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Abstract

We present an efficient framework for dynamic reconfiguration of application-specific custom instructions.

A key component of this framework is an iterative algorithm for temporal and spatial partitioning of the loop

kernels. Our algorithm maximizes the performance gain of an application while taking into consideration the

dynamic reconfiguration cost. It selects the appropriate custom instructions for the loops and clubs them into one

or more configurations. We model the temporal partitioning problem as a k-way graph partitioning problem. A

dynamic programming based solution is used for the spatial partitioning. Comprehensive experimental results

indicate that our iterative partitioning algorithm is highly scalable while producing optimal or near-optimal (99%

of the optimal) performance gain.

1 Introduction

Current generation embedded systems designs are characterized by the increasing demand on higher performance

under stringent time-to-market constraints. In this context, application-specific customizable processor cores strike

the right balance between performance and design efforts. A customizable processor is, in general, configurable

with respect to the micro-architectural parameters. More importantly, a customizable processor may support

application-specific extensions of the core instruction set. Custom instructions encapsulate the frequently oc-

curring computation patterns in an application. They are implemented as custom functional units (CFU) in the

datapath of the existing processor core. CFUs improve performance and energy consumption through paralleliza-

tion and chaining of operations. Some examples of commercial customizable processors include Lx [14], ARCTM

core [2], Xtensa [15] and Stretch S5 [3].
∗A preliminary version of this paper appeared in the proceedings of the 7th ACM/IEEE International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES) 2007
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However, the total area available for the implementation of the CFUs in a processor is quite limited. Therefore,

we may not be able to exploit the full potential of all the custom instructions in an application. This is particularly

true if the application consists of a large number of kernels and each kernel requires unique custom instructions

— a scenario that is quite common in high-performance embedded systems. Furthermore, it may not be possible

to increase the area allocated to the CFUs due to the linear increase in the cost of the associated system. In this

context, runtime reconfiguration of the CFU fabric appears quite promising. Here the set of custom instructions

implemented in the fabric can change over the lifetime of the application. For multi-kernel applications, runtime

reconfiguration is specially attractive, as the fabric can be tailored to implement only the custom instructions

required by the active kernel(s) at any point of time. Of course, this virtualization of the CFU fabric comes at the

cost of reconfiguration delay. The designer has to strike the right balance between the number of configurations

and the reconfiguration cost.
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the S5 engine

The S5530 processor is powered by the Stretch S5 engine, 

which incorporates the widely accepted Tensilica® Xtensa® 

RISC processor core and the powerful Stretch Instruction Set 

Extension Fabric (ISEF). The ISEF is a software-configurable 

data path based on proprietary programmable logic. Using the 

ISEF, system designers extend the processor instruction set 

and define the new instructions using only their C/C++ code. 

As a result, developers get the performance of logic with C/C++ 

development simplicity—achieving unprecedented perfor-

mance, easy and rapid development, and significant cost sav-

ings. Stretch’s S5 engine unlocks the following two major RISC 

bottlenecks to provide an unparalleled level of performance:

 Granularity of computations: Unlike typical RISC processors’ 

ALUs that perform low level operations such as shift, add, 

and multiply, the ISEF can execute thousands of operations 

as a single instruction.

 Data and compute bandwidth: The S5 uses 32 128-bit wide 

registers coupled with 128-bit wide access to memory to feed 

data to the ISEF at a bandwidth not available on any other 

processor.

Package

 672 FCBGA – 27mm x 27mm

•

•

•

Stretch  Advantages how this  is Achieved
Design Flexibility Developers use C/C++ to program the pro-

cessor and configure the ISEF with cus-

tom instructions. Configurability enables 

application flexibility allowing developers 

to respond to emerging standards, add 

new features and support new algorithms 

with no redesign.

High Compute 

Performance

“Hot spots” (sequences of operations that 

are executed many times) are reduced to a 

single instruction in the ISEF, providing 

significant performance gains at the same 

clock rate.

Rapid Development and 

Faster Time to Market

Product customization by using only 

C/C++ software simplifies application 

development and eliminates traditional 

long development cycles. This software-

based approach allows system designers 

to quickly adapt to changing requirements 

without changing their hardware.

Lower System Cost A Stretch processor can replace multiple 

DSPs or combinations of processors and 

FPGAs, thereby reducing system and 

design costs. In addition, the software-only 

environment eliminates the complexity of 

hardware/software co-development.

Stretch Inc.
777 E. Middlefield Road
Mountain View, CA 94043
tel 650.864.2700 • fax 650.623.0150
www.stretchinc.com

All information contained in this document is subject to change without notice. 
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Figure 1: Stretch S5530 datapath [28].

To exploit this performance potential, commercial customizable processors supporting dynamic reconfigura-

tion have been proposed. For example, Figure 1 shows the Stretch S5 engine [28] that incorporates Tensilica Xtensa

RISC processor [15] and the Stretch Instruction Set Extension Fabric (ISEF). The ISEF is software-configurable

datapath based on programmable logic. It consists of a plane of arithmetic/logic elements (AU) and a plane of mul-

tiplier elements (MU) embedded and interlinked in a programmable, hierarchical routing fabric. This configurable

fabric acts as a functional unit to the processor. It is built into the processor’s datapath, and resides alongside other

traditional functional units such as the ALU and the floating point unit. The programmer defined application spe-

cific instructions (Extension Instructions) are implemented in this fabric. The core processor issues the Extension

Instructions to ISEF, which performs the computation and returns the result.

The distinguishing aspect of ISEF is that it is run-time configurable and reloadable. If the computation resource

requirement of the custom instructions exceeds the capacity of ISEF, then the instructions can be partitioned into
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different configurations. When a user-defined instruction is issued, the S5 hardware checks to make sure the

corresponding configuration is loaded into the ISEF. If the required configuration is not present in the ISEF, it is

automatically loaded prior to the execution of the user-defined instruction. In summary, the ISEF allows the system

designers to define new instructions at runtime and thus extend the processor’s instruction set.

