
WCET-Centric Dynamic Instruction Cache Locking

Huping Ding
School of Computing

National University of Singapore
Email: d-huping@comp.nus.edu.sg

Yun Liang
Center for Energy-efficient Computing and Applications

School of EECS, Peking University
Email: ericlyun@pku.edu.cn

Tulika Mitra
School of Computing

National University of Singapore
Email: tulika@comp.nus.edu.sg

Abstract—Cache locking is an effective technique to improve
timing predictability in real-time systems. In static cache locking,
the locked memory blocks remain unchanged throughout the
program execution. Thus static locking may not be effective for
large programs where multiple memory blocks are competing
for few cache lines available for locking. In comparison, dynamic
cache locking overcomes cache space limitation through time-
multiplexing of locked memory blocks. Prior dynamic locking
technique partitions the program into regions and takes indepen-
dent locking decisions for each region. We propose a flexible loop-
based dynamic cache locking approach. We not only select the
memory blocks to be locked but also the locking points (e.g., loop
level). We judiciously allow memory blocks from the same loop to
be locked at different program points for WCET improvement.
We design a constraint-based approach that incorporates a global
view to decide on the number of locking slots at each loop entry
point and then select the memory blocks to be locked for each
loop. Experimental evaluation shows that our dynamic cache
locking approach achieves substantial improvement of WCET
compared to prior techniques.

I. INTRODUCTION

Caches greatly improve the performance of modern pro-
cessors by exploiting the temporal and spatial localities. How-
ever, caches introduce timing unpredictability in hard real-
time systems. In such systems, the worst-case execution time
(WCET) is an important metric for schedulability analysis.
The WCET of a program is the maximum execution time
across all possible inputs for a particular architecture. In the
presence of caches, the timing of real-time applications is
unpredictable as the behavior of cache access can not be
determined statically [21].

In this paper, we focus on the instruction cache. In the
past, static cache analysis has been used to model the cache
and estimate the WCET [17], [20]. However, static analysis
may lead to high WCET overestimation in the presence of
complex control flows. For example, when a memory block
is not guaranteed to be cache hit under static analysis, it is
conservatively assumed to be cache miss. Cache locking is an
alternative approach. Memory blocks are locked in the cache
via special locking routines, and they cannot be evicted from
the cache at runtime by the replacement policies. Many mod-
ern processors support cache locking mechanism, e.g., Intel
Xscale and ARM 9 series [1]. Cache locking improves timing
predictability because all the memory accesses to the locked
memory blocks are guaranteed to be cache hits. Moreover, by
carefully selecting the memory blocks to lock, cache locking
can greatly improve performance [19], [9], [14], [7].

Related Work. Most cache locking techniques aimed at
improving the WCET employ static cache locking [9], [15],

[18], [7]. Static locking loads and locks the memory blocks
at program startup, and the locked content remains unchanged
throughout the program execution. Most static locking tech-
niques use full cache locking [9], [15], [18] where the entire
cache is locked. However, full locking does not allow the
unlocked memory blocks to use the cache and exploit their
locality, and thus may introduce negative impact on the overall
WCET. Recently, we have introduced partial cache locking to
optimize the WCET [7], where only a portion of the cache
is locked. Our partial locking mechanism integrates cache
locking with cache modeling, which allows us to estimate the
WCET of predictable accesses through cache modeling and
optimizes the WCET of unpredictable accesses through cache
locking. Compared to full cache locking and static analysis,
our partial locking technique achieves better results [7], [8].

The drawback of static cache locking can manifest for large
programs executing on small caches. As the locked content
remains unchanged throughout execution, there is limited
scope for optimization. In this context, dynamic instruction
cache locking techniques that adjust the locked contents at
runtime can further improve the WCET [3], [19], [16], [22].
For these approaches, the basic idea is to partition the program
into appropriate regions and use full locking for each region.
As the program execution moves from one region to another,
the memory blocks for the new region are locked. However,
due to rigid partitioning, it does not allow selective locking
of different memory blocks from the same region at differ-
ent program points (see Figure 1). Liu et al. [16] extended
the region-based approach and proposed a swapping-based
method. However, their technique is applied only to the regions
with branching nodes but not the regions with nested loops.
Moreover, with nested loops, frequent swapping operations
will render it infeasible to lock memory blocks from the outer
loop. They also do not consider cache mapping function, which
makes cache locking similar to scratchpad memory allocation.

