SWAT: Scalable and Efficient Window Attention-based
Transformers Acceleration on FPGAs

Zhenyu Bai, Pranav Dangi, Huize Li

B Tulika Mitra®™

School of Computing, National University of Singapore, 119077, Singapore
{zhenyu.bai, dangi, huizeli}@nus.edu.sg, tulika@comp.nus.edu.sg

ABSTRACT

Efficiently supporting long context length is crucial for Transformer
models. The quadratic complexity of the self-attention computa-
tion plagues traditional Transformers. Sliding window-based static
sparse attention mitigates the problem by limiting the attention
scope of the input tokens, reducing the theoretical complexity from
quadratic to linear. Although the sparsity induced by window at-
tention is highly structured, it does not align perfectly with the
microarchitecture of the conventional accelerators, leading to sub-
optimal implementation. In response, we propose a dataflow-aware
FPGA-based accelerator design, SWAT, that efficiently leverages
the sparsity to achieve scalable performance for long input. The
proposed microarchitecture is based on a design that maximizes
data reuse by using a combination of row-wise dataflow, kernel
fusion optimization, and an input-stationary design considering the
distributed memory and computation resources of FPGA. Conse-
quently, it achieves up to 22X and 5.7X improvement in latency and
energy efficiency compared to the baseline FPGA-based accelerator
and 15X energy efficiency compared to GPU-based solution.

1 INTRODUCTION

Transformer-based models [17], known for their self-attention
mechanisms, are leading advancements in artificial intelligence. A
typical transformer model contains linear layers, multi-head atten-
tion layers, and Feed-Forward Networks (FFN). The self-attention
process involves first transforming each input token into the Query
(Q), Key (K), and Value (V) vectors. Then it computes the dot prod-
ucts of Q and K for each token S = Qx K7, determining the similar-
ity scores S between them. These scores are then normalized using
a softmax function to form probabilities S’ = SoftMax(S). Finally,
the V vectors are multiplied by these probabilities and summed up
to produce the final output Z = S’ X V. This mechanism allows each
token to contextually relate to every other token in the input, which
is crucial for tasks requiring complex contextual understanding.
However, a notable impediment of this model is its quadratic com-
plexity, which necessitates each sequence element to be compared

Acknowledgement: this research is partially supported by the National Research
Foundation, Singapore under its Competitive Research Program Award NRF-CRP23-
2019-0003 and AMD Research gift.

The corresponding authors are Huize Li and Tulika Mitra.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Association for Computing Machinery.

ACM ISBN xxxx...$15.00

https://doi.org/10.1145/000000.0000000

FLOPs Breakdown MOPs Breakdown
0.8 e L :
£0.6 | || | 4 FLIHT B
£0.4 - H H =L 1 FEE e -
0.2 SR = |
0 — |
D oV A D o SV oD D 0 WV ad D o SV oD
PP HS %@\&% PP RS %"9\8’%
Input Length Input Length
| DLiner 0 Attention CTFFN |

Figure 1: Floating point operations (FLOPs) and memory
operations (MOPS) breakdown for different input lengths

K| Kiw K Kisw] .‘
|| —

ST A4 ’—‘ *

h 5

7

seq len seq len
(a) Window Attention (b) sliding chunks implementation

Figure 2: Sliding window attention and its SOTA sliding
chunks implementation

against every other element. This complexity becomes particularly
intractable in tasks with long contexts, such as document-level
translation or long-form questions, due to the computational de-
mands [8]. This issue is illustrated in Figure 1 where the floating
point operations (FLOPs) and memory operations (MOPs) for atten-
tion computation grow with increasing input length and become a
critical performance bottleneck.

To address this, the sliding window attention has been intro-
duced [1]. This method limits the attention of each token to a
fixed subset of adjacent tokens, thereby reducing the theoretical
complexity from quadratic to linear. From the computational per-
spective, this method introduces a structured pattern of sparsity in
the attention computation, as shown in Figure 2a where each token
attends to w tokens before and after, forming a diagonal sparsity
pattern of width 2w. This sparsity manifests as a mask applied to
the S and §’ matrices, resulting in a Sampled Dense-Dense Ma-
trix Multiplication between Q and K, and a Sparse-Dense Matrix
Multiplication between S’ and V. Despite the structured nature of
this sparsity pattern, unlike dense operations, it is not perfectly
aligned to be seamlessly filled into the vector/matrix math lanes
of conventional accelerators. Instead, it requires fine-grain con-
trol of the microarchitecture for optimal performance that is not
provided by existing accelerators. For instance, the Tensor Cores
in Nvidia GPUs for accelerating dense matrix multiplications can
only be accessed through higher-level programming models such
as CUDA C++ API or C libraries, limiting micro-architecture level

