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Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs) balance
the performance and power efficiency in computing systems. Effective
compilers play a crucial role in fully realizing its potential. The compiler
maps Data Flow Graphs (DFGs), which represent compute-intensive
loop kernels, onto CGRAs. However, existing compilers often tackle
DFG nodes individually, neglecting their intricate inter-dependencies.
We introduce a novel mapping paradigm called Rewire that can place
and route multiple nodes in one shot. Rewire first generates routing
information that is shareable among multiple nodes via propagation.
Then, Rewire intersects the routing information to generate individual
placement candidates for each node. Finally, Rewire innovatively utilizes
data dependencies as constraints to quickly find suitable placement for
multiple nodes together. Our evaluation demonstrates that Rewire can
generate more near-optimal mappings than prior works. Rewire achieves
2.1x and 1.3x performance improvement and 13.5x and 4.7x compilation
time reduction, respectively, compared to two popular mappers.

I. INTRODUCTION

Coarse-grained reconfigurable arrays (CGRAs) [1]–[20] have
gained significant attention in recent years due to their excellent bal-
ance in terms of flexibility, performance, and energy efficiency. The
domain-agnostic characteristic allows CGRAs to accelerate a broad
spectrum of applications, such as machine learning, video processing,
and graph processing. However, achieving superior performance and
power efficiency for these applications heavily relies on efficient
compilers to explore the enormous mapping space.

Mapping DFG, which represents the compute-intensive loop ker-
nel, onto CGRAs is a well-known challenging problem [10], [14],
[21]–[30]. Figure 1 shows a typical 4×4 CGRA architecture. The
CGRA is programmable, consisting of processing elements (PE)
executing the operations, on-chip memory to store the data, and a
Network on Chip (NoC) to route the data among the PEs. The details
of the architecture are exposed to the mapper to generate cycle-by-
cycle configurations for the programmable units, including the PEs
and the routers.

The mapping involves the placement of the DFG nodes onto the
PEs of the CGRA, while routing the data dependencies among these
nodes. The complex inter-dependencies among the nodes pose signif-
icant difficulty to the mapping algorithm. Complex data dependencies
refer to rich but irregular connections among multiple nodes. These
nodes subtly affect each other’s mapping due to resource contention,
which are aggravated by intricate dependencies. Conventional map-
ping approaches iterate over the DFG nodes individually. For each
node, they first select the PE placement candidate and then evaluate
the routability of the relevant edges. It is theoretically possible
to choose the placement of multiple nodes in one shot and then
find the routing of the relevant edges together. Unfortunately, such
consolidated placement does not yield feasible routing due to complex
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Fig. 1: A typical 4×4 CGRA.

data dependencies. Several works use a hierarchical approach [24]–
[26], [31] of partitioning the DFG into several sub-DFGs. However,
they still map the nodes individually within each sub-DFG.

There are two disadvantages to existing approaches. First, by map-
ping each node individually, they lack the ability to handle complex
data dependencies collectively. As a result, these approaches need
to backtrack whenever they cannot map the current node, causing
numerous iterations to explore the multi-node mapping. Nevertheless,
they still may fail to reach a feasible mapping within a reasonable
compilation time. Second, they are unable to leverage the routing
knowledge established for one edge when handling the next edge.
Hence, they need to visit the same network repeatedly to evaluate
the routability of the PE placement candidates.

To overcome these limitations, we propose Rewire*, a novel CGRA
mapping paradigm that can quickly generate feasible mapping for
multiple nodes in one shot. As existing mappers usually create an
initial mapping and improve step by step to achieve a valid mapping,
Rewire focuses on amending the initial mapping and can take any
initial mapping from other mappers, making Rewire orthogonal to
these mappers. Rewire first leverages the inherent DFG structure
characteristic to share the routing information among multiple DFG
nodes and intersects the routing information to find placement candi-
dates for each of the DFG nodes. Compared to previous path-finding-
based routing, Rewire devises a propagation mechanism to generate
the routing information for multiple nodes together. Finally, Rewire
analyzes routing information and prunes the search space using
inter-dependencies as constraints to generate multi-node placement.
Therefore, Rewire can simultaneously coordinate the placement and
routing of multiple nodes, advancing the current mapping paradigm.