Overview. In this paper, we propose a loop-based dynamic
instruction cache locking approach to optimize the WCET. We
focus on the loops, in particular nested loops. As the locking
routines are usually stored in the non-cacheable memory [1],
the locking cost is quite high and needs to be offset through
repeated access to the locked memory blocks in the program.
This leads to memory blocks within loops as natural candidates
for locking. We also lock a memory block at the entry point
of a loop and unlock it at the corresponding exit point of the
loop. This policy ensures that locking and unlocking costs are
incurred before and after the execution of the loop.

Our approach differs from prior techniques along two
important dimensions. First, [3], [19], [16] and [22] assume

978-3-9815370-2-4/DATE14/ c©2014 EDAA

m1

m2

m3

m4

20

20

10

lp1
lp2

lp3

(b) Region‐based approach

Region 1
m1

Region 2
m2 m3

m1

m2

m3

m4

20

20

10

lp1
lp2

lp3

(a) No cache locking

m1

m2

m3

m4

20

20

10

lp1
lp2

lp3

(c) Loop‐based approach

m2

m2 m3

Lock m2

Lock m3
way 1 way 2

way 1 way 2

way 1 way 2

way 1 way 2

way 1 way 2

way 1 way 2

unlock m3

unlock m2

Fig. 1. Motivating example for dynamic cache locking.

full cache locking for each region, while we adopt partial
cache locking. More importantly, we carefully select not only
the memory blocks that can be locked but the program points
where they should be locked. In particular, a memory block
m from an inner loop L may be locked either at L or any of
its enclosing outer loops. Moreover, memory blocks m and m′
from L can potentially be locked at different loop levels. This
selective promotion of memory blocks to different loop levels
is a key contribution of our approach (see Figure 1(c)).

The challenge is to select the memory blocks and their
locking points. We develop a constraint-based approach to first
determine the number of memory blocks to be locked for each
loop to minimize the WCET. In this process, we exploit the
concept of resilience sets to quickly and accurately estimate
cost-benefit tradeoff for cache locking. This is followed by
a memory block selection phase that identifies the actual
memory blocks to be locked for each available locking slot.

Motivating Example. We illustrate the benefit of our loop-
based dynamic cache locking approach in Figure 1 and Table I,
by comparing with static analysis approach without locking
and the region-based approach [3]. For simplicity, we use
single-path program here, but our loop-based approach can
be applied to the general cases where loops are on different
branches. Figure 1(a) shows the original control flow. There
are three loops: l p1, l p2, l p3 where l p2 and l p3 are nested in
l p1. The numbers on the loop back edges are the corresponding
loop bounds. We assume a 2-way set associative cache with
LRU replacement policy. The latency of cache hit is 1 cycle
and cache miss penalty is 30 cycles. We assume 150 cycles
overhead to lock and unlock a memory block because the
locking/unlocking routines involve multiple instructions to
lock/unlock each memory block and they are kept in the un-
cacheable region of the program memory [1] (In [1], Xscale
uses 4 instructions to lock a memory block, and we assume
there is another instruction to unlock it). We also assume that
all the memory blocks are mapped to the same cache set.

No Cache Locking: As shown in Figure 1(a), there is no
conflict for m1 in l p2, while all the other memory blocks
conflict with m1 in l p1. Thus, m1 is cache hit inside l p2, while
it is classified as cache miss in l p1. For m2, m3 and m4, they
always conflict inside l p3. So, each of them incurs 200 misses.

Region-based Approach: The program is partitioned into
two regions, as shown in Figure 1(b). The memory blocks
with highest execution frequencies are chosen to be locked
(m1 in region 1; m2 and m3 in region 2). When the flow enters

TABLE I. WCET ANALYSIS FOR THE MOTIVATING EXAMPLE.