https://doi.org/10.1145/000000.0000000

Execution time (ms) per attention Memory(MB) usage per attention

15 T \ \ \ \ = T T T T
1,000 -
10 + -
5| | 500 =
0 7% > °o‘ b‘ ‘b‘ bJ - ‘ 7’1) » % b‘ ‘b‘ bJ -
5N \Q‘b ‘19% 590' ‘b\q ‘cn;b N \Q‘b ’19% bg") %\Q k;b%
Input Length Input Length
—a— Dense (GPU|FP32) —&— Sliding Chunks (GPU|FP32)
—e— SWAT (FPGA|FP16) —e— SWAT (FPGA|FP32)

Figure 3: Execution time and memory usage of existing ap-
proaches Dense and Sliding Chunks compared to SWAT

control. The current state-of-the-art implementationl, known as
sliding chunks, addresses this limitation by dividing the sparse op-
eration into smaller dense operations across chunks of width 2w,
as illustrated in Figure 2b.

Yet, this approach leads to redundant computations in the form
of the overlapping regions (gray regions in figure 2b) and corner
areas (dashed regions in the figure) of each chunk. The ratio of these
redundant computation is given by % - Wlnkﬂ where |chunks| is
the number of chunks. This ratio increases and approaches rapidly
to %, i.e., 50% redundancy. Moreover, eliminating these redundant
calculations is challenging as the correctness of the results must be
ensured, which further increases the computational overhead. In
Figure 3, We compare the execution time and memory usage? of
the sliding chunks with the naive dense operations approach on an
AMD MI210 GPU. The result indicates that while the sliding chunks
approach significantly reduces memory usage, the computational
time remains similar to the dense method, primarily due to the
redundant computation but also due to the overhead for increased
frequency of small kernel launches on GPU.

Motivation & Contribution: We aim to refine the implementa-
tion of sliding window attention by focusing on the efficient com-
putation of its structured, yet imperfectly aligned sparsity, which
requires precise control over computation and memory operations.
We propose a novel hardware design using Field-Programmable
Gate Arrays (FPGAs). FPGAs are favored over ASICs because their
programmability allows for the support of various attention mech-
anisms such as global attention and random attention, enhancing
the model accuracy across different tasks. Additionally, FPGAs are
readily available on cloud platforms, e.g., Microsoft Azure[2] and
Amazon AWS, offering a cost-effective deployment solution.

The implementation of the sliding window attention has to con-
sider the computation workload and how it is mapped onto the
distributed memory and computation resources of the FPGA fabric
for optimal performance. Therefore, we deeply analyze the data
flow of the sliding window attention, which reveals that a combi-
nation of window attention, row-major dataflow, and kernel fusion
can significantly enhance off-chip transfer efficiency, ensuring each
data item is loaded just once. We propose employing a fixed-size
First-In-First-Out (FIFO) buffer to manage the sliding window in-
put, leading to an input-stationary data flow. Here, the input data

'Hugging Face’s Longformer implementation, as per the original Longformer paper[1].
2The experimental setup will be presented in Section 5.

remains in the buffers after being loaded while necessary computa-
tional resources are placed around them by the micro-architecture
design. This approach better utilizes the on-chip memory blocks’
bandwidth and minimizes on-chip data movement, aligning well
with the distributed memory and computation units of the under-
lying FPGA fabric and therefore achieving higher performance.
As demonstrated in Figure 3, SWAT exhibits linear scaling of
memory use with input length. SWAT achieves 6X energy efficiency
to conventional GPU-based solutions for comparable execution time
for input length below 8K tokens and shows superior performance
for longer input. When compared to a baseline FPGA accelerator,
SWAT achieves 22X and 5.7X improvements in latency and energy
efficiency, respectively (with 16384 tokens). Moreover, SWAT shows
better scalability compared to both GPU and FPGA solutions.

