
SelectDirectory: A Selective Directory for Cache
Coherence in Many-Core Architectures

Yuan Yao1, Guanhua Wang2, Zhiguo Ge3, Tulika Mitra2, Wenzhi Chen1 and Naxin Zhang3

1College of Computer Science and Technology, Zhejiang University
2School of Computing, National University of Singapore

3Huawei International Pte. Ltd.
Email: yuanyao@zju.edu.cn, wangguan@comp.nus.edu.sg, ge.zhiguo@huawei.com,

tulika@comp.nus.edu.sg, chenwz@zju.edu.cn, naxin.zhang@huawei.com

Abstract—As we move into many-core era fueled by Moore’s
Law, it has become unprecedentedly challenging to provide
the shared memory abstraction through directory-based cache
coherence. The main difficulty is the high area and power
overhead of the directory in tracking the presence of a memory
block in all the private caches. Sparse directory offers relatively
better design trade-offs by decoupling the coherence meta-data
from the last-level cache (LLC); but still suffers from high
area/power issues. In this work, we propose a compact directory
design by exploiting the observation that a significant fraction
of the memory blocks are temporarily exclusive in the cache
hierarchy and hence only needs minimal sharer information.
Inspired by this observation, we propose to further decouple
the tag array from the coherence meta-data array in the sparse
directory and allocate a sharer list only for the actively shared
blocks. Experimental results reveal that our proposal, called
SelectDirectory, can substantially save directory storage area and
energy without sacrificing performance.

I. INTRODUCTION

A considerable consensus has been reached that cache
coherence will continue to be employed in future large-scale
systems [6][13]. With the rapid increase in the number of
cores on chip, the scalability of a coherence protocol is highly
challenging — maintaining coherence across hundreds or
thousands of cores will be unprecedentedly difficult. Although
directory coherence protocols offer a relatively practical ap-
proach, there is growing concern that simply applying the
directory coherence to many-core architecture will face serious
power and area issues.

There are several baseline directory architectures used
for on-chip coherence, such as duplicate tag directory, in-
cache directory and sparse directory. Duplicate Tag directory
[1] is area-efficient but it becomes less attractive in many-
core era due to the prohibitive energy consumption in its
highly associative structure. In-Cache directories [13] encode
the per-core coherence states in every LLC entry. Though it
is relatively more energy-efficient, the redundant storage for
the uncached blocks makes the design area-inefficient. Sparse
directory [3] designs use a directory cache to flexibly store di-
rectory entries, decoupled from the last level cache (LLC). The
sparse directory with low-associativity offers energy and area
efficiency. Unfortunately, set conflicts can occur frequently
due to the low associativity in the sparse directory. Sparse
directories also require back invalidation of the private cache
blocks if the corresponding sparse directory entry is evicted,
inevitably degrading system performance. Over-provisioning
alleviates this problem by having more directory entries than
the aggregated number of private cache entries. For example, a

sparse directory with twice the number of private cache entries
(denoted as Sparse 2×) can remarkably diminish the invalida-
tion rate but still does not eliminate the effect. Sacrificing area
for reduced directory-induced invalidation can be a mediocre
design choice for small-scale systems, but the unnecessarily
over-sized directory scales poorly with the growing on-chip
core counts.

To make the directory coherence more scalable, exten-
sive works have been proposed on efficient sharing pattern
representation [3][7][20] and hierarchical directories [11][20].
Other approaches like Cuckoo directory [12] and SCD [20]
make more effective use of the directory by using a multi-
hashing based insert and replacement policy, thus reducing the
set conflicts. Recently, SCT [2] and MGD [9] employ multi-
granular entries to compact the directory storage.

In this work, we take a different approach that exploits the
observation that a significant fraction of the memory blocks
stored in the on-chip cache hierarchy are temporarily private
[2][9][10]. These blocks only need minimal sharer information.
We leverage this observation by proposing SelectDirectory that
decouples the tag array and the data (i.e. coherence meta-
data) array of the sparse directory, and allocates data entries
only for the actively shared blocks. Experimental results reveal
that SelectDirectory can reduce the data array size by 8x
with identical performance to the baseline Sparse 2×. We
also synergistically combine SelectDirectory with MGD [9]
coherence directory for further directory size savings.