Approaches Blocks # of
hit

of
miss

Locking
frequency

WCET
(cycles)

Total
WCET
(cycles)

No cache
locking

m1 190 10 0 490

18,490m2 0 200 0 6,000
m3 0 200 0 6,000
m4 0 200 0 6,000

Region
-based

approach

m1 200 0 10 1,700

11,100m2 200 0 10 1,700
m3 200 0 10 1,700
m4 0 200 0 6,000

Loop
-based

approach

m1 190 10 0 490

8,540m2 200 0 1 350
m3 200 0 10 1,700
m4 0 200 0 6,000

a region, the region must load its locked memory blocks. Thus,
each locked memory block is loaded and locked 10 times.

Loop-based Approach: We lock m3 at the entry of l p3,
while m2 is promoted to be locked at the entry of l p1, as
shown in Figure 1(c). In l p2, as only m2 is locked, m1 can
still use the remaining cache line and only suffers 10 cache
misses. In l p3, both m2 and m3 are locked. Meanwhile, m2 is
locked only once, while m3 needs to be locked 10 times.

As shown in Table I, the loop-based approach achieves
better WCET compared to both static cache analysis and
region-based approach. As the loop-based approach locks m2
at the outermost loop, its locking cost is substantially reduced.
This gain in locking cost could have been offset by the fact
that m1 is locked in region-based approach but not in loop-
based approach. Partial cache locking comes to rescue here as
m1 can still benefit from caching and incurs only 10 misses.

II. CACHE MODELING AND LOCKING

The design of a set associative cache involves several
parameters: cache line (block) size L, which defines the unit of
data transfer between the cache and main memory; number of
cache sets K that the cache is divided into; cache associativity
A, which determines the number of cache lines in a set. Thus,
the capacity of the cache is L×K×A. We assume LRU (Least
Recently Used) cache replacement policy and an uni-processor
with only one level of cache.

A. Cache Modeling

Given a memory block m, it can be mapped to only
one cache set (m modulo K) and will not interfere with the
blocks mapped to other cache sets. Thus the cache sets are
independent and can be modeled separately. To simplify the
discussion and explanation, we will restrict our cache modeling
to one cache set. We use M to denote the set of memory blocks
mapped to cache set s. In addition, we use ⊥ to indicate the
absence of any memory block in a cache line.

Definition 1 (Abstract Cache State): An abstract cache
state a is a vector 〈a[0], ...,a[A−1]〉 of length A with a[j]∈ 2M .

Abstract cache state maps cache lines (blocks) to sets of
memory blocks. Must analysis, may analysis and persistence
analysis [20] are usually employed to compute the abstract
cache states. At each program point, must analysis captures
the memory blocks that are guaranteed to be present in the
cache, may analysis determines the memory blocks that are
never in the cache, while persistence analysis identifies the

mm

lp2

lp1

1010 mm

lp2

lp1

Region b

Region a

1010

Locking point
Locking point

Effective
region

Effective
region

(a) Locking at loop lp2 (b) Locking at loop lp1

Fig. 2. Effect of different locking positions.

memory blocks that may not be in the cache at the first time
but are guaranteed to be in the cache for the later accesses.

Definition 2 (Age in Abstract Cache State): The age of
memory block m in an abstract cache state a is defined as

agea
m =

{
i i f ∃i (0≤ i≤ A−1) s.t. m ∈ a[i]
A otherwise

Definition 3 (Younger/Older Memory Block): For two
memory blocks m and m′ in abstract cache state a, we define
m as younger (older) than m′ if agea

m ≤ agea
m′ (agea

m > agea
m′).

B. Cache Locking

In this paper, we consider dynamic instruction cache lock-
ing based on partial cache locking. There are two options
for partial cache locking: way locking and line locking. Way
locking locks all the cache lines in particular cache ways while
line locking allows different number of lines to be locked in
different ways. We adopt line locking mechanism as it is more
flexible and fine-grained. Our approach locks a memory block
at the entry of a loop and unlocks it at the corresponding exit
of the loop. For simplicity, in the rest of the paper, a memory
block m is locked at a loop L implies that m is locked at the
entry of L and it is unlocked at the exit of L. We also define L
as the effective locking region of m. A memory block can be
locked at any loop that contains it. Thus, a memory block in
the nested loops may have multiple candidate locking points.