2 BACKGROUND & RELATED WORKS

2.1 Efficient Transformers

Efficient Transformers [16] are the variants of the vanilla Trans-
former model, aiming at improving the computational efficiency.
Two main strategies underlie these improvements. The first seeks to
approximate the traditional SoftMax attention mechanisms with al-
gorithms of lower computational complexity. For instance, FNet [9]
and Linformer [18] substitute the standard attention calculations
with Fourier Transforms and linear projections, respectively. The
second pathway, sparse attention, aims to reduce attention opera-
tions while preserving the SoftMax-based attention formulation.

2.2 Sparse attention

Sparse attention can be further classified into two categories. Dy-
namic mathods [10, 12, 13] evaluate or predict attention scores
in real-time, prioritizing the most significant ones for subsequent
computation. These methods, while adaptable, introduce irregu-
lar sparsity patterns that hinder efficient computation. In contrast,
static methods [1, 3, 20] pre-define attention patterns, achieving
structured sparsity at the cost of some accuracy. The structured
sparsity can be leveraged for predictable performance gains with
static optimization and dedicated hardware support.

Sliding window attention [1], is the key component of nearly
all static sparse attention approaches. This technique limits each
token’s attention to a predetermined number of adjacent tokens,
based on the research findings that show the substantial impact of
the local context within the attention mechanism [11, 19].

2.3 Accelerators for static structured attention
ASIC-based accelerator SALO [14], designed explicitly for the Long-
former model, utilizes structured sparsity in window attention with
a 2D square systolic array. However, it is limited to the basic Long-
former setup. Furthermore, the systolic array’s square structure re-
quires square tiling of the input and the intermediate matrices. This
tiling is suboptimal for row-wise SoftMax operations, necessitating
supplementary computations outside the accelerator’s capabilities.
Butterfly [7] is an FPGA-based accelerator for efficient trans-
former models that utilizes a static butterfly sparsity pattern. No-
tably, this pattern can be approximated through Discrete Fourier
Transformations. However, this FFT-based approximation of the
original SoftMax attention has not consistently demonstrated reli-
able accuracy across various downstream tasks. Butterfly attempts

to mitigate this by combining vanilla SoftMax attention layers with
FFT-based attention layers. Our analysis in Section 5.2 reveals that
incorporating at least one conventional attention mechanism is
crucial for acceptable accuracy. Unfortunately, this traditional at-
tention’s quadratic complexity leads to suboptimal performance
for the accelerator when managing long input sequences.

Iterationi Iterationi+1

[iteration i Vi next to evict next tp evict
[iteration i+1 V: T AN B
data reuse i KBufll-ll i I1+1| |1+2I i I1+1l
Vi1
K [R Ko Kiva] Vi s LI [LLI]

v
fi+2] i fi+1]

next to evict

VBuf [i1] i |+

ISLH Sii [Sii+1 Z;
si+1,iS|+1,;+1S|+1,1+2| Zi+l

(a) Data-reuse

next to evict

(b) Fixed-length FIFO
Figure 4: Data management for window attention

3 DATAFLOW ANALYSIS & OPTIMIZATION

3.1 Enabling kernel fusion

The standard implementation of Transformer models involves a
sequential three-step computation- QK multiplication, SoftMax,
and SV multiplication- primarily due to the row-wise data depen-
dency of the SoftMax operation. As on-chip memory is typically
insufficient for handling the entire computation in one go, each
step is broken down into smaller tile-wise operations, leading to re-
dundant off-chip data transfers for loading and storing the tile-wise
intermediate results (the tiles of S and S”).

Kernel fusion [5], as an optimization technique, aims to consoli-
date these steps into a single operation for each input tile, thereby
reducing off-chip data transfers. However, the inherent row-wise
dependency in the SoftMax operation presents a significant chal-
lenge to this fusion. By reinterpreting the SoftMax operation, we
can divide it into two components: the numerator that does not
depend on the other elements of the row and the denominator
that depends on the sum of the exponential of all elements of the
same row. By viewing the denominator as a scaling factor, it can be
placed after the third step Z = §’ X V as shown in Equation 1. This
restructuring allows for the fusion of the three operations into a
unified row-wise kernel

exp(si,n)
= ZS i = ZO SH exp(S;)
(1)
= (m)(z exp(Sin)Vn,j)

3.2 Row-major dataflow & Data reuse

In the standard three-step computation of transformers, indepen-
dent execution of each step limits the benefits gained from tiling
strategies or dataflow optimization. However, in the context of slid-
ing window attention, these three computations share a common
sparsity pattern, as depicted in Figure 2a. When considering the
attention computation for a given input row of Q, say Q;, and the
subsequent row vector Q;41, we observe significant data reuse of the
attended rows of K (columns of KT) and V, as shown in Figure 4a
for the window width w = 1. The most effective way to harness this
data reuse is by adopting a row-major dataflow. Although kernel