We make the following key contributions:

• We identify a fundamental limitation of traditional CGRA map-
ping approaches that they can only map the DFG nodes individ-
ually, limiting the ability to coordinate multi-node mapping. In
contrast, we propose a new mapping paradigm that can generate
multi-node mapping in one shot.

• To the best of our knowledge, we are the first to propose
sharing the routing information among multiple nodes. Through
the sharing, we can reuse the routing information and further
coordinate the mapping of multiple nodes.

*We name it Rewire due to the reuse of wire (routing) information and its
ability to amend an invalid mapping through minimal alterations.



• Our evaluation demonstrates that Rewire can generate much
more near-optimal mappings than prior works. Compared to
the two popular works, Rewire can achieve 2.1x and 1.3x
performance improvement and 13.5x and 4.7x compilation time
reduction, respectively.

II. RELATED WORK

Existing mappers can be classified into three main categories:
(1) These approaches choose the placement that minimizes a prede-
fined cost function to map a node [21], [23], [32]–[35]. For example,
to map a DFG node, they need to evaluate the multiple placement
candidates and select the candidate with the minimal cost. This
process necessitates evaluating all potential candidates for the current
node and often leads to local minima. If the current node cannot
be mapped, a higher cost is assigned to the existing placement,
and multiple rounds of partial remappings are performed to achieve
a feasible solution. (2) These approaches find any placement that
can route the edges connected to the current DFG node but may
require many iterations to find a feasible mapping [10], [22], [29],
[36]. To map a node, they can select any placement candidate if
it can route the current data dependencies, and they do not need
to evaluate any other candidates. (3) These approaches partition the
DFG or the hardware to reduce the search space using a divide-
and-conquer approach [24]–[26], [31], but may still rely on the
aforementioned methods for each partitioned DFG. For example,
if a partitioned sub-DFG is assigned to a sub-CGRA, they only
need to evaluate candidates in the corresponding sub-CGRA. Despite
substantial research, state-of-the-art CGRA compilers still only map
one node at a time and cannot comprehensively manage multi-node
data dependencies together. In contrast, Rewire can simultaneously
map multiple DFG nodes together, greatly reducing the number of
iterations needed to map multiple DFG nodes.

Furthermore, conventional approaches cannot reuse the routing
knowledge, with the exception of EMS [28]. There are three levels
in mapping: a mapper needs to map multiple DFG nodes, where
mapping a DFG node needs to explore multiple placement candidates,
and evaluating a candidate needs to route multiple edges. EMS can
reuse the routing knowledge for a single edge when attempting
different placement candidates. To map a node, EMS starts routing
from its parent node and does not specify the PE candidate for the
target node. Upon reaching a potential PE candidate, EMS employs
a path search to route the other relevant edges. If unsuccessful, EMS
still uses the routing information of the first edge and continues to
find new potential PE candidates. EMS can only reuse the routing
knowledge for a single edge and cannot extend to other edges. In
contrast, Rewire can share the routing information among multiple
edges, placement candidates, and DFG nodes, making it possible to
coordinate the mapping of multiple DFG nodes.

III. MOTIVATION AND INTUITION

In this section, we use a motivating example to demonstrate the
fundamental limitations of the state-of-the-art CGRA compilation
techniques and propose concrete strategies to overcome these lim-
itations. Figure 2(a) shows a DFG example where three nodes A, B,
and G have been placed onto PEs in the initial mapping. Figure 2(b)
provides an example of initial mapping for the DFG depicted in
Figure 2(a) onto a 4×4 CGRA. Figure 2(c) illustrates how typical
conventional mappers [22], [26] attempt to map the nodes C, D, E,
and F: map each node individually in multiple steps and can require
checking multiple placement candidates for each DFG node.