We adopt the trampolines approach proposed in [5] to
lock/unlock memory blocks. For each loop, we first leave a
dummy NOP instruction at the entry point and at the exit
point before we decide on cache locking. If we decide to lock
memory blocks at this loop, the NOP instruction at the entry
(exit) gets replaced by a call to the locking (unlocking) routine.
As a loop may have multiple exits, all these loop exits are
handled similarly. For an exit whose target is not the following
basic block, a jump instruction is also required to return from
unlocking routine. All locking/unlocking routines are placed at
the end of the program and stored in non-cacheable memory.
Thus, they do not affect the cache contents of the program
during execution.

III. DYNAMIC CACHE LOCKING

Our loop-based approach requires global optimization to
select the memory blocks and the corresponding locking
points, making the problem challenging. In the example of
Figure 2, l p1 is the outer loop while l p2 is the inner loop, and
their loop bounds are both 10. In Figure 2(a), the locking point
is at l p2, while memory block is locked at l p1 in Figure 2(b).
When we try to lock a memory block m, the locking benefit is
the same at both locking points, while the locking costs may

WCET
analysis

Locking slot
analysis for
the cache set

Select
memory

blocks to lock

Light weight
WCET
analysis

Are all
cache sets
analyzed ?

Final
WCET

Yes

No

Resilience
analysis for
a cache set

Fig. 3. Framework of dynamic cache locking.

be different. In Figure 2(a), locking m only affects the memory
blocks in l p2 (effective region), but the locking/unlocking
routines execute 10 times. In Figure 2(b), effective region
is enlarged to l p1, and the memory blocks in region a and
region b are also affected. However, execution frequency of
the locking/unlocking routines is only 1. That is, the locking
point affects the locking cost. Thus, apart from the cost-benefit
analysis to select the memory blocks for locking, we introduce
additional complexity of identifying appropriate locking point
for each memory block.

Figure 3 illustrates the flow of our dynamic cache locking
approach. First, we perform WCET analysis with abstract
interpretation [20] for the entire cache and obtain an initial
WCET. Our locking content selection algorithm proceeds for
each cache set independently. For each cache set, we perform
resilience analysis for the memory blocks mapped to this cache
set. The resilience of a memory block m captures the number
of memory blocks (excluding itself) that can be locked before
the access to m changes from cache hit to cache miss. Based
on the resilience analysis, we perform a locking slot analysis
for this cache set. That is, we figure out the number of memory
blocks that should be locked at each loop, in order to improve
the WCET. Then, we select the most profitable memory blocks
to fill the locking slots. Later, the abstract cache states for this
cache set are re-computed, and the new WCET after locking
the cache set is calculated. We call this light weight WCET
analysis as the abstract cache states analysis is restricted to the
particular cache set being analyzed. When all the cache sets are
analyzed, we obtain the final WCET after locking. We detail
the dynamic cache locking approach in the following sections.

A. WCET Analysis

First, we perform abstract cache state analysis via abstract
interpretation [20]. Three types of analysis are carried out:
must analysis, may analysis and persistence analysis. We adopt
the multi-level persistence analysis technique [4] to improve
the accuracy of WCET estimation. Meanwhile, we use the
Younger Set approach in [11] to fix the safety issue that may
underestimate the WCET in the traditional persistence analy-
sis [20]. Based on the abstract cache states, memory accesses
are classified into four categories: Always Hit, Always Miss,
Persistent, and Non-Classified. The program WCET is calcu-
lated via the implicit path enumeration method [13] with ILP
(Integer Linear Programming) formulation. As a by-product of
the WCET analysis, we collect the memory blocks along the
worst-case path and their corresponding execution frequencies,
as well as the abstract cache states at each program point.

B. Resilience Analysis

We define resilience for each memory block [2] as follows.

Definition 4 (Resilience): The resilience of a memory
block m in cache set s at a program point p is the maximum
number of older memory blocks that can be locked in s before
m is evicted out.

For a memory block m that can be classified as Always Hit
or Persistent, we calculate its resilience at the program point p

as follows based on the abstract cache states of must analysis
and persistence analysis.

resp
m =

{
A−1−agea

m i f 0≤ agea
m ≤ A−1

−1 otherwise

where a is the abstract cache state at program point p, agea
m

is the corresponding age of m in a, and A is the cache
associativity. We use the resilience value of −1 to indicate that
a memory block is not in the cache. For a memory block m
with non-negative resilience, we also define the set of younger
memory blocks of m as ysm.

ysm = {m′|resp
m ≥ 0∧agea

m′ ≤ agea
m}

We collect the younger memory blocks of m, as locking a
memory block m′ ∈ ysm will not affect the age of m.