Attetion Core

|
-
KN g e B B

Final Z

m AttetionCore +— Zo Zl Zz

Figure 5: input-stationary dataflow

fusion postpones the row-wise dependencies of SoftMax, it does not
eliminate them. A row-major approach, therefore, becomes advan-
tageous, minimizing the memory needed for storing intermediate
results S and S’, which now can be stored in on-chip memories.

To capitalize on this data reuse opportunity, SWAT employs
fixed-size on-chip FIFO buffers for the K and V inputs, while the
Q input changes for each row. This setup, illustrated in Figure 4b,
features a buffer with a moving pointer that indicates the next
element to be replaced, ensuring data is loaded exactly once and
achieving 100% off-chip memory transfer efficiency.

3.3 Input-Stationary dataflow for FPGA

The previous sections discussed SWAT’s dataflow at the algorith-
mic level. Now, it’s important to consider how this dataflow is
mapped onto the FPGA’s microarchitectural design. The following
key aspects are considered. First, FPGAs have distributed memory
(BRAMs and URAMs) and computing elements (LUTs, DSP slices)
across the chip. Secondly, by utilizing fixed-size FIFO buffers for
input data, as exhibited in Figure 4b, input data mostly remains
stationary. Finally, kernel fusion ensures a consistent pairing of
(Kj,Vj) for each Key/Value row j € [i — w, i + w]. This coherency
is apparent both in the fusion equation (see Equation 1) and the
FIFO eviction process (Figure 4b). From the algorithm level, this is
because the same input sequence indexes Key and Value matrices
according to the self-attention mechanism.

Consequently, we adopt an input-stationary dataflow. In this
design, input data remain in their respective buffers, and computa-
tional units are positioned nearby. This is different from conven-
tional accelerator designs, where the data is brought to the compu-
tational units. Figure 5 illustrates this dataflow for one row of input
Q within the input stationary paradigm. An Attention Core—our ter-
minology for the minimal computational unit—consists of a buffer
holding one row of K (Kj), and one row of V (V;). Upon the arrival
of a new row of Q, denoted as Q;, the multiplication with Kj is
performed locally within each Attention Core: S; j = Q; - K. Subse-
quently, the numerator of the SoftMax computation is performed:
SI{! ;= exp(S; ;) according to the kernel fusion. For the multipli-
cation of § with V, we adhere to the input-stationary paradigm,
where each S’ element multiplies with the corresponding V row
stored in the same attention core. This operation yields one slice of
Z per attention core. The slices produced by all attention cores are
summed up outside of the attention cores to form the final result Z.

3.4 Dataflow compatibility for ASIC

The dataflow optimization techniques we have developed, particu-
larly row-major dataflow and kernel fusion, are also applicable to
ASIC-based implementations, which, unlike FPGAs, are not con-
strained by the distribution of computation and memory resources.
While ASICs can potentially offer superior performance, they lack
the flexibility of FPGAs, which is crucial for adapting to the evolving
landscape of Transformer models.

iAttention Core
i E Kin :

o4

ACC

f—
A

[
.

E CC]I
 —t—

X 2w(512)

DRAM
HBM

LOAD QK i sv

........... EEE ot VOOV SOV SO

ZRED1

ROWSUM1

ZRED2

{ ROWSUM2 i DiV & oOut

Figure 6: SWAT Microarchitecture design

4 ARCHITECTURE DESIGN

Figure 6 shows the architecture design of SWAT by following the
dataflow design outlined in the previous section. The architecture
makes use of a pipeline execution to improve resource usage effi-
ciency. The functions of the pipeline stages are as follows:

LOAD Stage: Data from the main memory is fetched and loaded
into the K/V buffers of the attention cores. For the standard window
width configuration (2w = 512), 512 attention cores are instantiated.
Each K/V buffer uses one BRAM block, storing a full row of K or
V of size H(head dimensionality). According to the K/V buffer
replacement policy, the entire K/V buffer of one attention core is
refreshed per attention of one row. The selection signal is computed
by the row index i modulo the window size according to the FIFO
policy. The Q row is loaded during this stage and distributed across
all attention cores.