Currently, it is the programmer’s responsibility to manually choose and define the custom instructions and

the configurations for architectures such as Stretch. Choosing an appropriate set of custom instructions for an

application itself is a difficult problem. Significant research effort has been invested in developing automated

selection techniques for custom instructions. Runtime reconfiguration has the additional complication of both

temporal and spatial partitioning of the set of custom instructions in the reconfigurable fabric. Figure 2 shows

how a C code accelerated with different Custom Instruction Sets (CIS) configures the CFU fabric during run-

time. A CIS is a set of custom instructions corresponding to a program fragment. When the CFU fabric can

accommodate more than one CIS, it is spatially partitioned among them. In Figure 2, configuring the CFU fabric

with both CIS-1 and CIS-2 at the same time constitutes an example of spatial partitioning. The CFU fabric

is temporally partitioned when it is loaded with different configurations during run-time. In our example, the

CFU fabric is configured with CIS-3 after exiting the for loop. Therefore, the custom instructions of the entire

application are partitioned into two temporal configurations: {CIS-1, CIS-2} and {CIS-3}.

int main()

{

…

for(…)
{

…

…

}

…

}

CIS-1

CIS-2

Empty 
CFU fabric

CIS-3

time

Figure 2: Spatial and temporal partitioning of the custom instructions of an application and the state of the CFU

fabric during execution.

In this paper, we develop a framework that starts with an application specified in ANSI-C and automatically

selects appropriate custom instructions as well as clubs them into one or more configurations. We first extract a set
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of compute-intensive candidate loop kernels from the application through profiling. For each candidate loop, we

generate one or more custom instruction-set versions differing in performance gain and area tradeoffs in addition

to the purely software version. The key component of our framework is an iterative partitioning algorithm. The

partitioning algorithm selects appropriate custom instruction-set versions for the loops implemented in fabric and

clubs them into suitable configurations to achieve the highest performance gain. We model the temporal partition-

ing of the custom instructions into different configurations as a k-way graph partitioning problem. We develop a

dynamic programming based pseudo-polynomial time algorithm for the spatial partitioning of the custom instruc-

tions within a configuration. To the best of our knowledge, this is the first work that attempts automated custom

instructions selection in the context of instruction-set extensible processor platforms with dynamic reconfiguration.

Most hardware-software partitioning solutions for FPGAs work at a coarse-grained level (such as task level).

However, as we would like to accelerate complete applications specified in high-level programming languages such

as ANSI-C, we focus on hot loop kernels instead. Note that the reconfiguration cost model at task level [9, 20]

and data flow graph level [27] are simple because the underlying directed acyclic graph representation ensures at

most one reconfiguration between any two nodes. In contrast, our dynamic reconfiguration cost model is complex

as the number of reconfigurations for one loop depends on temporal partitioning of all the other loops. Further-

more, our methodology allows custom instruction sets corresponding to more than one loop to be placed within a

single configuration. Thus spatial partitioning also plays a role in determining the performance gain of the appli-

cation. The only other loop-level temporal partitioning work that we are aware of [24] considers only one loop per

configuration.

The remainder of this paper is structured as follows. Section 2 describes the system design flow. In Section

3, we present the problem formulation and a motivating example. Section 4 details our partitioning algorithm.

Experimental setup and evaluation are described in Section 5. The related work are discussed in Section 6. Finally,

Section 7 concludes the paper.

2 System Design Flow

Figure 3 shows the system design flow. The input to the design flow is the C source code of the application we

want to accelerate. The output is the application accelerated with custom instructions and the synthesized datapath

for each configuration. In the following, we describe each component of this design flow.

Hot loops detection Taking our cue from Amdahl’s law, we focus on the loops that take up a significant portion

of the application’s total execution time. In particular, we define a loop with execution time greater than a certain

percentage (typically ≥ 1%) of the application’s overall execution time to be a hot loop. The hot loop detector

identifies such loops through profiling. Although the total number of loops in an application may be large, we

consider only the hot loops to reduce the computation cost of the partitioning algorithm significantly. At the same

time, the performance gain we obtain is still comparable to the case where all the loops of the application are
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Figure 3: System design flow

considered. This is because the minimal performance gain of the cold loops are more than offset by the high

reconfiguration overhead.

Custom instruction-set versions generation We generate multiple custom instruction-set (CIS) versions for

each hot loop with a trade-off between hardware area and performance gain. A CIS version consists of a set of cus-

tom instructions extracted from the corresponding loop under an area constraint. Each CIS version is characterized

by its area and performance gain. In general, the performance gain of a CIS version increases with larger area. To

generate the CIS versions for a loop, we first identify [4, 5, 11, 12, 19, 30, 31] a large set of candidate patterns from

the loop. Given this library of patterns, in the second step, we select a subset to maximize performance gain under

hardware area constraint [4, 10, 11, 12, 23, 29]. As the area increases, a CIS version with higher performance

gain will be generated by selecting a larger subset. Moreover, different CIS versions can be generated by loop

transformations such as loop unrolling, software pipelining, loop fusion, and others.

Loop Trace The control flow among the hot loops is captured in the form of a loop trace (execution sequence

of the loops) obtained through profiling. For typical embedded applications we have profiled, the number of hot

loops and the loop trace size are quite small. For longer loop trace, we can use lossless compression techniques

(such as SEQUITUR algorithm [26]) to compactly maintain the loop trace.

The hot loops with CIS versions and the loop trace are fed to the partitioning algorithm that decides the appro-

priate CIS version and configuration for each loop. The selected CIS versions to be implemented in hardware are

then input into the datapath synthesis tool. It generates the bit stream corresponding to each configuration (based

on the result of temporal partitioning). These bitstreams are used to configure the fabric at runtime. The remaining

loops are implemented in software on the core processor. Finally, the source code is modified to exploit the new

custom instructions.
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3 Partitioning Problem

We now formally define the partitioning problem for dynamic reconfiguration of custom instructions, which is the

focus of this paper.

The input to the partitioning step is the set of hot loops L = {li|i = 1...N}. Each loop is associated with

multiple custom instruction-set (CIS) versions with a trade-off between hardware area and performance gain. Let

li,j (for j = 1 . . . ni) be the jth CIS version corresponding to loop li where ni is the number of CIS versions of

loop li. In addition, let gaini,j and areai,j denote the performance gain and area requirement of li,j . We assume

that li,1 corresponds to the software loop without any custom instructions, i.e., areai,1 = 0 and gaini,1 = 0. For

each loop li, only one of its CIS versions will be selected for implementation. For example, if li,1 is selected, loop

li will be implemented in software without any custom instruction enhancements.