Decoupling cache tag and data has been proposed in the
context of LLC management [8][14], purposefully improving
LLC utilization, but without taking coherence tracking re-
duction into account. In our proposal, we seek an efficient
sparse directory to reduce coherence tracking overheads. The
decoupled directory structure allows less data entries than tag
entries, which well matches our requirements for selective data
allocation in the directory.

II. MOTIVATION

Actively shared blocks are simultaneously cached by more
than one private cache. In a sparse directory, we define a direc-
tory entry as an actively shared entry if it is tracking multiple
sharers. In this section, we first acquire the theoretical upper
bound of the number of actively shared directory entries for a
sparse directory. Then by exploiting characteristics germane to
directory coherence, we take a statistical approach to further
identifying the amount of actively shared entries.
Theoretical Upper Bound for Actively Shared Directory
Entries Every block cached in the private caches is tracked by
a directory entry. At a given time, the total number of blocks

cached in the private caches is equal to number of tracked
sharers in the directory. Assuming there are N cores, let dn be
the number of directory entries that track n sharers, and M
be the aggregated number of private cache entries, we have:

N∑
i=1

di × i = µM

Where µ is the occupation ratio of private caches. We define
Eactive shared to be the number of actively shared directory
entries, so we have:

Eactive shared =

N∑
i=2

di

We define ρ to refer to the ratio of actively shared directory
entries to the aggregated number of private cache entries:

ρ = Eactive shared/M
Clearly, ρ maximizes when µ = 1 and all the blocks in the
private caches are actively shared. In particular, ρ reaches its
theoretical limit when all the blocks have exactly two sharers.
In such case, the number of actively shared directory entries
will be M/2, where ρ is 50%:

MAX(Eactive shared) =M/2, MAX(ρ) = 50%

Probability Distribution of ρ We proceed to use realistic
workloads to characterize and identify the probability distri-
bution of ρ. In order to eliminate the perturbation from set
conflict, we set the directory size large enough to ensure
no eviction could occur. For each run, the workload creates
the same number of threads as the core count and runs to
completion. More simulation settings can be found in Section
IV.

To get the probability distribution of ρ throughout the
execution of applications, we periodically take a snapshot
and record ρ for all 16 workloads. For each workload, we
set the time interval to uniformly obtain 500 snapshots (or
samples). Figure 1 plots the individual and overall cumulative
probabilities of ρ for all 16 workloads. The y axis is the
probability of ρ <= x, We can see that for most workloads,
P (ρ <= 15%) > 0.95.

The bold curve in the figure is the overall cumulative prob-
ability of all 8000 (500 x 16) samples. The overall cumulative
probability gradually approaches to 1 where ρ <= 20%. It
reveals that at any given point during the entire application
execution, ρ rarely exceeds 20%.

Fig. 1: Individual and overall cumulative probabilities of ρ for
16 workloads.

In summary, we conclude that the number of actively
shared directory entries has a theoretical limit of M/2. But
workload characterization reveals that at any given point during
application execution, it almost always remains under M/5.

III. DESIGN OF SELECTDIRECTORY

The previous section motivates that at any given point
in time, a minor fraction of directory entries are actively
shared. This section describes a practical and efficient design
(SelectDirectory) that takes advantage of this observation. We
first present the organization of SelectDirectory, followed by
its operation description and effects on the coherence protocol,
finally the comparison with closest work.
A. Organization

Similar to associative caches, a conventional sparse direc-
tory arranges the tag and state information in a tag array and
the tracked sharers in a data (or meta-data) array. For the
identities of the sharers, a bit vector is usually used where one
bit represents a corresponding core. We exploit the aforemen-
tioned sharing pattern to design SelectDirectory that allocates
an entry in the data array only when the block becomes
actively shared. In addition, when the block transitions back to
temporarily private state or gets evicted in the data array, the
data entry is deallocated. Temporarily private blocks only have
tag entires allocated. Thus, the data array size can be greatly
reduced.

Figure 2 shows the structure of SelectDirectory and the
formats of tag and data entries. By decoupling the tag array and
the data array, SelectDirectory breaks the one-to-one mapping
of tag and data; thus the data array can have fewer number
of entries than the tag array. As shown in Figure 2, a forward
pointer and a reverse pointer are employed for associating the
two arrays [14][8]. The tag array the index bits to identify the
set whereas the data array uses a subset (least significant bits)
to identify the set. Specifically, the forward pointer links the
tag entry to one data entry in the set, and a reverse pointer in
the data array indicates the associated tag position in the tag
array. Each tag entry is also extended with an owner pointer,
which is necessary for temporarily private blocks to track its
exclusive owner.