QK Stage: This stage calculates the dot product between the K
row and the Q row in the attention cores. Due to FPGA constraints,
the FP16 multiply-accumulate (MAC) operation is pipelined at an
Initial Interval (II) of 3 cycles. Forcing the MAC to be pipelined at
fewer cycles will significantly increase resource usage.

SV Stage: Following the QK stage, the SV stage computes the
exponential of the S values and multiplies these with the corre-
sponding V elements within the same attention core, generating a
slice of Z per attention core, stored in ZBuf. The FP16 multiplica-
tions are executed over an II=3 pipeline. While a lower II is feasible,
it does not improve overall performance due to the II=3 of QK stage
and would lead to increased resource usage for pipelining.

Z Reduction: This two-phase stage sums the individual Z slices
from each attention core to form the complete output Z vector.
For a standard configuration of H = 64, parallel accumulation
over H channels (because Z has H elements) would result in a
stage duration of approximately 3 X 2w which is 8x that of QK
and SV stages of 3 X H cycles. To maintain pipeline balance, the
reduction is split into two substages, ZRED1 and ZRED2. In ZRED1,
Z slices are grouped by each H of them and processed with H
accumulation channels per group, which results in approximately
an overall latency of 3X H cycles. ZRED2 then combines the outputs
from ZRED1 into the final Z vector.

Row sum: Operating in parallel to Z reduction, the Row Sum
stage computes the sum of S” values from the attention cores. With

2w elements of §’, this stage employs a similar two-stage approach
as Z reduction for timing balance, comprising ROWSUM1 and
ROWSUM2.

Division and Output: The final stage divides each Z element
by the corresponding sum of the S’ row, as per the post-fusion
algorithm. The division is pipelined at a 2-cycle interval because
better throughput is unnecessary. The output vector is then written
back to HBM or DRAM.

Table 1 presents the timing for each pipeline stage based on
the Xilinx Vitis HLS synthesis tool report. The design uses half-
precision 16-bit floating-point data, with default settings of head di-
mension H = 64 and window width 2w = 512. The overall pipeline
is well balanced and timed at 201 cycles, predominantly due to the
longer stage, QK.

Table 1: The timing (in cycles) of the pipeline stages

ZRED1 ZRED2
LOAD | QK | SV 195 66 DIV&OUT
66 201 | 197 | ROWSUM1 | ROWSUM2 179
195 27

4.1 Parameterized design

SWAT’s architecture integrates basic window attention with addi-
tional attention mechanisms to improve accuracy across various
tasks. One such mechanism is global attention, which designates
important global tokens to be attended by all input tokens. Models
like Longformer [1] and ViL [21] have demonstrated the effective-
ness of global attention in enhancing accuracy for text classification
and vision tasks, respectively. Another mechanism, random atten-
tion, introduced by the BigBird model [20], generally improves
model accuracy by incorporating randomly (but statically) selected
additional tokens for each input token to attend to.

random Mglobal Mwindow

design time

parameters
global window random
attn. cores attn. cores attn. cores

.. N

KVloaded KV loaded KV loaded

at begin according to according to
row index random attention

parameters

Figure 7: Parameterized Design of SWAT

As illustrated in Figure 7, SWAT supports these mechanisms
through design-time parameters: the indices of the random and
global attention tokens, as well as the width of the sliding window,
are set as synthesis parameters. SWAT’s architectural design can
adapt to these additional attention patterns with minimal changes.
Specific subsets of attention cores are allocated for computing global
and random attention with respect to the parameters. Attention
cores dedicated to global attention have fixed K and V buffers, align-
ing with the consistent nature of global tokens. These buffers are
pre-loaded prior to the attention computation, minimizing perfor-
mance impact. In contrast, attention cores handling random atten-
tion update their K and V buffers dynamically, which increases the
latency of the LOAD stage to 195 cycles from the initial 66. How-
ever, thanks to the pipelined design of our system, this increase in
latency does not hamper overall execution speed.

