CUBE instance to limit the critical path delay(see Tab.2).

Performance. The previously introduced MRRG and the
conventional MRRG is used when compiling for HyCUBE
and N2N, respectively. The MRRG of HyCUBE had to
be modified slightly, by eliminating single-cycle connectivity

Table 1: Benchmark Characteristics
Benchmark Nodes Edges Domain

adpcm dec 68 93 Telecom
adpcm enc 88 132 Telecom
aes enc 240 291 Security
idctflt 140 187 Video Compression
sphnix hmm 43 70 Speech Recognition
texture syn 57 75 Image Processing
stitch 75 102 Image Processing
fft 85 111 Signal Processing

(a) (b)

Figure 5: (a)HyCUBE tile; (b)N2N tile

adp
cm

dec

adp
cm

enc
aes

idc
tflt

sph
inx

hm
m

tex
tur

e syn

sti
tch fft

0

0.5

1

M
II

/
II

HyCUBE StdNoC N2N

Figure 6: Quality of Mapping (MII/Mapped II)

Table 2: Critical Path Delays, Power and Area

Arch
Crit.
Delay(ns)

Freq.
(MHz)

Power
(mW)

Area

(mm2)
N2N 0.8 1250 145.88 0.49
StdNoC 1.11 901 148.38 0.64
HyCUBE 1.42 704 115.60 0.64

between routing resources to create an MRRG for StdNoC.
As shown in Figure 6, HyCUBE has the best quality map-

ping for all the benchmarks and successfully achieves MII
(minimum possible II) for adpcm dec, idctflt, texture syn
and fft. The benchmarks aes, sphinx hmm and adpcm enc
fail to achieve the minimum II as they have higher node
count (FU constrained) or higher edge/node ratio (inter-
connect constrained). The benchmark stitch suffers as 28%
of its nodes are memory operations. HyCUBE is 1.64X and
4.2X better compared to StdNoC and N2N, respectively in
terms of average quality of mapping. Moreover, HyCUBE
delivers quality mappings with shorter compilation time (Fig
7) due to its reconfigurable interconnect compared to N2N.
StdNoC having an fixed neighbourhood interconnect, per-
forms better compared to N2N as the network is responsible
for data movement in lieu of FUs.

For further comparison of absolute performance, the dif-
ferent critical path timing of the three architectures are ob-
tained after place and route PnR (Table 2). For HyCUBE,
the delay depends on the maximum number of hops unlike
the static delay for StdNoC and N2N. The critical path for
HyCUBE goes from from the output of the ALU → cross-
bar → links → crossbar of the tile maximum hops away,
before it is stored in a register. We restrict maximum num-
ber of hops to 4 to limit the critical path. The longer the
path, the higher the capacitance of the link that needs to
be driven from the repeater, stretching timing and limiting
maximum frequency. Extending the maximum number of
hops to 8, the entire 4x4 HyCUBE can be traversed in a
single cycle, but the critical path will stretch from 1.42 to
1.59ns, and most applications do not require such distant
communications. The link only contributes 10.8% of criti-
cal path delay, hence the maximum frequency at which Hy-
CUBE and StdNoC operate do not differ much. The critical
path defines the maximum frequency. Based on the criti-
cal path and II achieved for a loop L, T ime Per Iteration
(L)= MappedIIarch(L) ×Crit.Delayarch, which is the re-
ciprocal of the throughput (loop iterations per second). Ta-
ble 3 shows that HyCUBE and StdNoC are able to achieve
an average throughput improvement of 137% and 101% com-
pared to N2N, respectively (when each architecture runs at
its maximum possible frequency).

Energy. HyCUBE consumes an average power of 115.60
mW at 704 MHz where crossbar switches and memories con-
tribute to majority of the power (25.6% and 42.4%) while
occupying 24% and 25.28% of total chip area, respectively.
Further the ALUs, which account for 44.8% of chip area,

adp
cm

dec

adp
cm

enc
aes

idc
tflt

sph
inx

hm
m

tex
tur

e syn

sti
tch fft

101

102

103

104

C
o
m

p
il
er

R
u
n
ti

m
e(

s) HyCUBE StdNoC N2N

Figure 7: Compilation Time

Table 3: Throughput and Energy Comparison

Benchmark
Throughput w.r.t N2N Energy w.r.t N2N

N2N StdNoC HyC N2N StdNoC HyC

adpcm enc 1 2.31 3 1 0.44 0.26

adpcm dec 1 4.61 4.51 1 0.22 0.18

aes 1 0.72 1.06 1 1.41 0.75

idct 1 1.1 2 1 0.93 0.4

sphinx hmm 1 2.02 1.97 1 0.5 0.4

stitch 1 2.31 3 1 0.44 0.26

texture syn 1 1.87 1.83 1 0.54 0.43

fft 1 1.13 1.57 1 0.9 0.51

Mean 2.01 2.37 Mean 0.67 0.4

adp
cm

dec

adp
cm

enc
aes

idc
tflt

sph
inx

hm
m

tex
tur

e syn

sti
tch fft

2

4

6

T
h
ro

u
g
h
p
u
t/

m
W HyCUBE StdNoC N2N

Figure 8: Performance-per-watt w.r.t. N2N CGRA

only consume 20.8% of chip power. To compare the energy
consumption of an architecture for a loop L, we first derive
the average power consumption (Parch) of the architecture
running at its maximum frequency after performing PnR,
using Cadence Encounter, as shown in Table 2. Then en-
ergy per loop iteration is computed as Parch × T ime Per
Iterationarch (L). According to Table 3, HyCUBE and
StdNoC are able to achieve a 60% and 33% average en-
ergy reduction compared to N2N, respectively, when run-
ning at their corresponding maximum frequency. The aver-
age performance-per-watt is computed based on throughput
(iterations per second) and the Parch. According to Figure
8, HyCUBE and StdNoC are 3X and 1.98X better compared
to N2N, while HyCUBE is 1.5X better compared to StdNoC
in terms of average performance-per-watt.