Tag Index Offset

Incoming physical address

way-0 way-1 way-m way-0 way-1 way-n

Tag State FPtr/OwnerRepl. Sharer vector RPtrRepl.V

Tag

RPtr

Tag entry Data entry

Comparator

Multiplexor

FPtr Repl: Replacement bits
 V: Valid bit
FPtr: Forward pointer
RPtr: Reverse pointer

Fig. 2: Structure and entry formats of SelectDirectory.

As the position of a data entry is encoded in the forward
pointer, a lookup in the data array does not require any
associative search. So increasing the associativity of the data
array does not have an impact on power consumption.

However, when increasing associativity of the data array,
we need a bigger forward pointer in the tag array. Take the
example of a 32-core CMP, we use SD(t×, d×) to refer to
the numbers of tag entries and data entries relative to the

aggregated number of all private cache entries, where t and d
are the ratios of the tag array and the data array respectively.
For a fully associative data array, every tag entry will have a
log2(data entris) bit forward pointer.

On the other hand, note that either the forward pointer
or the owner pointer is active at any point in time. For a
temporarily private block, the forward pointer bits are unused
as it only has a tag entry allocated. While for an actively shared
block, the owner pointer is redundant as it has been encoded
in the sharer vector. Thus, to minimize storage overhead of the
design, the forward pointer and the owner pointer can share the
same storage in the tag array. The directory controller interprets
the bits differently according to the block’s sharing status. We
now describe detailed operations of SelectDirectory.

B. Operations
Lookup and Data Allocation Upon a miss in the tag array,
instead of conventionally allocating both tag and sharer vector,
SelectDirectory only allocates tag and keeps the owner in the
tag entry. Upon a hit in the tag array, several situations can
happen depending on the block states and the request type.

If the block is temporarily private, a read request will
make the block become actively shared. Then SelectDirectory
allocates a data entry and encodes the owner and the requester
in the sharer vector. Simultaneously, it sets the forward pointer
in the tag array. We call it an upgrade action. A write request
will keep the block as temporarily private, but the owner will
be changed, and the request is forwarded to the old owner.

If the block is actively shared, the forward pointer indicates
the way number of the corresponding data entry in the data
array. The operations on a read request are conventional.
However, for a write request, the block becomes temporarily
private again, which opens up opportunities for creating space
in the data array. Therefore, in parallel to sending invalidation
messages to the sharers, SelectDirectory deallocates the entry
in the data array and overwrite the forward pointer with the
new owner. We denote this action as downgrade.
Replacement and Private Cache Eviction The replacement
can happen both in the tag array and the data array. In this
work, we use the LRU replacement policy for the two arrays.
A tag replacement will evict both the tag and the data entries
if it is linked to a data entry. For a data array eviction,
SelectDirectory will perform another type of downgrade. It
keeps the tag entry in the tag array; in addition, it picks one
sharer and invalidates the others. The forward pointer in the tag
entry is then covered by the selected owner. This optimization
reduces the number of blocks to be invalidated, and keeping
the tag and one sharer alive also improves latency for future
access to the block.

On receiving eviction notifications from private caches, a
block with only a tag entry will be marked invalid. For a block
with tag and data entries, one possible situation is that only one
sharer is left after the private cache eviction. In this case, we
do not proactively downgrade the data entry to the tag array,
because the data entry is likely soon to be evicted and in turn
downgraded by another entry. When receiving the last sharer’s
private cache eviction notification, both the tag entry and the
data entry will be reclaimed by SelectDirectory.