4.2 FPGA resources utilization
Table 2 provides a detailed account of resource usage on the Alveo
U55C FPGA post-synthesis. We present four configurations: the
standard Longformer setup of pure window attention with FP16
datatype and 512 attention cores; the BigBird configuration of 192
sliding window tokens, 192 random attention tokens, 128 global
tokens, i.e. total 512 tokens per row with FP16; the same BigBird
configuration but with dual pipelines for parallel processing two
heads (which also demonstrates the potential of handling 1024
tokens per row in different attention configurations); and an FP32
version for later comparative analysis with GPUs.
Table 2: Resources usage on U55C/VCU128

Design DSP | LUT | FF | BRAM

FP16 (512 attn) 19% | 38% | 11% | 25%

FP16 (BigBird 512 attn) 19% | 33 % 11 25%

FP16 (BigBird 2 x 512 attn) | 38% | 66 % | 22 50%

FP32 (512 attn) 49% | 67% | 23% 25%

Butterfly (FP16, 120-BE) 32% | 79% | 63% 49%

5 EVALUATION

5.1 Butterfly accelerator baseline

The Butterfly Accelerator(7] is the only FPGA-based accelerator for
static sparse attention—the butterfly sparsity[3]- and serves as our
baseline. It incorporates two key hardware components: the FFT-
BTF (Fast Fourier Transform-Butterfly) engine for approximating
the standard SoftMax attention using Fourier transform; and the
ATTN-BTF (Attention-Butterfly) engine that behaves just as the
standard SoftMax attention. The FFT-BTF offers increased speed
at the expense of some accuracy, whereas the ATTN-BTF ensures
accuracy with slower operation. The hybrid use of FFT and SoftMax
layers in Butterfly’s software model is tuned for specific datasets
to achieve a balance between speed and accuracy through design
space exploration. However, the performance study of the Butterfly
Accelerator in [7] focuses only on the full-FFT version.

5.2 Accuracy comparison with Butterfly

To draw a fair comparison with SWAT, we delve into the accuracy-
performance tradeoff in Butterfly’s adaptable design. We evaluated
model accuracies using the Long-Range Arena (LRA) benchmark
datasets [15], which are tailored for efficient transformer models.
Table 3 shows the accuracy advantage of SWAT implementations

Table 3: Accuracy gain of window attention-based models
(Longformer and BigBird supported by SWAT) and baseline
Butterfly models with one or two layers (BTF-1, BTF-2) re-
placed by the vanilla SoftMax attention on LRA datasets
compared to Butterfly’s full-FFT attention
Vision based Text based
Model Image | PathFinder | Text | ListOps | AVG.
Longformer | +15.26% +3.03% +0.17% | +1.61% | +5.02%

Bigbird +13.87% +8.16% +1.34% | +2.03% | +6.35%
BTF-1 +6.26% +2.85% +0.01% +2.4% +3.01%
BTF-2 +8.95% +2.14% +1.05% | +2.42% | +3.64%

Table 4: Top-1 accuracy of

PixelFly (butterfly model) Qigi 0 SWAT vs. BTF-1 M
against ViL (supported '%35)([SWAT vs. BTF-2
11313; [56\]/VAT) on ImageNet- fzgz i
820x |-
Model Params | Top-1 | '€ 15x [~

ViL-Tiny 67M | 76.7% | =10x |- H H
i -M- A AR &
Pixelfly-M-S | 59M | 72.6% — I‘IH |_|

PViLl'gmf/“S 2“% 82.47% 1024 2048 4096 8192 16384
ixelfly-V- 16.9. 77.5% Input Length

Pixelfly-M-B | 17.4M | 76.3% Figure 8: Speedup (times) of

Pixelfly-V-B | 28.2M | 78.6% .
i Med 3970 T 83.5% SWAT over Butterfly versions

over the purely FFT-layered Butterfly model, particularly in vision
tasks. Additionally, we observe an accuracy improvement in the
Butterfly model when replacing one or two last FFT layers with
traditional SoftMax attention layers (respectively noted as config-
uration BTF-1 and BTF-2), underscoring the accuracy benefit of
incorporating even a single layer of traditional SoftMax attention.
However, Longformer and Bigbird still show better average accu-
racy compared to BTF-1 and BTF2, especially in vision tasks. For
the accuracy consideration, we will use BTF-1 and BTF-2 in the
performance analysis in the next section.

In addition to the Butterfly model comparison, we explored the
effectiveness of the sliding window attention versus FFT-based
approximations in vision-specific tasks. Our analysis, detailed in
Table 4, compares the accuracy of the state-of-the-art ViL (Vision
Longformer) model [21], which is supported by SWAT, against the
SOTA FFT-attention-based Pixelfly model [4]. This comparison is
particularly insightful as both models operate with a similar number
of parameters. The results highlight that the ViL model achieves
superior accuracy on the ImageNet-1K dataset, underscoring the
effectiveness of sliding window attention in vision applications.