The key problem is that such approaches cannot simultaneously
coordinate the mapping of multiple nodes. For example, when it
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(d) Proposed mapper: map multiple nodes in one shot
Fig. 2: Comparison between conventional mappers and proposed mapper

attempts to place node C onto a PE, it cannot guarantee that this
placement leads to a successful mapping of the remaining nodes D,
E, and F . Thus, when node E cannot be mapped (step 3), it usually
performs partial remapping by removing a part of the current mapping
and changing the placement of the affected nodes to different PEs. In
this example, we unmap node D and move it to a different PE. Hence
these conventional mappers need multiple backtracking iterations to
find a feasible mapping. Another issue is that these conventional
mappers cannot reuse routing knowledge either for multiple edges,
placement candidates, or DFG nodes. For each edge or placement
candidate, the mapper needs to explore the NoC to establish the
routing and need to visit the same network multiple times. Yet, they
did not reuse the routing information. Furthermore, simple reuse or
routing information memorization cannot be applied as the resource
status can change from routing one edge to another edge.

In this paper, we demonstrate that it is possible to simulta-
neously map multiple nodes and share the routing information
among relevant edges. Our approach is shown in Figure 2(d). We
first propagate the output value of A along the network without
specifying any destination node. Any reachable PEs from the PE
containing DFG node A can be a potential placement candidate for
node C, which is dependent on node A. Moreover, as the nodes E and
F are dependent on node C, by transitivity, they are also dependent
on node A. Therefore, if C is placed on a reachable PE from A, we
can place E and F on the PEs reachable from C. All these reachable
PEs that are potential placement candidates for DFG nodes E and
F have been identified during the propagation from A. We can use
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Fig. 3: High-level MRRG example for 2×2 CGRA.
the same propagation information to route A → C, C → E, and
C → F . Similarly, we can propagate the output of B and use this
information to find potential placement candidates for the nodes D,
E, and F , and routing the edges B → D, D → E, and E → F .
Finally, we need to conduct backward propagation from node G that
has already been mapped, just as we do forward propagation from
nodes A and B. The above process identifies the potential placement
candidates via forward and backward reachability searches from the
already placed ancestor nodes (A and B in the example) and the
descendant nodes (G in the example).

However, the placement of a DFG node X needs to satisfy multiple
constraints as it needs to be reachable from all the source nodes
with which it has dependencies and all the destination nodes that
are dependent on this node X . For example, node C should be on
the forward propagation routes of nodes A, B, and the backward
propagation routes of node G. A simple intersection operation among
the propagation routes from the nodes A, B, and G can identify the
set of potential feasible placement candidates for node C. Similarly,
we can identify the set of potential candidates for nodes D, E, and
F . Given these potential candidates for all the nodes we intend to
map, we have to select the actual placement candidate for multi-node
such that (a) only one DFG node is mapped to a PE candidate, (b)
we can route all the data dependencies among these nodes together.

IV. REWIRE ALGORITHM

In this section, we first formulate the mapping problem and then
present the Rewire mapper that maps the DFG onto the CGRA. The
CGRA mapper first generates a DFG representing the application
program and then maps the DFG onto the CGRA with respect to
the data dependency. CGRA uses Initiation Interval (II) to evaluate
the mapping quality, where II is the number of cycles between
consecutive iterations of a loop kernel. The lower the II, the better
the performance.

A. Problem Formulation

DFG: We define DFG D = (VD, ED) as a directed acyclic graph
with VD representing operations and ED representing dependencies
between operations.
CGRA Graph: CGRA is defined as a graph G = (VG, EG).
Modulo Routing Resource Graph (MRRG) HII = (VH , EH) is a
resource graph of the CGRA that is time extended to II cycles [37].
VH consists of two types of nodes: ALUs (V F

H ) in each PE and
ports (V P

H ) in interconnects and Register Files (RFs) [37]. As the
CGRA schedule repeats after II cycles, the resources at cycle II−1
have connectivity with the resources at cycle 0 in the MRRG.
H

′
= (VH

′ , EH
′ ) is defined as the time extended resource graph

of the G
′

(VH
′ ⊆ P(VH)). Figure 3 shows a high-level MRRG

example for 2×2 CGRA where we only show the inter-PE links and
do not include internal links in the PE.
Problem Definition: Given a kernel and a CGRA, the problem is to
construct a time extended MRRG HII = (VH , EH) of the CGRA for
which there exists a mapping ϕ = (ϕV , ϕE) from D = (VD, ED)
to HII which minimizes II. We decompose the problem into three
sub-problems: selecting multiple DFG nodes to form a cluster U ,
propagation for U , and generating the multi-node mapping of U .