C. Effects on the Coherence Protocol
In SelectDirectory, a block is allowed to have no data entry

allocated. SelectDirectory requires the sharing status of the

block to perform appropriate operations. Fortunately, we find
the coherence states of the directory controller is adequate to
obtain the information, which does not introduce any extra
overhead. In a conventional MESI coherence protocol, the
sparse directory controller has three stable states [11]: M, S, I.
E and M are both represented by M in the directory. A block
in M state is potentially modified by its exclusive owner, and
a block in S state indicates the block is present in multiple
private caches. The nature of M and S states is sufficient for
SelectDirectory to identify whether the block is temporarily
private or not. Specifically, a block in M state only has its tag
entry allocated, while a block in S state have entries in both
tag and data arrays. Therefore, SelectDirectory does not require
any new coherence states. On the other hand, the downgrade
action will minimally change the coherence protocol. When
downgrading a block from the data array to the tag array due
to a data eviction, we need to change the state of the block from
S to M. Overall, SelectDirectory does not introduce complexity
to the coherence protocol.

D. Latency

This section describes a comparison of latencies between
conventional sparse directory and SelectDirectory. CACTI 6.5
[19] is employed to model the access latency using 32nm
technology. For the conventional Sparse 2×, both parallel and
serial tag and data lookup are considered, while we use serial
lookup for SelectDirectory. Table I shows the latencies of
Sparse 2×, SD(2×, 1/2×) and SD(2×, 1/4×). We assume
both SelectDirectory configurations use a fully associative data
array which gives us an upper bound on directory access
latency. Thanks to the directory size reduction, the latencies of
SD(2×, 1/2×) and SD(2×, 1/4×) are 12% and 22% lower
than Sparse 2× with serial lookup. Note that Sparse 2× with
parallel lookup can reduce the latency down to 0.51ns, but it
still requires 2-cycle at 2GHz clock, which is the same as serial
lookup. Given the energy increase due to parallel lookup, we
will use serial lookup for the baseline Sparse 2×. Thus, we
consider that the latency of SelectDirectory does not increase
with respect to the conventional sparse directory. The same
latency (2-cycle) is used for the baseline Sparse 2× and all
SelectDirectory configurations in our experiments.

TABLE I: Directory access latencies.
Directory architecture Access latency (ns)

Sparse 2×, Parallel lookup 0.51
Sparse 2×, Serial lookup 0.82
SD(2×, 1/2×) 0.73
SD(2×, 1/4×) 0.64

E. Comparison with HR

L. Fang et al. recently propose Hybrid Representation
(HR) [10] as a mechanism for exploiting the large fraction of
temporarily private blocks. We identify HR to be the closest
work to our proposal. For each directory set of HR, only a few
entries have full sharer vectors (vector entries, VE) while the
rest are only capable of tracking one sharer (pointer entries,
PE). When a PE needs to track more than one sharer, the entry
is moved to a VE if there is an unused VE. Otherwise a VE
has to be converted into a PE to allow a swap between the PE
and the VE. If the sharer number of the victim VE is less than
a threshold, the sharer vector is rounded down to one current
sharer. If not, a broadcast bit is set indicating that the block is
potentially present in all private caches.

Compared with SelectDirectory, HR has several shortcom-
ings: (i) as the locations of PEs and VEs are fixed, HR involves
swapping between directory entries. It increases energy by
swapping both the tags and data. In contrast, instead of
doing swaps between entries, when a single-sharer entry (tag
entry) becomes actively shared, the decoupled structure of
SelectDirectory allows it to link to multi-sharer entries (data
entries) using the forward pointer. (ii) Moreover, HR needs to
ensure atomicity during a swap. Otherwise the vacant entries
could be occupied by a request in interim, causing unexpected
new races. (iii) When overflow happens in the VEs, imprecise
representation is used to reduce the conversion overhead.
However, this imprecision in coherence tracking can result in
unnecessary private cache snoops and network bandwidth. For
every PE with the broadcast bit set (we denote it as PE-B),
a broadcast may happen in the future. SelectDirectory dose
not use any imprecise representation and thus imposing no
additional private cache probes.

IV. METHODOLOGY

In this section, we provide the simulation infrastructure and
workloads used for our evaluation.
A. Simulation Environment

For evaluation of our proposal, we use the gem5 simulator
[17] with Ruby full-system mode enabled. Garnet [15] is used
to simulate a 2D mesh network-on-chip. Detailed parameters
of the simulated system are listed in Table II.