5.3 Performance comparison with Butterfly
Both SWAT and Butterfly accelerators were synthesized on FPGAs
of the same characteristics®. They are also using a similar number
of FPGA resources in FP16 precision, as shown in Table 2. Using the
cycle-accurate simulator provided by Butterfly, we independently
evaluated the performance of the FFT-BTF engine and ATTN-BTF
engine. As the original performance evaluation of Butterfly only
considered the full-FFT configuration, we project its performance
by computing the optimal ratio of resource distribution for FFT-BTF
and ATTN-BTF engines at different input lengths.

3U55C (SWAT) and VCU128 (Butterfly) have the same number of logical resources

— _g———8—=
1 I I I -
1024 2048 4096 8192 16384
Input Length
SWAT FP16 vs. BTF-1 FP16 —A SWAT FP16 vs. BTF-2 FP16
—o— SWAT FP16 vs. GPU dense —@— SWAT FP16 vs. GPU sliding-chunks
—— SWAT FP32 vs. GPU sliding-chunks —— SWAT FP32 vs. GPU dense

Figure 9: Energy Efficiency of SWAT against SOTA GPU and
FPGA implementations

A————A—
|

SWAT’s latency is based on its pipeline latency as stated earlier
in Table 1. For FPGA implementations, both accelerators produce
consistent operation latencies regardless of the concrete values of
input data, number of heads, layers, and batches. Total attention
time is proportional to the execution time of a single head, which
has an arbitrarily chosen dimensionality of 64. Figure 8 shows the
speedup of SWAT in Longformer or Bigbird configuration against
the Butterfly accelerator in BTF-1 (1 softmax layer) and BTF-2 (2
softmax layers) configurations across various sequence lengths,
from 1024 to 16384 tokens. Due to the poor scalability of the vanilla
SoftMax attention, the Butterfly accelerator exhibits declining per-
formance with long input sequences. At the standard Longformer
configuration of 4096 input tokens (the accuracies in Table 3 are
obtained at this configuration), SWAT performs 6.7x and 12.2x
better respectively over BTF-1 and BTF-2. Due to the faster com-
putation of SWAT, it also outperforms Butterfly from the energy
perspective. We evaluate the power consumption of SWAT using
the Xilinx Power Estimator. Figure 9 shows the energy efficiency
(energy consumption per attention) of SWAT against BTF-1 and
BTF-2. SWAT shows an increasing energy efficiency advantage
along the input length, attaining 11.4X and 21.9% over BTF-1 and
BTF-2 at 16384 context length, respectively.

5.4 Comparison with GPU
We benchmarked SWAT against GPU implementations with the
same Transformer model, using AMD’s rocBLAS and MIOpen li-
braries for tensor multiplication and SoftMax operation in the
sliding chunks and the naive dense approach which have been
discussed in Section 1. We measured the execution time while ex-
cluding the overhead due to the first kernel launch and averaged
the latency over 100 attention computations for consistency. To
compare fairly with GPU implementation, we synthesized an FP32
version of SWAT, which exhibits a higher pipeline latency of 264
cycles due to the FPGA’s limitation on the FP32 MAC operation.
The execution time comparison has been shown previously in Fig-
ure 3. At short input length, SWAT demonstrates better latency,
which can be partly ascribed to the underutilization of the GPU in
our single-batch experimental setup. However, as the input length
reaches 4k, the GPU’s execution time begins to rise sharply, in-
dicating its full utilization. In contrast, SWAT exhibits a linearly
increasing execution time in relation to input length, with similar
performance of GPU between 4k and 8k input length but much
better scalability for longer input length.

A key aspect of SWAT is its energy efficiency, which is notably
remarkable when compared to MI210, which has a power con-
sumption of 300 watts. This efficiency is highlighted in Figure 9,

where SWAT’s energy efficiency is compared against MI210 in both
FP32 and FP16 precision. In FP32 precision, particularly considering
the under-utilization of the GPU at shorter input lengths, SWAT
achieves an impressive 20X energy efficiency advantage at an input
length of 1k. However, as the GPU becomes better utilized with
longer input sequences, SWAT’s relative energy efficiency advan-
tage decreases, reaching a minimum of 4.2x at an input length of
8k. SWAT’s scalability, however, becomes increasingly pronounced
with longer context lengths, and hence SWAT’s superior energy effi-
ciency grows, reaching up to approximately 8.4x that of GPU-based
implementations at 16k input length.