The control flow among the loop kernels is input in the form of a loop trace. Finally, MaxA represents the

hardware area available for each configuration and ρ represents the time required for a single reconfiguration.

In this work, we do not consider partial reconfiguration, i.e., a configuration is completely replaced by another

configuration in the fabric. Hence both MaxA and ρ are constants. Intra-loop reconfiguration incurs high recon-

figuration cost. Thus we do not allow custom instructions corresponding to a loop to straddle across configuration

boundaries. In other words, the selected CIS version of a loop is completely accommodated within a configura-

tion, i.e., areai,j ≤ MaxA (for i = 1 . . . N , j = 1 . . . ni). Each configuration, however, consists of CIS versions

corresponding to one or more loops. Thus the problem boils down to

1. Temporal partitioning of the loops selected for hardware acceleration with CIS into one or more configura-

tions, and

2. Spatial partitioning of the loops within a configuration by selecting appropriate CIS version for each loop.

The performance gain of the application is then defined as

Performance gain =

 N∑
i=1

ni∑
j=1

si,j × gaini,j

− r ∗ ρ (1)

ni∑
j=1

si,j ≤ 1 (2)

where r is the number of reconfigurations given the partitioning and si,j is a binary variable equal to 1 if CIS

version li,j is selected and 0 otherwise.

Dynamic reconfiguration through temporal partitioning enlarges the available area for the design by increasing

the number of configurations. Therefore, each loop can select better CIS version to be implemented in hardware

and better performance gain will be achieved. However, this increase in number of configurations may not result

in better overall performance due to the reconfiguration cost. On the other hand, if we minimize the number

of configurations, the available area is quite restricted. Consequently, each loop will select its CIS version with
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smaller area and the performance gain of the application is much smaller, especially when the reconfiguration cost

is smaller. Our objective is to maximize the performance gain by selecting an appropriate CIS version for each

loop and mapping it into an appropriate configuration.

3.1 Motivating Example

loop1

loop2

loop3

9

9

20 11

l1,4

l2,5

l3,3

9

9

20 11

Partition soln. (B) 
Gain: 1668K
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Net Gain: 933K
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9
20 11

Partition soln. (A) 
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Reconfig cost: 0
Net Gain: 883K
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VersionLoop

(a) CIS versions for 3 loops (b) Some partitioning solutions

Figure 4: Motivating Example.

Let us consider an application with three hot loops: loop1, loop2 and loop3. Figure 4 (a) shows the

performance/silicon area tradeoff of different custom instruction-set versions for each loop. In particular, the table

shows the hardware requirement in terms of arithmetic units (AU) and corresponding performance gain in terms

of K cycles. For example, loop3 has three CIS versions. Version 1 of each loop is the software version (without

any custom instructions enhancements) with zero area and performance gain. We need to select appropriate CIS

versions for the three loops and club them into one or more configurations. Let the hardware area constraint for a

single configuration be 2048 AUs. The cost for a single reconfiguration is 15K cycles. The graph on the left-hand

side of Figure 4 (b) shows control flow information among the loops for this example. The actual input to our

algorithm is the loop trace. We use the graph here (derived from the loop trace) for illustration purposes. We will,

however, use a similar graph (called reconfiguration cost graph) later in our temporal partitioning algorithm.

If the system does not support dynamic reconfiguration, the best partitioning solution (solution (A) in Figure 4

(b)) under the hardware area constraint is the selection of version 3 of loop1, version 2 of loop2, and version 2
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of loop3. Total performance gain is 160 + 230 + 493 = 883K cycles and there is no reconfiguration cost.

However, in the presence of dynamic reconfiguration, we can improve the solution. A trivial solution is to put

each loop into one configuration (solution (B) in Figure 4 (b)). We can then select the CIS version of a loop with

the largest area less than or equal to the area of a configuration: version 4 for loop1, version 5 for loop2 and

version 3 for loop3. Total performance gain is 563 + 556 + 549 = 1668K cycles and the total reconfiguration

cost is (20 + 11 + 9 + 9)× 15 = 735K cycles. Therefore the resulting net performance gain after subtracting the

reconfiguration cost is 1668 − 735 = 933K cycles. While the net performance gain is better than the case when

dynamic configuration is not supported, it is not the optimal solution.

The optimal solution is to put loop2 and loop3 into one configuration and loop1 into a different config-

uration (solution (C) in Figure 4 (b)). CIS versions 4, 3, and 2 will be selected for loop1, loop2, and loop3,

respectively. The performance gain is 1443K cycles, while reconfiguration cost is (9 + 9) × 15 = 270K cycles.

Hence, the net performance gain is 1443− 270 = 1173K cycles.

4 Partitioning Algorithm

Finding the optimal combination of temporal and spatial partition is a difficult problem. GivenN loops, the number

of possible configurations is 2N . However, the number of ways to partition N loops into mutually-exclusive

configurations corresponds to the N + 1th Bell number. According to de Brujin [13], asymptotic limits of Bell

numbers is O(eN ln(N)).

Our partitioning algorithm needs to makes three choices: (1) optimal number of configurations k, (2) temporal

partitioning of the loop kernels into k configurations, and (3) spatial partitioning of the loop kernels in each con-

figuration, i.e., choosing the appropriate custom-instruction set (CIS) version for each loop kernel. Clearly, these

choices are inter-dependent. The selection of CIS versions for the loops determines the partitioning solution and

vice versa.

4.1 Overview

We propose an iterative algorithm (Algorithm 1) for joint temporal and spatial partitioning of the custom instruction-

sets corresponding to the hot loop kernels. The algorithm iterates from a constraint of having exactly 1 configura-

tion (i.e., no reconfiguration) to the upper bound of having |L| configurations where L is the set of hot loops. The

solutions (A) and (B) in our motivating example (see Figure 4) represent the two extremes (k = 1 and k = |L|),

while the remaining iterations explore the rest of the design space.