TABLE II: Simulation parameters.
Cores 32 in-order cores, 2 GHz
L1 Cache Split I & D, 32KB, 4-way, 64B block, LRU, 1-cycle

access latency
L2 Cache Private, 256KB, 8-way, 64B block, LRU, 3-cycle

access latency
L3 Cache Shared, 32 MB (32 slices of 1 MB each), 16-way,

64B block, LRU, 20-cycle access latency
Baseline Directory MESI coherence, sparse directory, explicit eviction

notification, 2× provisioning ratio (32 slices of 8K
entries each), 8-way, LRU, 2-cycle access latency

Network 2D Mesh, 16B-flit, 1/5-flit control/data packets, 5-
stage router, 1-cycle link

Memory 2GB, DDR3, 16 channels

B. Workloads
As shown in Table III, we use PARSEC [4] and SPLASH-2

[18] workloads to evaluate our proposal. For stable and faithful
measurements, we run each experiment multiple times and
bind each thread to a particular core by invoking the Linux
system function pthread setaffinity np where the threads are
spawned. All workloads run correctly to completion.

TABLE III: Workloads and input size.

PARSEC
blackscholes, bodytrack, canneal
dedup, fluidanimate, freqmine,
swaptions, x264

simmedium

SPLASH-2

barnes
fmm
radiosity
water spatial
cholesky
fft
lu
radix

32K particles
64K particles
BF refinement=1.5e-2
203 Molecules
13992x13992, NZ=316740
4M points
1Kx1K matrix, block=16
16M keys, radix=4K

V. EVALUATION

We start the evaluation by exploring the SelectDirectory
configurations to see how small it can be without sacrificing
cache performance. Along with it, we also demonstrate the

energy and area costs of the design. Section V-C demonstrates
the worst case analysis for energy consumption. In Section
V-D, we compare SelectDirectory with HR [10]. Then we
proceed to extend SelectDirectory by incorporating the idea
of state-of-the-art coherence directory [9].
A. SelectDirectory Configuration Exploration

By selectively allocating coherence data, the directory
size can be significantly reduced, but excessive directory
size reduction will cause significant back invalidations, which
consequently hurt private cache performance. We explore to
find a reasonable SelectDirectory configuration by measuring
private L2 cache miss rate. Figure 3 shows the L2 cache
miss rates of SelectDirectory with varying data array size and
associativity. As the results illustrate, the cache performance
impact is barely noticeable (less than 0.5%) when shrinking
SelectDirectory from SD(2×, 1×) to SD(2×, 1/4×) across
all workloads. However, downsizing the data array from 1/4×
to 1/8× can experience a cache performance degradation of up
to 13.7%. Meanwhile, increasing the associativity of the data
array from 32-way to full-associativity only improves cache
performance by 0.3% across all SelectDirectory configurations.
Given the storage overhead of big forward pointers, the results
render 32-way a desirable design point to reuse the owner
pointer storage (5-bit) for the forward pointer. Unless otherwise
stated, we will use 32-way for the data array associativity.

Figure 5 shows the rate change of back invalidation over
the baseline for SelectDirectory with different provisioning
sizes. Associating it with Figure 3 offers an insight on how
back invalidations impact cache performance when reducing
the size of SelectDirectory. In some cases (e.g. blackscholes),
the back invalidation rate is insensitive to SelectDirectory size.
Because of the low data sharing degree, these workloads can
have an extremely small SelectDirectory (SD(2×, 1/16×))
with negligible performance penalty. On the contrary, a number
of workloads see a rise in invalidation rate when using a 1/8×
data array. In the case of barnes, the invalidation rate increases
by 14.9%, which explains its 13.7% cache performance drop
in Figure 3.

The optimal SelectDirectory size for a single workload
reflects its working actively shared data set size. The above
results reveal that SD(2×, 1/4×) can offer comparable cache
performance to the conventional sparse directory for all work-
loads. We show the normalized execution time of SD(2×,
1/4×) in Figure 4a. It behaves nearly identical to the baseline
Sparse 2×. Note that this experimental result closely matches
the analysis presented in Section II.
B. Energy & Area

CACTI 6.5 [19] is used for energy and area assessments
assuming 32nm technology. The per-access energy of the
directories is presented in Table IV. We also develop a model
that measures the dynamic energy consumed in the NoC,
L2 and L3 caches. For cache structures, the energy cost of
coherence induced cache accesses is also accounted for. The
NoC energy is obtained from DSENT [5].

Figure 4b shows the directory energy of SD(2×, 1/4×)
relative to Sparse 2×. On an average, SD(2×, 1/4×) reduces
the directory energy by 26.9%.