C. Locking Slot Analysis

The locking slot analysis determines the number of mem-
ory blocks that should be locked at each loop level in order to
minimize the overall WCET.

We assume there are N loops in the program, LP =
{l p1, l p2,, l pN}. For a cache set s, we define the number
of locking slots for the loop l pi ∈ LP as ni. We use a function
gain(l pi,ni) to represent the locking gain on WCET by having
ni locking slots at l pi. Thus, the total locking gain on WCET
for the program in dynamic locking can be defined as follows.

∑
l pi∈LP

gain(l pi,ni)

For the global optimization, we propose an ILP formulation
approach to obtain ni for each l pi ∈ LP. We first derive
the constraints on ni. Then we approximate gain(l pi,ni), the
locking gain by having ni slots at loop l pi. The objective of
the ILP formulation is to maximize ∑l pi∈LP gain(l pi,ni).

1) Constraints in Local Loop: Suppose Ni is the number
of memory blocks locked at loop l pi ∈ LP, when static cache
locking is independently applied to l pi. That is, locking more
memory blocks may have negative impact on the locking gain
at l pi. So, in our case, we should make ni bounded by Ni.

ni ≤ Ni (1)

To obtain Ni for l pi, we perform static locking cost-benefit
analysis in l pi and iteratively select the most profitable memory
blocks to lock, as discussed below.

Based on the resilience analysis, the memory blocks of loop
l pi can be classified into A+1 sets: {S−1

i , S0
i ,..., SA−1

i }. When
0 ≤ x ≤ A− 1, Sx

i indicates the set of memory blocks whose
resilience is x in loop l pi. While S−1

i contains all memory
blocks that are classified as Always Miss or Non-Classified in
loop l pi. Clearly, there is locking benefit only when we lock
the memory blocks in S−1

i . Thus, for a memory block m∈ S−1
i ,

its locking benefit can be defined as follows.

bene f itm = (LATmiss−LAThit)× f reqm

where LATmiss is the access latency for a cache miss, LAThit
is the cache hit latency, and f reqm is the execution frequency
of m on the worst-case path. However, locking m also incurs
penalty, as the number of free cache lines in cache set s is
reduced by 1, which may result in the eviction of memory
blocks in S0

i with resilience value 0.

cost ′m = ∑
m′∈S0

i ∧m/∈ysm′

((LATmiss−LAThit)× f reqm′)

where cost ′m represents the locking cost due to free cache space
reduction, m′ is a memory block with resilience of 0, and
ysm′ is the set of younger memory blocks of m′. As we have
mentioned, when m∈ ysm′ , there is no impact on m′ by locking
m. Locking m also requires the execution of locking/unlocking
routines. We use cost ′′m to represent this type of locking cost.

cost ′′m = PENALTY × f reqr

where PENALTY is a constant indicates the penalty to execute
the locking/unlocking routines for one memory block, and
f reqr is the total locking frequency of memory block m at
l pi on the worst-case path. Therefore, we obtain the total cost
in locking m as follows.

costm = cost ′m + cost ′′m

In this case, we can easily obtain the gain of locking m.

gainm = bene f itm− costm

We perform the analysis for all the memory blocks in S−1
i ,

and select the memory block with the maximum locking gain
to lock. Each time we lock a memory block, we update the
resilience sets, as the number of free cache line is reduced by
1 and the resilience values of memory blocks changes.

Let mk be the kth (1 ≤ k ≤ Ni) memory block selected to
be locked at l pi. We record the individual locking gain for this
memory block at loop l pi in static locking analysis as gaink

i .

gaink
i = gainmk

This value will be used to approximate the locking gain at l pi
in dynamic cache locking. Note that gain(l pi,k) = ∑

k
t=1 gaint

i .

We continue to lock memory blocks with the updated
resilience sets until there is no locking gain for all memory
blocks or the cache set s is fully locked. In this case, we obtain
the value of Ni, the maximum number of memory blocks that
can be locked at l pi when static locking is applied.