Algorithm 1: Rewire Algorithm
Input: DFG, CGRA
Output: Valid mapping

1 Sort DFG nodes by topological order;
2 minII = Minimum(recurrenceMII, resourceMII);
3 while mapping is not valid do
4 Generate the initial mapping for current II ;
5 while mapping is not valid do
6 Generate target cluster U ;
7 while U is not mapped and is less than α do
8 Propagate for U ;
9 Intersect propagation tuples to find placement candidates;

10 if Generate multi-node mapping then
11 Break;
12 else
13 Append a node to U ;
14 if U are not mapped then
15 Break;
16 II = II + 1;

B. Overall Algorithm
Algorithm 1 shows the Rewire algorithm. We first sort DFG nodes

by topological order (line 1). The mapper calculates the theoretical
Minimum Initiation Interval (MII) based on the hardware resource
and inter-iteration data dependency [38] (line 2). Given a DFG and
a CGRA, we initiate the mapping process starting from MII. If the
mapping is not successful, we increase the II by one and attempt to
map again. This process continues until we reach the maximum II
(hardware-decided) or exceed the mapping time limit (lines 3-16).

As we mentioned earlier, Rewire takes the initial mapping from
conventional approaches [22] (line 2) and focuses on amending the
initial invalid mapping to achieve a valid mapping (lines 5-15).
Given the invalid initial mapping, Rewire identifies nodes that are
non-mapped or have congested routing as ill-mapped nodes. Rewire
randomly selects several unmapped connected nodes to let them
share the routing information, denoted as U (line 6). We need to
limit the size of U . The reason is: (1) too many DFG nodes in U
will significantly increase the search space and make it very time-
consuming to find suitable placement candidates for U ; (2) increasing
the number of DFG nodes might not always work as the DFG is not
mappable at current II (MII is not always achievable). In practice, we
limit the size of U to 15. Given U , Rewire simultaneously propagates
the source nodes, which are the parents and children of the cluster U
(line 8). Then, Rewire summarizes the propagation information and
uses the intersection to generate the placement candidates for each
node v ∈ U (line 9). Rewire uses data dependencies as constraints
to prune invalid cluster placement candidates during building the
placement of cluster U (line 10). The propagation and mapping
generation will be detailed in Section IV-C and Section IV-D.

It is possible that the original U is not mappable due to the
limited routing resource and complex data dependencies. Hence, we
progressively add the connected node to U (line 13) until we map
these nodes or reach the size limit of U (line 7). To append, we
select the node that has the least depth-fist search (DFS) distance to
the cluster U . Reaching the size limit means we cannot find a valid
mapping with current II and need to increase II by one.

C. Routing Propagation
Rewire conducts forward propagation of values from the parents

of U (Parents(U)) and backward propagation from the children
of U (Children(U)) across the network. Parents(U) is a set of
DFG nodes that have been mapped and have a child node in U , but
the node itself does not belong to U , denoted as Parents(U) =
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Fig. 4: Propagation and intersection example.
v ∈ V \ U : ∃u ∈ U, (v, u) ∈ E and ϕ(v) ̸= ∅. Similarly,
Children(U) = v ∈ V \ U : ∃u ∈ U, (u, v) ∈ E and ϕ(v) ̸= ∅.
Rewire propagates as long as the network path is not used by current
mapping. Once reaching a PE, we will generate a propagation tuple.
The propagation tuple contains four essential components: the source
node, the propagation direction (forward/backward), the source PE,
and the number of routing cycles. Thus, each tuple is associated
with a specific PE in the network. The number of routing cycles is
the cycle number from the source PE to the current PE.