For the iteration with k configurations, we would like to identify the k-way partitioning solution with the

optimal net performance gain. Unfortunately, temporal and spatial partitioning are again dependent on each other

due to the reconfiguration cost. To break this cycle, we apply a heuristic technique. The heuristic first assumes that

we have a continuous area of k ×MaxA available to us where MaxA is the maximum area for a configuration.
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Algorithm 1: Iterative Partitioning Algorithm

Input: Set of hot loops with custom instruction-set versions: L

Loop Trace: T

Maximum Area of a configuration: MaxA

Reconfiguration Cost: ρ

Result: Partition with the best net performance gain

for k = 1 to |L| in steps of 1 do

C := global spatial partition(L, k ×MaxA);

P := temporal partition with CIS(C, T, k);

P ′ := temporal partition wo CIS(L, T, k);

soln := local spatial partition(L, P,MaxA);

soln′ := local spatial partition(L, P ′,MaxA);

if net gain(soln′)> net gain(soln) then soln := soln′;

if net gain(soln)> net gain(bestSoln) then bestSoln := soln;
end

return bestSoln;

The assumption of continuous area allows us to tentatively select optimal CIS versions for the loops in an ideal

(but un-realizable) situation where reconfiguration cost is zero. This provides an upper bound on the performance

achievable with k configurations. In reality, however, we have k distinct configurations with MaxA area each.

So we partition the loop kernels with selected CIS versions into k configurations such that each configuration has

roughly MaxA area and the reconfiguration cost is minimized. As we break up the continuous area into k distinct

areas, some configurations end up being bigger than MaxA, while some other configurations are smaller than

MaxA. To fix this, we have a final patch-up stage that performs spatial partitioning within each configuration to

re-distribute MaxA space among the constituent loop kernels.

l14 
A = 1612

l33
A = 1249

l23
A = 1041

l14 
A = 1612

l23
A = 1041

l32
A = 967

{l1,l2,l3}

l14 
A = 1612

l23
A = 1041

l32
A = 967

l14 
A = 1612

l33
A = 1249

l23
A = 1041

2048 2048

{l2,l3}{l1}

Global Spatial Partitioning

Temporal Partitioning

Local Spatial Partitioning

Figure 5: Three phases of iterative partitioning algorithm for number of configurations = 2

Figure 5 illustrates the three phases of the iterative partitioning algorithm corresponding to the iteration with 2

configurations. The input is the three loops in the motivating example and their CIS versions.

The first phase, global spatial partition, partitions the area k×MaxA (where k is the number of configurations
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for that iteration) among the loops by selecting the CIS versions such that the performance gain is optimal. This

phase disregards the reconfiguration cost. It also assumes that a continuous area of size k×MaxA is available for

hardware acceleration of all the loops. We have developed a dynamic programming algorithm for this phase. This

phase may choose to select the software version for some loops. For our running example, the first phase in Figure

5 chooses CIS versions l1,4, l2,3, l3,3.

After the first phase, we have the set of selected CIS versions C for the hot loops. However, we cannot

implement this solution as (1) the reconfiguration cost has not been considered, and (2) the loops still need to be

partitioned into different configurations. In the second phase temporal partition with CIS, we perform temporal

partitioning of the selected loops into k configurations such that the reconfiguration cost is minimized and the

partitions are roughly equal in size. This phase returns the partitioning solution P for the set of loops selected for

custom instructions enhancements from the first phase.

In the second phase, we also find an alternative partitioning solution P ′ for the original set of hot loops,

i.e., it disregards the results of the first phase. This partitioning, temporal partition wo CIS, only considers the

reconfiguration cost and ignores the CIS versions. Partition P is a better choice when performance gain of the CIS

versions is high relative to the reconfiguration cost. On the other hand, partition P ′ is a better choice when the

reconfiguration cost is high relative to the performance gain. P and P ′ complement each other in the search for the

best partitioning solution. We model the temporal partitioning as a k-way weighted graph partitioning problem,

which is well studied [17, 18].

In Figure 5, the left hand side shows the partition P and the right hand side shows the partition P ′. For

P , the second phase partitions the three loops with selected CIS versions into two configurations: l1,4 in the

first configuration and l2,3, l3,3 in the second configuration. On the other hand, P ′ simply partitions the three

loops based on reconfiguration cost into two configurations. In this example, P and P ′ return the same temporal

partitioning. However, due to the reconfiguration cost, P and P ′ may be different.

We now have k configurations for each partitioning solution P and P ′. The k-way weighted graph partition-

ing produces partitions with roughly equal size. Therefore for partition P , the area requirement of some of the

configurations may exceed the maximum area MaxA. Partitioning solution P ′, on the other hand, does not select

any CIS version a-priori. Thus, for each configuration in P and P ′, the third phase, local spatial partition, locally

selects the CIS versions for the loops in that configuration to maximize performance gain under area constraint

MaxA. We again use dynamic programming to perform optimal spatial partitioning for each configuration.

In Figure 5, for partition P , the area requirement of the second configuration exceeds the maximum area

budget. Hence phase 3 for this partition replaces CIS version l3,3 with l3,2. Phase 3 keeps the CIS version for

loop l1 unchanged even though there is additional area available (the green part) as l1,4 is the best version for l1.

However, in general, the additional area can lead to the selection of better versions for some loops. The third phase

of P ′ simply selects CIS versions of the loops in each configuration for the first time. Finally, the net performance

gains of P and P ′ are compared to select the best partitioning solution for k configurations.
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If the net performance gain of the current solution (with k configurations) is better than the best solution

obtained so far (with less than k configurations), we update the best solution. Then we start a new iteration with

k = k+1. The algorithm terminates when in the current solution, each loop has been assigned its CIS version with

the best performance gain. In the worst case, the algorithm runs for |L| iterations. With the motivating example,

our algorithm returns the optimal solution, which has two configurations (see Figure 5) and the performance gain

is 1173K cycles.

Let us now proceed to describe the spatial and temporal partitioning algorithms.

4.2 Spatial Partitioning

We propose a pseudo-polynomial time dynamic programming algorithm to select the appropriate CIS versions for

the loops such that the performance gain is optimal under a hardware area budget. This algorithm is employed in

the first phase and the third phase of our iterative solution with different parameters.

Let Gi(A) be the maximum performance gain of loops l1 . . . li under an area budget A. Then Gi(A) can be

defined recursively.

Gi(A) = max
j=1...ni

areai,j≤A

(gaini,j +Gi−1(A− areai,j)) (3)

That is, given an area A, we explore all possible CIS versions for li and choose the one that results in maximum

performance gain for loops l1 . . . li. The base case for loop l1 is

G1(A) = max
j=1...n1

area1,j≤A

(gain1,j) (4)

The maximum performance gain for loops l1 . . . lN under area budget AREA then corresponds to GN (AREA).