Comparison with other accelerators. To perform a high-
level comparison against existing commercial platforms, we
extracted published power and performance values of the
execution of 256-FFT on ARM-Cortex A5 [1], Xilinx Artix
7 [3], Samsung Reconfigurable Processor [9]. As HyCUBE
is mapped to TSMC 28nm process, all other performance
numbers are scaled (1.42 times per generation due to 0.7
scaling of feature size, with the power remaining the same
as core voltage is kept constant) for fair comparison. Fig
9b shows log(Perf) = log(m) + log(Power) lines and the
intercept of the lines indicates the logarithm of efficiency
(m=Perf/Power). The Xilinx Artix 7 FPGA offers 10X per-

101 102 103 104
102

103

104

105

15.62 MIPS/mW

17.45 MIPS/mW

32.04 MIPS/mW

63.15 MIPS/mW

ARM-CortexA5

XilinxArtix7

SRP

HyCUBE

Power(mW)

P
er

fo
rm

a
n
ce

(M
IP

S
)

Figure 9: (a) HyCUBE chip layout (b)Power-Performance
comparison with commercial processors and accelerators.

formance compared to the ARM at similar performance-
per-watt. On the other hand, SRP is a commercial 3X3
CGRA with N2N connections designed to achieve better
power-efficiency (2X compared to ARM) but could only of-
fer 30% performance compared to ARM. Given the reconfig-
urable single-cycle multi-hop interconnect, HyCUBE scales
very well for 4x4 CGRA and offers 3X performance and 4X
performance-per-watt compared to ARM. It is clear that
CGRAs are a better choice compared to FPGAs in terms
of performance-per-watt but the improvements made with
regard to the interconnect of the HyCUBE enables it to im-
prove performance while maintaining highest performance-
per-watt.

6. CONCLUSION
CGRA is a promising technology to accelerate loops. How-

ever, current reconfigurability per cycle is for the operations
executing on functional units, but not for the connectiv-
ity between functional units. HyCUBE is a novel CGRA
architecture that incorporates a reconfigurable single-cycle
multi-hop interconnect between functional units. We intro-
duce a novel resource abstraction model for HyCUBE that
includes single-cycle routing and leads to the design of an
efficient compiler. We synthesize HyCUBE architecture in
28nm process and compile real loop kernels onto the archi-
tecture. The experimental results show that average power
efficiency of HyCUBE is 1.5X and 3X compared to a CGRA
with standard NoC and a N2N CGRA, respectively.

7. ACKNOWLEDGMENTS
This work was partially funded by the Singapore Ministry

of Education Academic Research Fund Tier 2 MOE2014-T2-
2-129 and by the Singapore National Research Foundation
Research Fund NRF-RSS2016-005.

8. REFERENCES
[1] Arm cortex-a5. https://goo.gl/pGytB2.

[2] Bouwens et al. Architectural exploration of the adres
coarse-grained reconfigurable array. In ARC ’07.

[3] Chen et al. Algorithmic optimizations for energy efficient
throughput-oriented fft architectures on fpga. In IGCC ’14.

[4] L. Chen et al. Graph minor approach for application mapping
on cgras. TRETS ’14.

[5] B. De Sutter et al. Coarse-grained reconfigurable array
architectures. In Handbook of signal processing systems. ’13.

[6] M. R. Guthaus et al. Mibench. In WWC-4 ’01.

[7] M. Hamzeh et al. Epimap: using epimorphism to map
applications on cgras. In DAC ’12.

[8] M. Hamzeh et al. Regimap: register-aware application mapping
on coarse-grained reconfigurable architectures. In DAC ’13.

[9] Kim et al. Ulp-srp: Ultra low power samsung reconfigurable
processor for biomedical applications. In FPT ’12.

[10] T. Krishna et al. Breaking the on-chip latency barrier using
smart. In HPCA’13.

[11] C. Lattner et al. Llvm: A compilation framework for lifelong
program analysis & transformation. In CGO ’04.

[12] B. Mei et al. Adres: An architecture with tightly coupled vliw
processor and coarse-grained reconfigurable matrix. In FPL ’03.

[13] B. Mei et al. Dresc: A retargetable compiler for coarse-grained
reconfigurable architectures. In FPT ’02.

[14] B. Mei et al. Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling.
IEE-Computers and Digital Techniques ’03.

[15] Park et al. Efficient performance scaling of future cgras for
mobile applications. In FPT ’12.

[16] H. Park et al. Polymorphic pipeline array: a flexible multicore
accelerator with virtualized execution for mobile multimedia
applications. In MICRO ’09.

[17] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In MICRO ’94.

[18] S. Thomas et al. Cortexsuite. In IISWC ’14.

https://goo.gl/pGytB2