Back invalidations can hurt private cache performance,
increase the network bandwidth and force more L3 accesses,
thus the directory size reduction may affect the energy of L2,
NoC and L3. Figure 6 shows energy consumed in NoC, L2

0.90	

0.95	

1.00	

1.05	

1.10	

1.15	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

32
-­‐w

ay
	

fu
ll-­‐a

sso
c	

blkschs	
 bodytrack	
 canneal	
 dedup	
 fluid	
 freqmine	
 swap@ons	
 x264	
 barnes	
 fmm	
 radiosity	
 water_sp	
 cholesky	
 E	
 lu	
 radix	

No
rm

ali
ze
d	
 M

iss
	
 Ra

te
	

SD(2×,	
 1×)	
 SD(2×,	
 1/2×)	
 SD(2×,	
 1/4×)	
 SD(2×,	
 1/8×)	

Fig. 3: L2 Miss rates of various SelectDirectory configurations, all normalized to Sparse 2×.

0.60	

0.65	

0.70	

0.75	

0.80	

0.85	

0.90	

0.95	

1.00	

1.05	

1.10	

bla
cks
ch
ole
s	

bo
dy
tra
ck	

can
ne
al	

de
du
p	

flu
ida
nim

ate
	

fre
qm
ine
	

sw
ap
@o
ns
	

x2
64
	

ba
rne
s	

fm
m	

rad
ios
ity
	

wa
ter
_sp

a@
al	

ch
ole
sky
	
 E	
 lu	

rad
ix	

HM
EA
N	

No
rm

al
ize

d	

Ex
ec
u@

on
	
 T
im

e	

Sparse	
 2×	
 SD(2×,	
 1/4×)	

(a) Performance

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

bla
cks
ch
ole
s	

bo
dy
tra
ck	

ca
nn
ea
l	

de
du
p	

flu
ida
nim

ate
	

fre
qm
ine
	

sw
ap
Co
ns
	

x2
64
	

ba
rne
s	

fm
m	

rad
ios
ity
	

wa
ter
_sp
	

ch
ole
sky
	
 F	
 lu	

rad
ix	

HM
EA
N	

N
or
m
al
ize

d	

En
er
gy
	
 C
on

su
m
pC

on
	
 Sparse	
 2×	
 SD(2×,	
 1/4×)	

(b) Directory energy
Fig. 4: Performance and directory energy of SD(2×, 1/4×), normalized to Sparse 2×.

-­‐5.0	

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

Sparse	
 2×	
 SD(2×,	
 1×)	
 SD(2×,	
 1/2×)	
 SD(2×,	
 1/4×)	
 SD(2×,	
 1/8×)	
 SD(2×,	
 1/16×)	

%
	
 P
er
ce
nt
ag
e	

of
	
 In
va
lid
aE

on
	
 R
at
e	

Ca
hn

eg
e	

blackscholes	

bodytrack	

canneal	

dedup	

fluidanimate	

freqmine	

swapEons	

x264	

barnes	

fmm	

radiosity	

water_sp	

cholesky	

S	

lu	

radix	

Fig. 5: Percentage change of back invalidation rate over the
baseline for SelectDirectory with different provisioning sizes.

and L3 for SD(2×, 1/4×), normalized to the baseline. As the
figure shows, the size reduction of SelectDirectory does not
impact the energy of these structures at all.

Area results are listed in Table V. As shown in the table,
the data array of Sparse 2× occupies more than 2x area than
the tag array. SD(2×, 1/4×) reduces the area of the data
array to 3.1x smaller than the tag array. As the tag array of
SelectDirectory is extended by the forward pointer, it is slightly
bigger than the baseline. Nevertheless, compared to Sparse 2×,
SelectDirectory saves 2.04x total directory area.

TABLE IV: Energy overheads of SD(2×, 1/4×).

Directory architecture
Energy per-access (pJ)

Tag array Data array Total
(tag+data)

Sparse 2× 7.13 9.78 16.91
SD(2×, 1/4×) 8.06 2.24 10.30

TABLE V: Area overheads of SD(2×, 1/4×).