Algorithm 2: Spatial Partitioning

Input: Set of loops l1, l1, . . . , lN with CIS versions;

Area constraint: AREA

Result: Maximum performance gain

for A = 0 to AREA in steps of ∆ do

G1(A)← max j=1...n1
area1,j≤A

(gain1,j)

end

for A = 0 to AREA in steps of ∆ do

for i=2 to N do

Gi(A)← max j=1...ni
areai,j≤A

(gaini,j + Gi−1(A− areai,j))

end

return GN(AREA);

Algorithm 2 encodes this recursion as a bottom-up dynamical programming algorithm. The step value ∆

determines the granularity of area. It is chosen as the greatest common divisor of the area requirements of all CIS

versions and AREA. The time complexity of this algorithm is O(N × Area
∆ × x) where x = maxi=1...N(ni).
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4.3 Temporal Partitioning

We map our temporal partitioning problem to k-way weighted graph partitioning problem. The k-way weighted

graph partitioning problem is defined as follows. Given an undirected graph G = (V,E) with weights both on the

vertices and the edges, partition V into k subsets V1, V2, . . . Vk such that Vi
⋂
Vj = ∅ for i 6= j,

⋃
i Vi = V , the

sum of the vertex-weights in each subset is roughly equal, and the sum of the edge-weights whose incident vertices

belong to different subsets (edge-cut weights) is minimized.

ABCBCBA

All loops
in HW

Only 
loops A,C
in HW

2

A

C

A

B
C4

2

Figure 6: Reconfiguration cost graph from loop trace

We generate a Reconfiguration Cost Graph (RCG) from the loop trace to model our temporal partitioning

problem as a k-way weighted graph partitioning problem. After the first phase, we have tentatively selected CIS

versions for the loops. Each vertex in the RCG represents a hot loop selected for hardware acceleration in the first

phase. In other words, we do not consider the loops for which the first phase selects software-only version. Given

a vertex v associated with loop l, we assign the area of the CIS version selected for l as the weight of the vertex

v. When CIS versions from the first phase are ignored (in temporal partition wo CIS), the RCG includes all the

loops and we assume unit hardware cost for each vertex.

The edge weight between vertex v (corresponding to loop l) and v′ (corresponding to loop l′) is defined as

the reconfiguration cost between loop l and loop l′ if they are mapped to two different configurations. The edge

between v and v′ exists if and only if control can flow from loop l to l′ or l′ to l without passing through any other

hot loops. The weight on the edge between v and v′ represents the number of times control flows from loop l to

l′ and l′ to l (without passing through any other selected loop). This weight can be derived from the loop trace as

follows. If we eliminate the software-only loops from the loop trace, then the weight is the the number of times

the string ll′ and l′l appear in the loop trace. The time complexity of creating RCG is linear in the size of the hot

loop trace.

Figure 6 shows an example of RCG generation from the loop trace. It shows a loop traceABCBCBA of three

hot loops A, B, C. If all the loops are selected to be placed in hardware, then there are 2 reconfiguration points

between loops A and B if they are partitioned into different configurations. Similarly, there are 4 reconfiguration

points between loops B and C if they are partitioned into different configurations. However, there are no recon-
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figuration points between loops A and C directly as the control transfers between them always pass through B.

However, if we choose to implement B in software in the first phase, then B is eliminated from the RCG. In this

case, there are 2 reconfiguration points between loops A and C if they are partitioned into different configurations.

The objective now is to partition the RCG into k configurations such that the configurations have roughly equal

area (or the configurations have roughly equal number of loops when area is ignored) and the reconfiguration

cost (edge-cut weights) is minimized. If the configurations have roughly equal area, then the loops have higher

probability of retaining the optimal CIS versions selected in the first phase regardless of the third phase. As a

result, total performance gain (excluding reconfiguration cost) after the third phase is expected to be near the

optimal performance gain in the first phase. The rationale behind having roughly equal number of loops in each

configuration when CIS versions are ignored (by assigning unit cost to each vertex in the RCG), is to create a

balanced temporal partition. It ensures that equal number of loops compete for each configuration space during

subsequent spatial partitioning.

We use multilevel k-way partitioning scheme by Karypis and Kumar [18]. The multilevel partitioning scheme

consists of three phases: coarsening phase, partitioning phase and uncoarsening phase. During coarsening phase,

a sequence of smaller graphs Gi = (Vi, Ei), each with fewer vertices, is constructed from the original graph

G0 = (V0, E0) such that |Vi| < |Vi−1|. The coarsening phase ends when the coarsest graphGm has a small number

of vertices or the reduction in the size of successively coarser graph becomes too small. Then, the partitioning phase

computes a k-way partitioning Pm of the coarse graph Gm = (Vm, Em) such that each partition contains roughly

|V0|/k vertex weight of the original graph. The k-way partitioning of Gm is computed using multilevel bisection

algorithm [17]. During the uncoarsening phase, the partitioning Pm of the coarser graph Gm is projected back

to the original graph by going through the graphs G(m − 1), G(m − 2), ..., G1. At each intermediate level, the

partitioning is refined based on Kernighan-Lin [21] partitioning algorithm and their variants.

l14 
A = 1612

C1 C2
l33

A = 1249
l23

A = 10411041

1612

1249

9

9

31
Loop Trace

l33
A = 1249

l23
A = 1041

l14
A = 1612

2048 2048

+

Figure 7: Modeling the temporal partitioning problem as k-way graph partitioning problem.

Figure 7 shows how the temporal partitioning problem is solved by modeling it as a k-way weighted graph

partitioning problem for our running example. The edge weights of the RCG are generated from the loop trace.

The area of the CIS version selected for each loop in the global partitioning phase is assigned as the weight of

the corresponding vertex. Now we perform 2-way partitioning of this graph with minimum edge-cut weights and

roughly equal vertex weights in each partition. This gives us the configurations with roughly equal area while
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minimizing reconfiguration cost.

5 Experimental Evaluation

To compare the accuracy and scalability of our iterative partitioning algorithm, we have developed two other

algorithms — exhaustive search and greedy search. The results of the two algorithms are compared with our

proposed algorithm in two different sets of experiments. In the first set of experiments, we run the three algorithms

using synthetic input to evaluate the scalability and efficiency of the algorithms. We generate input data with 5 to

100 hot loops for this set of experiments. In the second set of experiments, we conduct a case study of the JPEG

application with custom instructions implemented on a commercial platform Stretch 5 [28] that supports runtime

reconfiguration.