2) Accumulated Constraints: In our technique, the memory
blocks locked in the outer loops will be brought into their
corresponding inner loops. Thus, we also need to bound the
accumulated locking slots at each loop in the program.

For l pi ∈ LP, we use OLi to indicate the set of outer
loops of l pi, while ILi represents the set of inner loops of
l pi. Suppose loop l p j ∈ LP is an outer loop of l pi, that is,
l p j ∈OLi. We define a loop set LPi, j as the set of loops between
outer loop l p j and inner loop l pi (inclusive).

LPi, j = {l py|y = i∨ y = j∨ (l py ∈ OLi∧ l py ∈ IL j)}

Therefore, the accumulated number of locked memory blocks
starting from l p j to l pi is as follows.

acci, j = ∑
l py∈LPi, j

ny

We can also bound acci, j with Ni. However, Ni is too
restrictive for acci, j, as Ni only considers the locking benefit
of memory blocks in l pi, while the accumulated memory
blocks locked at l pi can potentially come from the outer loops
LPi, j \{l pi}. Therefore, an appropriate bound on acci, j should
consider maximum locking benefit and minimum locking cost.
That is, we should consider the locking benefit of memory
blocks in l p j while only the locking cost of memory blocks
in l pi is taken into account. We define such bound as Ni, j, the
number of memory blocks that can be locked at l p j from the

perspective of l pi in static locking analysis. The computation
of Ni, j is similar to that of Ni. The main difference is that
we choose the memory blocks from the effective region l p j
(S−1

j) for locking, while only the negative impact on l pi is
considered. Thus, we have

acci, j ≤ Ni, j (2)

3) Locking Gain Approximation: Recall that Ni is a bound
for ni. We define a 0-1 binary variable Bk

i to indicate whether
the kth (1 ≤ k ≤ Ni) slot is allocated at l pi in dynamic cache
locking. Clearly, until the kth slot is allocated, its subsequent
slot cannot be allocated. Thus, we have

Bk
i ≥ Bk+1

i ,where 1≤ k ≤ Ni−1 (3)

Obviously, ni is the summation of Bk
i over Ni.

ni = ∑
1≤k≤Ni

Bk
i (4)

When we lock a memory block in the kth slot at l pi, we use
the locking gain of the kth memory block in computing Ni to
approximate its locking gain. When the kth slot is allocated,
the locking gain is gaink

i , otherwise we have no locking gain.
So the locking gain at the kth slot in dynamic locking is

gaink
i ×Bk

i

The total gain function gain(l pi,ni) can be approximated as

∑
1≤k≤Ni

gaink
i ×Bk

i (5)

Equations 1-5 are the constraints in the ILP formulation,
and the objective is to maximize ∑l pi∈LP gain(l pi,ni). The
outcome of the ILP formulation is the ni for each l pi ∈ LP.

D. Memory Block Selection

Obviously, the locking point of a memory block affects
the locking point of the other memory blocks. Let us take the
program in Figure 2 for example. Suppose there is one locking
slot at both l p1 and l p2. If we lock m at l p2, the rest of the
memory blocks in l p1 compete for the locking slot at l p1. On
the other hand, if we lock m at l p1, the rest of memory blocks
in l p2 compete for the locking slot at l p2, and the memory
blocks in region a and region b can no longer be locked.

We choose to fill the locking slots from the innermost loop
to the outermost loop in the program. For each loop, we try to
use up all the locking slots in order to maximize the WCET
reduction. Without loss of generality, suppose l pi ∈ LP is the
innermost loop with available locking slots. With the cost-
benefit analysis in section III-C, we select the memory block
m ∈ S−1

i with the maximum locking gain to fill a slot at l pi.
Later, we update the resilience sets for l pi and its outer loops.
We continue to fill the slots until all the slots at l pi are filled.
Then, we move to its outer loops with available locking slots.
This process terminates when all the locking slots are filled. In
the end, we perform abstract cache states analysis for the cache
set, and update the WCET and the worst-case path information.

When all the cache sets are analyzed and there is no
improvement of WCET compared to static analysis, no cache
locking will be applied. In that case, no instruction is inserted
before loop entry and after loop exit. Thus, in the worst case,
our approach produces the same results as static analysis.