6 CONCLUSION

We introduced SWAT, an FPGA-based accelerator specifically de-
signed for window attention-based transformer models. Our ap-
proach is rooted in a comprehensive analysis of window attention
workloads, leading to an input-stationary dataflow. This dataflow
combines the advantages of FPGA’s inherent distributed memory-
and-computation architecture with a row-major dataflow and ker-
nel fusion optimization. This unique combination effectively lever-
ages the diagonal-structured sparsity inherent in sliding window
attention, resulting in significantly improved performance. For long
context lengths, SWAT stands out by delivering superior perfor-
mance and energy efficiency over both the current SOTA FPGA-
based static sparse attention accelerator and server-class GPUs.

REFERENCES

[1] Iz Beltagy et al. 2020. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.
Adrian M Caulfield et al. 2016. A cloud-scale acceleration architecture. In MICRO-
49. IEEE, 1-13.
[3] TriDao et al. 2019. Learning fast algorithms for linear transforms using butterfly
factorizations. In ICML. 1517-1527.
[4] TriDao et al. 2021. Pixelated butterfly: Simple and efficient sparse training for
neural network models. arXiv.
[5] TriDao et al. 2022. Flashattention: Fast and memory-efficient exact attention
with io-awareness. NeurIPS-35.
[6] Jia Deng et al. 2009. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition. leee, 248-255.
[7] Hongxiang Fan et al. 2022. Adaptable Butterfly Accelerator for Attention-based
NN via Hardware and Algorithm Co-design. In MICRO-55. IEEE, 599-615.
[8] Sehoon Kim et al. 2023. Full Stack Optimization of Transformer Inference. In
Architecture and System Support for Transformer Models (ASSYST@ ISCA 2023).
[9] James Lee-Thorp et al. 2021. Fnet: Mixing tokens with fourier transforms. arXiv
preprint arXiv:2105.03824.
[10] Ligiang Lu et al. 2021. Sanger: A co-design framework for enabling sparse
attention using reconfigurable architecture. In MICRO-54.
[11] NikiParmar et al. 2018. Image transformer. In International conference on machine
learning. PMLR, 4055-4064.
[12] Yubin Qin et al. 2023. FACT: FEN-Attention Co-optimized Transformer Architec-
ture with Eager Correlation Prediction. In ISCA-50. 1-14.
[13] Zheng Qu et al. 2022. Dota: detect and omit weak attentions for scalable trans-
former acceleration. In ASPLOS-27. 14-26.
[14] Guan Shen et al. 2022. SALO: an efficient spatial accelerator enabling hybrid
sparse attention mechanisms for long sequences. In DAC-59. 571-576.
Yi Tay et al. [n. d.]. Long range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006.
[16] Marcos Treviso et al. [n.d.]. Efficient methods for natural language processing:
A survey. TACL 11, 826-860.
Ashish Vaswani et al. 2017. Attention is all you need. NeurIPS 30.
Sinong Wang, , et al. 2020. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768.
[19] Haoran You et al. [n.d.]. Vitcod: Vision transformer acceleration via dedicated
algorithm and accelerator co-design. In HPCA 2023. 273-286.
Manzil Zaheer et al. 2020. Big bird: Transformers for longer sequences. Advances
in neural information processing systems 33, 17283-17297.
[21] Pengchuan Zhang et al. [n.d.]. Multi-scale vision longformer: A new vision
transformer for high-resolution image encoding. In ICCV 2021. 2998-3008.

[2

=
&

=
&2

IS
=

	Abstract
	1 Introduction
	2 Background & Related works
	2.1 Efficient Transformers
	2.2 Sparse attention
	2.3 Accelerators for static structured attention

	3 Dataflow Analysis & Optimization
	3.1 Enabling kernel fusion
	3.2 Row-major dataflow & Data reuse
	3.3 Input-Stationary dataflow for FPGA
	3.4 Dataflow compatibility for ASIC

	4 Architecture design
	4.1 Parameterized design
	4.2 FPGA resources utilization

	5 Evaluation
	5.1 Butterfly accelerator baseline
	5.2 Accuracy comparison with Butterfly
	5.3 Performance comparison with Butterfly
	5.4 Comparison with GPU

	6 Conclusion
	References