The propagation tuple is a probe of network utilization that helps
Rewire find suitable placement candidates. To keep the only necessary
information, when a PE receives a propagation message from an adja-
cent PE, Rewire generates a new propagation tuple only if no existing
tuple at that PE has the identical combination of source node, routing
cycle count, and propagation direction. This mechanism prevents
redundant exploration while covering all potential routing paths. To
determine the number of propagation rounds, we heuristically use the
maximum cycle difference between Parents(U) and Children(U)
multiplied by three as the number of propagation rounds. When either
Parents(U) or Children(U) is empty, we heuristically use the
length of the longest path within U multiplied by five. This value
allows the Rewire to generate sufficient propagation tuples.

Figure 4(a) provides an example of propagation for the motivating
example in Section III. We note that we simultaneously propagate
these sources nodes and we show them separately for simplicity.
The IDs, like A12, are to distinguish from each other and do not
have any special meaning. The simultaneous propagation of multiple
source nodes introduces resource contention in the network. Since the
objective of propagation is to explore potential routing paths rather
than perform final resource allocation, we continue propagation even
when hardware resources have been traversed by other propagation
tuples. These propagations generate a hierarchical structure where we
define the successor tree SuccTree(v) as the set of all propagation
tuples originating from node v through forward propagation and the
predecessor tree PredTree(v) for backward propagation. We define
Tree(v) to represent all propagation tuples propagated from v.

D. Multi-node Mapping Generation
Propagation Information Intersection: After propagation, we first
intersect propagation tuples to find placement candidates for DFG
nodes in target cluster U . Now, each PE VH virtually owns multiple
propagation tuples, which are from different source nodes and arrive
at different cycles. Figure 4(b) shows an example of intersecting these
propagation tuples to find placement candidates for the unmapped

Algorithm 2: Generate multi-node mapping
Input: DFG, CGRA, cluster U , PCandidates(vi) for each vi ∈ U

Output: Mapping
1 Sort U by topological order U = {vi|i = 0, ...,m};
2 foreach vi ∈ U do
3 Sort placement candidates by available execution cycles;
4 while not exceed the time limitation do

// generate Placement(U)
5 foreach vi ( 0 ≤ i ≤ m) do
6 foreach vj ( 0 ≤ j ≤ i− 1) do
7 Generate time constraints related to current node vi;
8 select a candidate obeying execution cycle constraints;
9 if routing verified then

10 return the Placement(U);

DFG nodes in Figure 2(a). For a node v in U , PE VH can be a
placement candidate if it has the required propagation tuples for v.
The requirement is, for each edge (v, u) (or (u, v)), or for each
parent and child, we need to have a corresponding tuple, and these
corresponding tuples must arrive at the same cycle to ensure the
“right” execution of node vi. If a parent or child node of v in U
is not the source node of propagation, we use DFS to find a source
node to represent this parent or child. For example, for the DFG in
Figure 2(a), F is not a propagation source node, and we use DFS to
find G as the propagation source node. In this example, three edges
are connected to C; therefore, a PE can be a placement candidate of
C only if the PE has all three corresponding tuples to ensure routing
paths. In other words, we need to have three tuples originating from
A, B, and G, and these tuples must arrive at the same cycle.

Hence, we formalize the intersection rule as below:

PCandidates(vi) = {V F
H |∃c ∈ N : V F

H ∈

(
⋂

vj∈Parents(vi)

SuccTreec(source(vj)))∩

(
⋂

vk∈Children(vi)

PredTreec(source(vk)))} (1)

where SuccTreec(v) represents the successor tree from node v at
cycle c, PredTreec(v) represents the predecessor tree from node v
at cycle c, and c is the common arrival cycle for all required tuples.
For example, for node C, we can obtain the candidates with:

PCandidates(C) = {V F
H |∃c ∈ N : V F

H ∈
(SuccTreec(A) ∩ SuccTreec(B) ∩ PredTreec(G))} (2)