Directory architecture Area per-slice (mm2)
Tag array Data array Total area

Sparse 2× 0.051 0.107 0.170

SD(2×, 1/4×) 0.058 0.019 0.084

C. Worst Case Analysis for Energy Consumption
For a single block, transitions between temporarily private

and actively shared states will require upgrade and downgrade

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

1.100	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

Sp
ar
se
	
 2×

	

SD

(2
×,	

1/
4×
)	

blkschs	
 bdytrk	
 cnneal	
 dedup	
 fluid	
 frqmne	
 swap	
 x264	
 barnes	
 fmm	
 radio	
 water	
 chlsky	
 K	
 lu	
 radix	

No
rm

ali
ze
d	
 E

ne
rg
y	
 C

on
su
m
pQ

on
	

NoC	
 L2	
 L3	

Fig. 6: Energy impact of SD(2×, 1/4×) on NoC, L2 and L3
(w/o directory), normalized to Sparse 2×.

actions that consumes energy. We first calculate the energy
overheads of the two actions for SD(2×, 1/4×). As shown
in Table VI, both of upgrade and downgrade consists of two
tag array access and a data array access. For the former,
the extra tag access is for setting the forward pointer, while
for the latter the extra tag access is used for overwriting
the forward pointer with the owner. Thus, for every upgrade
or downgrade, SD(2×, 1/4×) consumes additional 1.45pJ
energy than the baseline. In the worst case scenario, every
request will cause an upgrade or downgrade, exhibiting ex-
treme migratory sharing patterns [16]. This worst case will
consume 1.45pJ/16.91pJ=8.6% more energy compared to the
baseline. However, in our experiments, the energy overheads in
upgrade and downgrade actions are completely compensated
by the energy reduction from SelectDirectory (26.9% energy
reduction). Therefore, although the worst case has an 8.6%
energy increase, SelectDirectory is highly resistive to it, ben-
efiting from the energy-efficient design.

TABLE VI: Energy overheads of upgrade and downgrade
actions for SD(2×, 1/4×).

Tag access Data access Energy (pJ)
Sparse 2× 1 1 16.91
Upgrade 2 1 18.36
Downgrade 2 1 18.36

D. Comparison with HR
We denote HR(t×, v/assoc) as the architecture for com-

parison, where t is the provision ratio of the tags and v is the
number of VEs in a set (assoc ways). According to [10], using
a single VE in a set will cause enormous back invalidations,
and a 2-VE configuration is used for better trade-offs. Thus,
we compare SD(2×, 1/4×) with HR(2×, 2/16), as the HR
configuration asymptotically reduces the data array size by
8x compared with Sparse 2×, which is similar to SD(2×,
1/4×). Figure 7 shows L2 cache miss rates of SD(2×, 1/4×)
and HR(2×, 2/16), all normalized to Sparse 2×. Results of
HR(2×, 1/8) is also shown in the figure for reference. We can
observe that having a single VE in a set is not sufficient for
some workloads. HR(2×, 2/16) mitigates the problem, but the
worst case still has 8.7% cache performance degradation. On
average, SD(2×, 1/4×) outperforms HR(2×, 2/16) by 1.2%.

Additionally, the swaps and high-associative lookups
worsen the directory energy. As shown in Figure 8, HR(2×,
2/16) generates more energy than the baseline by up to 23.2%.
In contrast, SD(2×, 1/4×) is consistently more energy-
efficient than the baseline across all workloads. On average,
SD(2×, 1/4×) consumes 28.3% lower directory energy than
HR(2×, 2/16).

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

1.60	

bla
cks
cho

les
	

bo
dyt

rac
k	

can
nea

l	

ded
up
	

flu
ida
nim

ate
	

fre
qm

ine
	

sw
ap?

on
s	

x26
4	

bar
nes

	

fm
m	

rad
ios
ity	

wa
ter
_sp

	

cho
les
ky	
 B	
 lu	

rad
ix	

HM
EA
N	

No
rm

ali
ze
d	
 M

iss
	
 Ra

te
	

SD(2×,	
 1/4×)	
 HR(2×,	
 2/16)	
 HR(2×,	
 1/8)	

Fig. 7: L2 miss rates of SD(2×, 1/4×), HR(2×, 2/16) and
HR(2×, 1/8), normalized to Sparse 2×.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1.40	

bla
cks
cho

les
	

bo
dyt

rac
k	

can
nea

l	

ded

up
	

flu
ida
nim

ate
	

fre
qm

ine
	

sw
ap?

on
s	

x26
4	

bar
nes

	

fm
m	

rad
ios
ity	

wa
ter
_sp

	

cho
les
ky	
 B	
 lu	

rad
ix	

HM
EA
N	

No
rm

ail
ze
d	
 E

ne
rgy

	
 Co
ns
um

p?
on

	

SD(2×,	
 1/4×)	
 HR(2×,	
 2/16)	

Fig. 8: Directory energy of SD(2×, 1/4×) and HR(2×, 2/16),
normalized to Sparse 2×.