TABLE II. CHARACTERISTICS OF BENCHMARKS

Tasks Original code
size (bytes)

Code size after
locking (bytes)

Code size
increment (%)

of loops
(nested)

adpcm 11,000 11,248 2.25 15 (10)
cnt 1,648 1,712 3.88 4 (4)
crc 2,048 2,096 2.34 3 (0)
edn 7,296 7,472 2.41 11 (7)
fdct 5,176 5,208 0.62 2 (0)
jfdctint 5,520 5,568 0.87 3 (0)
matmult 1,632 1,712 4.90 5 (5)
minver 6,256 6,536 4.48 17 (16)
ndes 6,352 6,544 3.02 12 (8)
st 2,248 2,312 2.85 4 (0)

IV. EXPERIMENTAL EVALUATION

We evaluate our loop-based dynamic cache locking by
comparing it with static cache locking, static cache analysis
and region-based dynamic cache locking approach.

A. Experimental Setup

We use the benchmarks from MRTC benchmark suite [10]
as shown in Table II. Our framework is built on top of the
open-source WCET analysis tool Chronos [12]. We compile
the benchmarks with gcc cross-compiler for the Simplescalar
PISA (Portable ISA) instruction set [6]. The experiments are
performed on 2.53GHz Intel Xeon CPU with 24GB memory.
IBM CPLEX is used as the ILP solver to obtain both the
WCET and the locking slots.

Our approach increases the code size due to the insertion of
the call instructions to locking/unlocking routines, as shown in
the 3rd column of Table II. However, the code size increment
is very small. The number of loops and nested loops for
each benchmark is presented in the last column of Table II.
As we are modeling the instruction cache, we assume a
simple in-order processor with unit-latency for all data memory
references. Also, we consider architectures without timing
anomalies caused by interactions between caches and other
architecture features. We assume a 4-way set-associative cache
with block size of 32-byte, and two different cache sizes are
considered. The cache hit latency is 1 cycle and the cache miss
penalty is 30 cycles. We assume 150 cycles for locking and
unlocking a memory block.

B. Comparison with Static Approaches

We first compare our approach with static cache analysis
and static cache locking. We perform static analysis with
abstract interpretation [20], [4], while we adopt the heuristic
approach for partial cache locking in [7] to obtain the static
locking results. We use the static analysis results as the
baseline, and normalize the other results, as shown in Figure 4.

In Figure 4(a), our loop-based dynamic locking outper-
forms static analysis for all the benchmarks, and the improve-
ment is up to 40% (cnt and matmult). When compared with
static locking, our approach wins in most of the cases except
for crc and fdct. For crc, static locking performs well as
memory blocks that mostly affect the WCET are locked, while
cache locking does not help much in fdct. Furthermore, we
usually pay extra cost due to code size increase. On average,
static locking and our dynamic locking improve the WCET
by 13% and 23%, respectively. In Figure 4(b), as the cache
size increases, more memory accesses can be classified as
cache hits, and the improvement via static locking decreases to

0.00
0.20
0.40
0.60
0.80
1.00

Re
la
tiv

e
W
CE

T
static analysis static locking loop‐based dynamic locking

(a) Cache size: 5% of average task size

(b) Cache size: 10% of average task size

0.00
0.20
0.40
0.60
0.80
1.00

Re
la
tiv

e
W
CE

T

static analysis static locking loop‐based dynamic locking

Fig. 4. Comparison between loop-based dynamic locking and static ap-
proaches.

7% on average. However, our dynamic locking approach still
has 15% improvement on average. For both cache sizes, the
advantages of our flexible dynamic cache locking are clearly
demonstrated by the benchmarks with many nested loops such
as edn, minver and ndes. For adpcm, our approach achieves
small improvement as most of its loops are small and most of
its memory accesses are classified as cache hits.

C. Comparison with Region-based Approach

We implement the region-based dynamic cache locking
approach [3] for comparison. In [3], the locking and unlocking
of a memory block is handled by raising an exception, and
there is no modification to the program. Thus, for a fair
comparison, we assume no code change due to locking for
both loop-based and region-based approaches.