Figure 4(c) provides a few simplified examples using intersection
to find the placement candidates for unmapped nodes. With the
propagation and intersection example, we can find we only need
several rounds of propagation to let these DFG nodes find potential
placement candidates, even though the process has not yielded the
final multi-node mapping yet. In contrast, conventional approaches
usually need to invoke the path routing algorithm multiple times to
check multiple candidates for only one DFG node placement.
Multi-node Mapping Generation: Algorithm 2 shows how to
generate multi-node mapping. After the intersection of propagation
tuples, we generate placement candidates PCandidates(vi) for each
node vi ∈ U , where placement candidates can execute at different
cycles (decided by the arriving cycles of propagation tuples). We
utilize the execution cycle information to filter invalid placement
for U . We first sort nodes in cluster U by topological order (line
1) and sort placement candidates for each DFG node vi by their
execution cycles (lines 2 and 3). Then, we build placement candidates
for U (represented as Placement(U)), which need to obey the
execution order among nodes in U . For example, for the DFG in
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Figure 2(a), the execution cycle of E’s placement candidate must be
larger than the cycle of C’s with respect to the data dependency. As
PCandidates(vi) can have different execution cycles, we need to
remove the invalid combinations during Placement(U) generation.
Hence, we iterate from v0 to vm to build Placement(U) (lines 5-
8) and check the execution cycle constraints (lines 6-8) during this
process. Moreover, we use an index vector to track these placement
candidates and iterate them to ensure we do not explore the same
Placement(U). When we add a placement candidate for vi, we
check the cycle execution constraints from v0 to vi−1 if it has any
data dependency with vi. We find that this method is quite effective
in pruning invalid Placement(U).

As we mentioned in propagation, the propagation tuple may not
always be valid, as we do not check resource contention among
tuples during propagation. Hence, we must verify the Placement(U)
through routing (lines 9 and 10). If not successfully verified, we keep
finding valid Placement(U) (lines 4-10). After propagation, only
part of PE can be the placement candidate of the DFG node, while
the cycle execution constraints prune most invalid Placement(U),
meaning we only need to check a small portion of Placement(U).
Our evaluations show that generated Placement(U) has a very
high success rate of around 95% for verification. The reason is
that the execution cycle constraints have successfully pruned many
invalid Placement(U), and the propagation mechanism has already
performed a preliminary evaluation of routability.

V. EVALUATION

In this section, we evaluate Rewire against two recent CGRA
mapping techniques in terms of application performance (iteration
interval II) and compilation time. We compare Rewire against two
mapping approaches: SA and PF∗. Simulated Annealing (SA) has
been widely used in different CGRA compilation frameworks [10],
[29], [32]. PathFinder is a popular algorithm used by several CGRA
mappers [2], [22], [39], [40]. PathFinder and SA are two represen-
tative examples of the first type and the second type of mapper
as discussed in Section II, respectively. We refer to our fine-tuned
implementation of PathFinder with 3K lines of C++ code as PF∗.
The idea of PF∗ is to generate an initial mapping by selecting the
placement with the minimal routing cost for the edges and then amend
the mapping through multiple remapping iterations until a feasible
solution is reached. We use the initial mapping of PF∗ as the initial
mapping for Rewire, and then use our multi-node mapping to reach
a feasible solution from the initial infeasible mapping.