E. Extending SelectDirectory with State-of-the-Art Coherence
Directory

State-of-the-art directories use multi-grain directory entries
(MGD) to exploit the temporarily private nature of large con-
tinuous chunks of blocks (or region) [2][9]. Since a region en-
try is temporarily private by nature, the design can naturally fit
into our selective data allocation, further shrinking the tag array
of SelectDirectory. We combine SelectDirectory with MGD
(denoted as SD+MGD). Table VII shows the relative execution
time and directory energy reduction of SD+MGD(1/2×,
1/4×) to the baseline across all workloads. By leveraging
multi-grain directories, the extended SelectDirectory further

reduces the directory size and energy, with no statistically
significant performance loss.

TABLE VII: Execution time and directory energy reduction of
SD+MGD(1/2×, 1/4×), normalized to Sparse 2×.

Directory architecture Execution time Directory energy reduction
SD(2×, 1/4×) 1.005 26.9%
SD+MGD(1/2×, 1/4×) 1.009 40.1%

VI. CONCLUSION

Applications have significant portion of temporarily private
blocks in the cache hierarchy. We exploit this phenomenon
by proposing a practical and effective directory design that
decouples the tag array and the data array, and allocates data
entries only for actively shared blocks. Experimental results
reveal that our proposal can substantially save the directory
storage, area and energy without sacrificing performance.

VII. ACKNOWLEDGMENTS

This work was supported by Huawei International Pte. Ltd.
research grant and Singapore Ministry of Education Academic
Research Fund Tier 1 T1-251RES1120.

REFERENCES

[1] “OpenSPARC T2 system-on-chip (soc) microarchitecture specification,
may 2008.”

[2] M. Alisafaee, “Spatiotemporal coherence tracking,” in MICRO’12.
[3] A. Gupta et al, “Reducing memory and traffic requirements for scalable

directory-based cache coherence schemes,” in ICPP’90.
[4] C. Bienia et al, “The PARSEC benchmark suite: Characterization and

architectural implications,” in PACT’08.
[5] C. Sun et al, “DSENT - a tool connecting emerging photonics with elec-

tronics for opto-electronic networks-on-chip modeling,” in NOCS’12.
[6] D. Sorin et al, A Primer on Memory Consistency and Cache Coherence,

2011.
[7] H. Zhao et al, “SPACE: Sharing pattern-based directory coherence for

multicore scalability,” in PACT’10.
[8] J. Albericio et al, “The reuse cache: Downsizing the shared last-level

cache,” in MICRO’13.
[9] J. Zebchuk et al, “Multi-grain coherence directories,” in MICRO’13.

[10] L. Fang et al, “Building expressive, area-efficient coherence directories,”
in PACT’13.

[11] L. Zhang et al, “SpongeDirectory: Flexible sparse directories utilizing
multi-level memristors,” in PACT’14.

[12] M. Ferdman et al, “Cuckoo directory: A scalable directory for many-
core systems,” in HPCA’11.

[13] M. Martin et al, “Why on-chip cache coherence is here to stay,”
Commun. ACM, 2012.

[14] M. Qureshi et al, “The V-Way cache: Demand based associativity via
global replacement,” in ISCA’05.

[15] N. Agarwal et al, “GARNET: A detailed on-chip network model inside
a full-system simulator,” in ISPASS’09.

[16] N. Barrow-Williams et al, “A communication characterisation of splash-
2 and parsec,” in IISWC’09.

[17] N. Binkert et al, “The gem5 simulator,” Comput. Archit. News, 2011.
[18] S. Woo et al, “The SPLASH-2 programs: Characterization and method-

ological considerations,” in ISCA’95.
[19] N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A Tool to

Understand Large Caches,” University of Utah and HP Laboratories.
[20] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory

with flexible sharer set encoding,” in HPCA’12.