Exhaustive Search The exhaustive search algorithm computes the optimal results by evaluating all possible

temporal and spatial partitioning. We use the algorithm described in Kreher and Stinson [22] to enumerate all

possible partitioning solutions. We then find the optimal implementation of each configuration in each partitioning

solution by choosing CIS versions of the constituent loops through our spatial partitioning algorithm. The net gain

of each enumerated partition is then estimated through a brute force computation of the reconfiguration cost by

traversing the loop trace. The partition with the maximum net performance gain is then the optimal solution. Our

experiments show that the exhaustive search algorithm cannot scale with increasing number of hot loops.

Greedy Search The greedy search algorithm (see Algorithm 3) constructs a solution by building one configura-

tion at a time until no more CIS version can be added without causing a degradation in performance. The input

is the set of hot loops with custom instruction-set versions L, loop trace T , area constraint MaxA, and single

reconfiguration cost ρ. A solution consists of one or more configurations. The algorithm begins with an empty

solution and an empty current configuration.

In each iteration, we pre-compute a reconfiguration cost array C. For any unselected loop li, the array C gives

the expected additional reconfiguration cost if li is added to the current configuration. GivenC, the current solution

and the current configuration, we can now compute the expected performance gain of each CIS version if we add it

to the current configuration. For CIS version li,j , this expected performance gain is estimated by subtracting from

gaini,j , the additional reconfiguration cost for loop li (available from arrayC). We now select the CIS version with

the maximum expected positive performance gain that can be added to the current configuration without violating

the area constraint. The selected CIS version is then added to the current configuration. All the other CIS versions

of the same loop are subsequently removed from the set L.

In the event that no CIS version can be selected, there are two possibilities. The first possibility is that no more

loops can be added to the current configuration without violating the area constraint (current configuration is not

empty in Algorithm 3). In this case, we update the solution with the current configuration and re-start the process
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Algorithm 3: Greedy Search Algorithm

Input: Set of hot loops with custom instructions: L

Loop Trace: T

Maximum Area of a configuration: MaxA

Reconfiguration Cost: ρ

Result: Partitioning solution

current := new configuration();

continue := true;

while continue = true do

C := compute reconfig cost for unselected loops(L, T, solution, current);

li,j := select most profitable feasible CIS(C,L,MaxA, current);

if li,j is not found then

if current is not empty then

update solution by adding current;

current := new configuration();

else

continue := false;
end

else

update current with li,j ;

remove from L all CIS versions of loop li;
end

end

return solution

of selecting CIS versions with an empty configuration. The second possibility is that no more loops can be added

to the current solution without decreasing its net performance gain (current configuration is empty, i.e., we are

trying to select the CIS version under maximum area constraint). In this case, the algorithm stops and returns the

solution built so far.

5.1 Efficiency and Scalability of Algorithms

For this set of experiments, we generate synthetic inputs with number of hot loops ranging from 5 to 100. The

number of CIS versions for each loop is generated randomly and ranges between 1 to 10. The performance gain of

each CIS version ranges between 1, 000 to 10, 000 time units. The hardware area is between 1 to 100 units. The

performance gain increases with hardware area for each loop.

The reconfiguration costs between two loops, if they are assigned to different configurations, are generated

randomly. They are in the range 0 to maxCost where maxCost is approximately 40-50% of the average per-

formance gain of all the CIS versions of all the loops
∑N

i=1
∑ni

j=1 gaini,j∑N
i=1 ni

. The value of maxCost ensures that the

reconfiguration cost is neither too high nor too low. Both the extremes reduce the search space considerably. If the

reconfiguration cost is too high, we should only consider partitions with a small number of configurations. If the

reconfiguration cost is too low, then the solution is to simply select the CIS version with the highest speedup for

each loop and construct as many configurations as required. The hardware area constraintMaxA is approximately
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20-30% of the sum of the average area requirements of the CIS versions of all the loops
∑N
i=1

∑ni
j=1 areai,j

ni
. This

ensures that all the loops with their CIS versions cannot fit under the area constraint.

Running time (sec)

Number of Exhaustive Greedy Iterative

Hot Loops search search partitioning

5 0.26 0.01 0.07

6 1.34 0.02 0.07

7 7.84 0.01 0.07

8 43.91 0.01 0.09

9 283.22 0.04 0.07

10 1788.20 0.01 0.11

11 12604.33 0.01 0.13

12 86338.37 0.01 0.15

20 N.A. 0.02 0.48

40 N.A. 0.04 4.30

60 N.A. 0.07 18.25

80 N.A. 0.11 55.61

100 N.A. 0.16 118.76

Table 1: Running time of the algorithms for synthetic input.

Table 1 shows the running times of the three algorithms for synthetic input with different number of hot loops.

The running time of the exhaustive search algorithm, while relatively small with smaller number of loops, increases

by almost an order of magnitude each time one more loop is considered. The results of exhaustive search for more

than 12 loops cannot be obtained even after waiting for a day. On the other hand, although iterative partitioning

algorithm is slower than greedy search in general, its running time is quite acceptable (less than 2 minutes).

This demonstrates the scalability of our approach. Moreover, iterative partitioning generates much better quality

solutions compared to greedy search as presented in the following.
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Figure 8: Comparison of the quality of the solutions returned by the algorithms for synthetic input. Exhaustive

search fails to return any solution with more than 12 hot loops.

Figure 8(a) compares the quality of the solutions returned by the three different algorithms with number of

hot loops varying from 5 to 12. The performance gain obtained using our approach is close to the optimal gain
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obtained with exhaustive search while greedy search falls far behind. Figure 8(b) presents the comparison between

the performance gain of iterative partitioning and greedy search for input with more than 12 hot loops. We cannot

report the results for exhaustive search algorithm here as exhaustive search fails to return any solution for more

than 12 loops (even after running for more than a day). The iterative algorithm consistently outperforms greedy

search in terms of performance gain by a factor of 1.26 to 2.09.