We evaluate these mappers on the following CGRA architectures:
(a) 4×4 CGRA with four registers per PE; (b) 8×8 CGRA with
four registers per PE; (c) 4×4 CGRA with two registers per PE; (d)
4×4 CGRA with one register per PE. All the 4×4 CGRAs have two
local memory banks, and PEs on the left-most column can access
the memory. The 8×8 CGRA have eight local memory banks, and
the left-most and right-most PE columns can access the memory,
making 16 PEs can access the memory. Registers play a crucial role
in buffering data during routing, particularly when the producer and
consumer are distant nodes along spatial or temporal dimensions.
We evaluate with different numbers of registers to evaluate Rewire’s
capability to handle different routing resources. 4×4 CGRA with one
register per PE is not practical as it has very limited routing resources.
Yet, we use it to evaluate the capability to handle extreme cases. We
use the PolyBench [41], MachSuite [42] and MiBench [43] for our
applications. We also used unrolled versions (unroll factor of 2) of
some of these benchmarks to stress the compiler, specially on 8×8
CGRA. The number of DFG nodes varies from 26 to 51 and the
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(c) 4×4 CGRA with two registers per PE
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(d) 4×4 CGRA with one register per PE
Fig. 5: Comparison on the mapping quality of Rewire with PF∗ and
SA on different benchmarks and CGRA configurations. The lower the
II value, the higher the performance. u next to a benchmark represents
the unrolled version with a factor 2. MII is the theoretically minimal
II that may not be achievable in practice. Missing bars for SA for
some benchmarks indicate that SA was not successful in mapping those
benchmark-architecture configurations. We did not include a benchmark-
architecture configuration if none of the three approaches can map
it due to inadequate availability of resources, e.g., unrolled loops on
architectures with few registers per PE.

average number of DFG nodes is 38. We measure the compilation
time on the Intel Xeon Gold CPU (2.60GHz).
A. Quality of Mapping

Figure 5 shows the comparison of the mapping quality for the
different approaches (Rewire, PF∗, and SA) in terms of the II values
on four different CGRA configurations. Recall that II is the number
of cycles between starting the execution of consecutive iterations of
a loop kernel. The lower II value indicates lower execution time
and hence higher performance. MII is the theoretically minimal II
which is calculated by resource and inter-iteration data dependencies.
However, achieving the MII may not always be possible as complex
data dependency constraints are not considered in the theoretical cal-
culation. Nevertheless, we consider a mapping optimal if it achieves
the MII. If the difference between the II achieved and MII is one,
we call the mapping near-optimal.

This evaluation uses 47 different DFG and architecture combina-
tions. Rewire can achieve superior performance than PF∗ and SA
if not the same on every application and CGRA combination. Both
Rewire and PF∗ successfully map all the combinations, whereas SA
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(b) 8×8 CGRA with four registers per PE
Fig. 6: Compilation time comparison of Rewire with PF∗ and SA on 4×4
CGRA with four registers per PE and with two registers per PE.

fails to map 12 combinations. Among the 47 combinations, Rewire
delivers optimal or near-optimal mapping in 38 cases. In comparison,
PF∗ and SA achieve optimal or near-optimal mapping for only 15 and
3 cases, respectively. Overall, Rewire delivers an average performance
speedup of 1.3x and 2.1x compared to PF∗ and SA, respectively. The
mapping quality difference shows Rewire’s ability to handle complex
data dependencies across application kernels on different CGRAs.

Rewire is also versatile and scalable to support various CGRA
configurations. Rewire consistently achieves 1.33x, 1.31x, 1.29x,
and 1.32x performance improvement compared to PF∗ on 4×4
baseline CGRA with four registers per PE, 4×4 CGRA with one
register per PE, 4×4 CGRA with two registers per PE, and 8×8
CGRA with four registers per PE, respectively. This consistency
underlines Rewire’s ability to achieve superior performance across
varied architectures. Moreover, compared to SA, Rewire can achieve
1.58x, 3.25x, 2.10x, and 2.21x performance improvement on these
architectures, respectively. The most significant improvement comes
from the 4×4 CGRA with one register. This architecture has very
limited routing resources to evaluate the capability to handle extreme
cases, as mentioned earlier, and a few DFGs can be mapped on the
architecture. This improvement also highlights Rewire’s capability
to handle various architectures. The key factor behind the success
of Rewire is its ability to coordinate the mapping of multiple DFG
nodes, while PF∗ and SA make localized and myopic decision,
making them struggle to handle intricate data dependencies.