Figure 5 shows the comparison results, where static analy-
sis results are used as the baseline. For most of the benchmarks,
our approach performs better than the region-based dynamic
locking approach. For the region-based approach, memory
blocks can only be locked at the beginning of a region, which
does not provide fine-grained flexibility of selectively locking
memory blocks from the same region at different program
points. The region-based approach also uses full cache locking
that may prevent the unlocked memory blocks to exploit their
locality. However, there are a few exceptions, e.g., matmult
in Figure 5(b). When the cache size is 10% of the average
task size, most of the frequently executed memory blocks in
matmult can fit into the cache in the region-based approach, but
our approach does not allocate all the cache lines for locking
due to the approximation analysis.

D. Runtime

Our loop-based approach runs efficiently for all the bench-
marks. On average, it takes less than 1 second to complete.

V. CONCLUSION

In this paper, we propose a loop-based dynamic locking
approach for instruction caches to minimize the WCET. We
accurately capture the locking cost and benefit through re-
silience analysis. A global optimization method allocates the

(a) Cache size: 5% of average task size

(b) Cache size: 10% of average task size

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

Re
la
tiv

e
W
CE

T

Loop‐based dynamic locking Region‐based dynamic locking

0.00
1.00
2.00
3.00
4.00
5.00
6.00

Re
la
tiv

e
W
CE

T

Loop‐based dynamic locking Region‐based dynamic locking

Fig. 5. Comparison between loop-based and region-based dynamic locking.

locking slots across loop levels and the most profitable memory
blocks are selected to fill the slots. Our approach substantially
reduces the WCET compared to static analysis, static locking
and region-based dynamic cache locking.

Acknowledgments This work was supported by Singa-
pore Ministry of Education Academic Research Fund Tier 2
MOE2012-T2-1-115.

REFERENCES
[1] Intel XScale core developers manual. http://intel.com/design/intelxscale.
[2] S. Altmeyer et al. Resilience analysis: Tightening the CRPD bound for

set-associative caches. In LCTES, 2010.
[3] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard

real-time systems. In RTNS, 2006.
[4] C. Ballabriga and H. Casse. Improving the first-miss computation in

set-associative instruction caches. In ECRTS, 2008.
[5] B. Buck and J. K. Hollingsworth. An API for runtime code patching.

Int. J. High Perform. Comput. Appl., 14(4), 2000.
[6] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.

SIGARCH Comput. Archit. News, 25(3), 1997.
[7] H. Ding et al. WCET-centric partial instruction cache locking. In DAC,

2012.
[8] H. Ding et al. Integrated instruction cache analysis and locking in

multitasking real-time systems. In DAC, 2013.
[9] H. Falk et al. Compile-time decided instruction cache locking using

worst-case execution paths. In CODES+ISSS, 2007.
[10] J. Gustafsson et al. The Mälardalen WCET benchmarks – past, present

and future. In WCET, 2010.
[11] B. K. Huynh et al. Scope-aware data cache analysis for WCET

estimation. In RTAS, 2011.
[12] X. Li et al. Chronos: A timing analyzer for embedded software. Science

of Computer Programming, 69(1-3), 2007.
[13] Y.-T. S. Li and S. Malik. Performance analysis of embedded software

using implicit path enumeration. In DAC, 1995.
[14] Y. Liang and T. Mitra. Instruction cache locking using temporal reuse

profile. In DAC, 2010.
[15] T. Liu et al. Minimizing WCET for real-time embedded systems via

static instruction cache locking. In RTAS, 2009.
[16] T. Liu et al. Instruction cache locking for multi-task real-time embedded

systems. Real-Time Syst., 48(2), 2012.
[17] F. Mueller. Timing analysis for instruction caches. Real-Time Syst.,

18(2/3), 2000.
[18] S. Plazar et al. WCET-aware static locking of instruction caches. In

CGO, 2012.
[19] I. Puaut. WCET-centric software-controlled instruction caches for hard

real-time systems. In ECRTS, 2006.
[20] H. Theiling et al. Fast and precise WCET prediction by separated cache

and path analyses. Real-Time Syst., 18(2/3), 2000.
[21] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time

Syst., 28(2-3), 2004.
[22] X. Vera et al. Data cache locking for tight timing calculations. ACM

Trans. Embed. Comput. Syst., 7(1), 2007.