5.2 Case Study of JPEG Application

We present a case study of the JPEG image compression algorithm. In this study, we envision a scenario in which

an image is encoded and then decoded subsequently. The hot loops are profiled and the loop trace is generated

using an in-house tool based on OpenImpact [1], an open source compiler. The profiling works in two phases. The

timing information of each loop is collected by inserting appropriate time stamps at the entry and exit points of

the loops. After the first pass, loops which take up more than 1% of the computation time can be detected. During

the second pass, the compiler inserts appropriate code to capture the entry point of the hot loops. The resulting

application, when executed, generates a trace of the hot loops.

for (i = 0; i < num_cols; i++)
{
r = GETJSAMPLE( in[RGB_RED] );
g = GETJSAMPLE( in[RGB_GREEN] );
b = GETJSAMPLE( in [RGB_BLUE] );
in += RGB_PIXELSIZE;
y[i]=(JSAMPLE)((ctab[r + R_Y] + tab[g + G_Y]

+ ctab[b + B_Y]) >> SCALEBITS);
cb[i]=(JSAMPLE)((ctab[r + R_CB] + ctab[g + G_CB]

+ ctab[b + B_CB]) >> SCALEBITS);
cr[i]=(JSAMPLE)((ctab[r + R_CR] + ctab[g + G_CR]

+ ctab[b + B_CR]) >> SCALEBITS);
}

SE_FUNC void rgb2ycc(WRA &A, WRB &B)
{
se_uint<8> r[10],g[10],b[10];
se_uint<8> y[10],cb[10],cr[10];
int i,j;
/* Unpack A, B to RGB data */
for (i = 0; i < 5; i++) {
j = i * 3 * 8;
r[i] = A(j+7,j);
r[5+i] = B(j+7,j);
g[i] = A(j+15,j+8);
g[5+i] = B(j+15,j+8);
b[i] = A(j+23,j+16);
b[5+i] = B(j+23,j+16);  

}
/* Converting 10 pixels */
for (i = 0; i < 10; i++) {
//loop body: r[i],g[i],b[i] instead        

of r,g,b
}
/* Pack y, cb, cr to A, B */
A = (cr[4],cb[4],y[4],cr[3],cb[3],

y[3],cr[2],cb[2],y[2],cr[1],
cb[1],y[1],cr[0],cb[0],y[0]);

B = (cr[9],cb[9],y[9],cr[8],cb[8],
y[8],cr[7],cb[7],y[7],cr[6],
cb[6],y[6],cr[5],cb[5],y[5]);

}

WRGET0INIT(0,in); /* GET stream from in */
WRGET0INIT1();
for(i =0; i < num_cols/10; i++)
{
char out[30];
WRAGET0I(&A,15); /* A, B GET 10 pixels */
WRBGET0I(&B,15);
rgb2ycc(&A, &B); /* Call rgb2ycc instruction */
WRPUTINIT(0, out); /* PUT stream to out */ 
WRPUTI(A,15); /* Put result from A and B */
WRPUTI(B, 15);
WRPUTFLUSH(); 
.../* Put out to y,cr,cb */

}

(a) Original Loop

(b) rgb2ycc Custom Instruction

(c) Loop using Custom Instructions

Figure 9: An example of custom instruction for Stretch processor.

Our loop profiler identifies more than 15 hot loops for the JPEG application. For our experimental purposes,

we select the top 10 loops and manually generate custom instruction set versions for each loop on the Stretch S5

platform [28]. Figure 9 shows an example of exploiting custom instructions on Stretch processor for performance

enhancement of an application. The original loop is shown on the left of the figure. It performs conversion from

RGB color space to YCbCr color space. The original loop converts one pixel at a time. However, the main benefit

of custom instructions in Stretch comes from exploiting instruction-level parallelism. Therefore the original loop is

unrolled X times (X = 10 in our example) to expose more instruction-level parallelism. We can achieve different
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custom instruction versions (or CIS versions) by changing the unroll factor. The higher unroll factor results in

larger hardware area requirement and better performance gain.

Figure 9(b) shows an example of using Stretch C language to define a custom instruction corresponding to

the loop body (unrolled 10 times). Stretch C is a variant of C language that allows the designer to define custom

instructions. The Stretch C compiler can automatically synthesize the custom instructions into the fabric. The

custom instruction, called rgb2ycc, has two 128-bit wide registers, A and B, as in-out arguments. A and B

contain 10 RGB pixels that will be converted to YCC pixels. First, input data in A and B are unpacked to the

local RGB pixel variables. Then RGB pixels are converted to YCC pixels through a for loop. The Stretch C

compiler, while synthesizing the custom instruction into hardware, will unroll this for loop within the custom

instruction. That is, the 10 pixels will be converted in parallel in hardware. Finally, YCC pixels are packed into

A and B registers as the output. After the new custom instruction is defined, we have to change the source code

of the original loop to use the newly defined custom instruction (see Figure 9(c)). The wide register arguments of

rgb2ycc, A and B, get 10 RGB pixels at a time from stream in. However, constant tables (such as ctab) used

in rgb2ycc can be hard code into the fabric. Finally, we execute rgb2ycc and extract the output from A and

B. For number of RGB pixels less than 10, we perform normal computation without custom instruction.

Loop ID (#AUs, #MUs, Gain (K cycles))

0 (2249, 4096, 32)

1 (1612, 2880, 563) (257, 704, 111) (389, 2176, 254)

2 (2004, 6272, 556) (1041, 2048, 387) (1321, 2592, 426)

(761, 1504, 230)

3 (207, 0, 493) (424, 2, 549)

4 (2515, 1536, 1094)

5 (1530, 3584, 1669) (1300, 3584, 1643)

6 (981, 4480, 1095) (491, 2240, 739) (393, 1792, 590)

7 (1059, 2880, 511)

8 (1089, 2880, 910)

9 (1764, 1280, 194) (1114, 768, 188)

Table 2: CIS versions for JPEG application.

The profiler in Stretch IDE can now provide us the performance gain and hardware area of the CIS versions

of each loop. Table 2 shows the various CIS versions for each loop and their respective area requirements and

performance gain. It is worth noting that the performance gain of the CIS versions do not commensurate with area

increase in general. For example, loop 0 takes up 2249 arithmetic units and 4096 multiplier units but only gives

32K cycles of performance gain. In contrast, the CIS versions of loop 3 use far less area but give much better

performance. This is because the parallelism that can be exploited varies from one loop to another.