Rewire achieves significant performance improvement from 4×4
CGRA with 4 registers per PE to 8×8 CGRA with 4 registers per PE.
Rewire generates optimal mapping for choleskey, ludcmp, and gesu-
umv(u) for the 8×8 CGRA, while fails on 4×4 CGRA to generate
mappings due to insufficient hardware resources. This demonstrates
the scalability of Rewire to handle larger search space by effectively
pruning away infeasible candidates to avoid unnecessary searches.
B. Compilation Time

Figure 6 shows the compilation time comparison among these
mappers on 8×8 CGRA with four registers per PE and 4×4 CGRA
with two registers per PE. Note that the Y-axis is in log scale.
Mappers can explore for a maximum of one hour per II, and can
terminate early at each II due to the backtracking limitation (PF∗)
or no mapping cost improvement after 100 iterations (SA). As
mentioned earlier, SA cannot map several benchmarks even after
numerous iterations. In those cases, we choose the termination time
as the compilation time. We note that the propagation time usually
takes less than one second in Rewire, and the most time-consuming
step happens at pruning during multi-node mapping generation.

TABLE I: Number of single-node remapping iterations for PF∗ and SA
on 4×4 CGRA with four registers per PE and with one register per PE.

4×4 CGRA with 4×4 CGRA with
1 register per PE 4 registers per PE

Benchmark PF* SA Benchmark PF* SA

gramsch 242 1335 gramsch 323 1084
ludcmp 362 1422 ludcmp 315 1494
lu 233 1231 lu 233 1440
gemver 339 1428 gemver 293 1208
cholesky 332 1390 cholesky 332 1116
gesummv 935 1440 gesummv 228 1259
atax 232 1451 atax 242 920
bicg(u) 442 1425 bicg(u) 423 1341

On 4×4 CGRA with two registers per PE, Rewire achieves 4.2x
and 13.5x compilation time reduction compared to PF∗ and SA,
respectively. On 8×8 CGRA with four registers per PE, Rewire
achieves 2.47x and 6.97x compilation time reduction compared
to PF∗ and SA, respectively. Overall, Rewire achieves significant
compilation time reduction compared to other approaches. The main
reason is that Rewire maps multiple nodes in one go and does
not need numerous iterations to map each node individually and
backtrack (remap) if it fails to map future nodes. Moreover, the
compilation time on 8×8 CGRA is significantly higher than 4×4
CGRA due to the larger search space, but Rewire can still achieve
substantial compilation time reduction compared to the other two
approaches, demonstrating the efficiency of the pruning algorithm.

Table I shows the number of iterations for PF∗ and SA on 4×4
CGRA with four registers per PE and 4×4 CGRA with one register
per PE. In each iteration, both methodologies select one node to
unmap. As the mappers need to generate a new initial mapping for
each explored II value, we use the average number of remapping
iterations from the start II to the final mapped II. Both PF∗ and SA
need a significant number of single-node mapping iterations, while
Rewire only needs to construct the right cluster of multiple nodes
and amend their invalid mappings in one shot. SA needs much more
remapping iterations than PF∗. The reason is that PF∗ evaluates all
the placement candidates for each single-node remapping and selects
the best one, while SA selects one candidate randomly. Thus, PF∗

has a better chance of success. Moreover, PF∗ and SA generally
need more remapping iterations on CGRA with one register per PE
compared to CGRA with four registers per PE. The reason is that
the former has fewer routing resources and needs more iterations
to find a mapping. Rewire might need multiple iterations to build
U as we progressively append the node to U . However, U cannot
be bigger than the size of DFG, and we have limited the size to
15, as mentioned previously. Hence, Rewire takes significantly fewer
iterations than both methodologies.

In summary, for almost all applications and CGRA combinations,
Rewire substantially outperforms PF∗ and SA in mapping quality (ap-
plication performance) and compilation time. With the consolidated
routing paradigm, Rewire scales with CGRA size and complex DFGs
and well handles architectures with limited routing resources.

VI. CONCLUSION

Existing mapping approaches place and route nodes individually,
limiting the ability to comprehensively coordinate multi-node map-
ping. Rewire presents a consolidated routing paradigm for CGRA
mapping that effectively handles complex multi-node dependencies.
By mapping multiple nodes in one shot through propagation and con-
solidation of routing information, our approach achieves significant
improvements in both performance and compilation time compared
to two popular mappers.
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