The configuration time of the whole fabric of Stretch development board, which includes 4096 4-bit arithmetic

units (AUs) and 8192 4-bit × 8-bit multiplier units (MUs) is approximately 100µs. Given that the CPU runs at

300MHz, the configuration time translates to roughly 30K CPU cycles. We define one hardware area unit to be a

tuple of 400 AUs and 800 MUs. Since the configuration time is proportional to the size of the fabric, configuration
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time of one hardware area unit is approximately 3K CPU cycles. By scaling the configuration time according to

the fabric size, we can easily compute the configuration time for any fabric size.

It is possible to fit CIS versions of all the hot loops from our JPEG application in a suitably-sized fabric. For our

experimental purposes, we assume that the hardware area constraint varies from one hardware area unit to 20-30%

of the sum of maximum hardware area for all the loops (5−15 hardware units for JPEG application). This will lead

to the necessity of dynamic reconfiguration. We run all the three algorithms (exhaustive search, greedy search and

iterative partitioning) under these different area constraints. Our profiling data indicates that the application takes

around 20 million cycles on Stretch CPU without custom instructions enhancements. It should be noted, however,

that the speedup we obtain for a particular application depends on the quality of the custom instructions generated

in the first place. Our focus in this experiment is to evaluate our proposed algorithm in comparison with greedy

search and exhaustive search. That is, we are only concerned about comparing the performance gain obtained

using the different algorithms starting with the same set of CIS versions. Our results show that the our proposed

algorithm is always optimal or near-optimal and produces much better results than greedy search most of the time.
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(a) Comparison of iterative partitioning, greedy search, (b) Comparison of exhaustive search and iterative partitioning.

and static configuration (1 configuration).

Figure 10: Comparison of the quality of solutions for the case study of JPEG application.

In Figure 10(a), we evaluate the performance gain possible if dynamic reconfiguration is exploited. We compare

the performance gain obtained using iterative partitioning and greedy search with the case when no reconfigura-

tion is allowed. Clearly, iterative partitioning and greedy search can choose to use more than one configuration.

However, the algorithm for static configuration only performs spatial partitioning. If we compare the results of

our algorithm with that of static configuration, the advantage of exploiting dynamic reconfiguration decreases as

the hardware area increases. This is to be expected, as more custom instructions can fit into the larger area to

gain suitable speedup, thus reducing the need to virtualize hardware through run-time reconfiguration. The graph

demonstrates that our algorithm increases the performance gain over and above static configuration by at least 34%

and as much as 78%.

On the other hand, the simple heuristic of the greedy search algorithm fails to achieve substantial performance

gain over static configuration. Often, the greedy search performs as good as the static configuration, and in some
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cases, even worse. Our proposed iterative partitioning algorithm always performs better than the greedy search,

being at least 14% and as much as 91% better than greedy search.

Figure 10(b) measures how closely our proposed algorithm approximates the optimal results obtained through

exhaustive search. The graph shows that our algorithm returns solution that coincides with the optimal solution

most of the cases, and falls short of the optimal by at most 1% in the remaining cases.

6 Related Works

Custom instruction selection for an application usually consists of two steps. The initial step identifies a large set of

candidate patterns from the program’s dataflow graph and their frequencies via profiling [4, 5, 11, 12, 19, 30, 31].

Given this library of patterns, the second step selects a subset to maximize the performance under different design

constraints. Various approaches proposed for this step include dynamic programming [4], 0-1 Knapsack [12],

greedy heuristic [10, 11, 29], and ILP [23, 29]. However, none of these approaches targets applications exploiting

dynamic reconfiguration of custom functional units. Recently, [7] proposed rotating instruction set processing

platform that can select custom instructions at runtime.

The major part of the research on temporal partitioning comes from the reconfigurable computing community.

Usually, the partitioning is done at the task-level [6, 9, 20], though there exist some exceptions. Li et al. [24]

partition at the loop level while Purna and Bhatia [27] perform partitions on the data flow graph. When directed

acyclic task graphs are used as input, computing reconfiguration costs becomes simple. For example, Banerjee’s

work [6] is able to reduce the partitioning problem as a scheduling problem because task graphs are used as input.

In contrast, it is non-trivial to obtain the reconfiguration cost at the granularity of loops. It should be noted that

while Purna and Bhatia’s work [27] partitions at the finer granularity of functions and operators, their work uses

directed acyclic data flow graph as input as well.

Bondalapati and Prasanna [8] focus on mapping the statements within a loop into configurations to obtain a

configuration sequence that gives the least execution time. While dynamic reconfiguration is used as well, their

work focuses on intra-loop selection of configurations, i.e., their work operates on one loop only. Our work is

different because not only do we consider multiple possible custom instructions set versions per loop, our algorithm

allows for multiple loops within a configuration and some loops may remain in software. As such, our work is

different from projects that explore the design space for individual loops such as [8].

Hardnett et al. [16] form a framework in which the dynamically reconfigurable architectural design space may

be explored for specific applications. In particular, the register allocation problem is adapted to assign reconfig-

urable units to different custom instructions. An instruction scheduling algorithm for the custom instructions is

implemented to minimize overall latency. While their architecture employs dynamically reconfigurable functional

units, our work is differentiated from theirs in two specific areas. First, their custom instructions do not share the

same functional unit, i.e., no spatial partitioning is required. Secondly, their work does not address the problem of

reconfiguration cost directly. Rather, custom instructions are de-selected to relieve resource pressure rather than
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optimizing overall performance.

The work most related to our work is that of Li et al. [24] in which the Nimble compiler is implemented. Their

work focuses on selecting loops from an application for hardware implementation while aiming to reduce dynamic

reconfiguration overhead. Their work only considers a single loop in one configuration and they did not consider

global reconfiguration cost when selecting loops to put in hardware.

7 Conclusions

We have presented an algorithm to exploit dynamically configurable custom functional units for optimal perfor-

mance gain. Given an input application, the algorithm selects and partitions the custom instructions corresponding

to the loop kernels into different configurations that are reconfigured at run-time. The experimental results show

that our algorithm is highly scalable while producing optimal or near-optimal performance gain.

We can extend our work to consider configuration prefetching and partial reconfiguration. Previous work [25]

has indicated that how early a configuration can be prefetched depends on several factors, including the relation-

ship between the configurations and the placement of the prefetch instruction. Closely related to configuration

prefetching is partial reconfiguration, which allows execution and reconfiguration of the fabric in parallel. In the

future, we plan to extend our framework to handle these non-trivial issues.
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