
Distributed Fair Scheduling for Many-Cores
*Anuj Pathania, †Vanchinathan Venkataramani, *Muhammad Shafique, †Tulika Mitra, *Jörg Henkel

*Chair of Embedded System (CES), Karlsruhe Institute of Technology, Germany
†School of Computing (SoC), National University of Singapore, Singapore

Corresponding Author: anuj.pathania@kit.edu

Abstract—Transition of embedded processors from multi-cores
to many-cores continues unabated. Many-cores execute tens
of tasks in parallel and in some contexts, it is crucial that
the processing cores are distributed fairly amongst the tasks.
Traditional queue-based centralized fair schedulers designed for
multi-cores will have excessive overhead on many-cores due to
the enlarged optimization search-space. Further, the processing
requirements of executing tasks may vary under different phases
of their execution necessitating lightweight dynamic fair sched-
ulers to regularly perform partial reallocation of the cores. We
introduce a distributed dynamic fair scheduler that can scale up
with the increase in number of cores because it disburses the
processing overhead of scheduling amongst all the cores. Based
on observations made for task executions on many-cores, we
propose an optimal solution under certain constraints for the
fair scheduling problem, which in general is NP-Hard.

I. INTRODUCTION

Number of computing cores on-chip is increasing rapidly
with every technology generation. Multi-core processors with
a dozen processing cores are now expected to be replaced by
many-core processors with hundreds of processing cores [1],
[2]. Many-cores execute tens or hundreds of tasks in parallel
to fully exploit their compute potential. Achieving high per-
formance is often the goal of the systems. However, in some
systems fairness is more emphasized than performance. For
example, in embedded systems wherein certain critical tasks
should not experience substantial performance degradation to
prevent system failure or in server systems wherein tasks
from different users agnostically running together should not
experience any discrimination. Such systems need to ensure
that all executing tasks are given their fair share of cores based
on their requirements, and performance gains in one task does
not happen at the expense of performance drop in another.

Schedulers are low level Operating System (OS) routines,
which allocate cores to the executing tasks [3]. Linux Com-
pletely Fair Scheduler (CFS) [4] is currently the most widely
used default fair scheduler in multi-core OS. It allocates
near-equal time slices to executing tasks, so that each task
gets equal share of CPU time. Authors in [5] extend CFS
to asymmetric multi-cores. In multi-cores, number of tasks
dominates the number of cores permitting the applicability of
concepts like time slicing or runtime queues. In many-cores,
number of cores in general outnumbers the number of tasks
thereby making notion of round robin executions redundant.
Additionally, state-of-the-art fair schedulers for multi-cores
proposed in research [6] are innately centralized and will not
scale up as we transition from multi-cores to many-cores.

0 20 40 60 80 100

2

3

4

x10 Million Instruction

1-
C

or
e

Sl
ow

do
w

n

bzip2 lbm

Fig. 1: Profiles of bzip2 and lbm benchmarks showing changes
in their single-core slowdowns compared to 8-core.

Distributed schedulers for many-cores [7] are largely
performance-oriented disregarding fairness. Authors in [8]
proposed a lightweight runtime fair scheduling heuristic based
on the notion of efficiency that is scalable but results in
suboptimal fair schedules. We on the other hand propose a
scheduler, which is not only scalable but is also proven to be
optimal in term of fairness under certain conditions.

Fair scheduling problem becomes further challenging as the
processing requirements of executing tasks keep changing as
the tasks go through different phases of their execution [9].
This results in a task experiencing variable slowdown during
its execution. The slowdown of a task running on N-core is
computed as the ratio of its maximum achievable Instructions
per Cycle (IPC) on the system to the IPC it achieves on N-core
in an isolated execution. We use adaptive many-cores in this
work, which are special types of many-cores [10], [11] that
can speedup both single-threaded and multi-threaded tasks
allowing us to explore diverse mix of workloads. Figure 1
shows single-core IPC slowdown of two benchmarks (bzip2
and lbm) averaged over every ten million of their instructions
executed. To ensure optimal fairness at all times, a fair
scheduler needs to redistribute cores from tasks entering low
requirement phases to tasks entering high requirement phases.
If cores are scarce, then the scheduler needs to ensure that all
tasks experience similar resource crunch in the form of equal
slowdown. This leads to the fairness problem.

We choose variance in slowdowns amongst the entire
population of executing tasks as our fairness metric in this
work [12]. Variance here quantifies the dispersion in the
slowdowns of tasks being executed. Variance is zero when
core allocation amongst them is completely fair and all tasks
are experiencing exactly the same slowdown on the many-
core. The metric can also detect task starvations. Starvation
occurs when a task is denied execution by allocating zero
cores. Slowdown of a task with no core assigned is infinite,
making the variance infinite even if one task starves.

1 2 3 4
1

2
3

4
0

0.2

0.4

Task 1 (bzip2) cores Task
2 (lbm) cores

V
ar

ia
nc

e

0.2

0.4

Fig. 2: Initial variance in 6 possible non-zero core allocations
when 4 cores are distributed between 2 tasks (bizp2 and lbm).

0 20 40 60 80 100
0
1
2
3

Avg. Variance = .0199

x10 million cycles

C
or

e
ID

0

2

4

6

·10−2

V
ar

ia
nc

e

bzip2 lbm Variance

(a) Equal Static Scheduling

0 20 40 60 80 100
0
1
2
3

Avg. Variance = .0104

x10 million cycles

C
or

e
ID

0

2

4

6

·10−2

V
ar

ia
nc

e

(b) Optimal Dynamic Fair Scheduling (Brute Force)

Fig. 3: Reduction in average variance by 47.69% achieved
using dynamic fair scheduling in comparison to equal static
scheduling on 4-core system with 2 tasks (bzip2 and lbm).

Pareto-Optimal Motivation: Fairness should not cause
under-utilization of system resources. Figure 2 illustrates a
simple example with the initial variance under six different
possible allocation states when four cores need to be dis-
tributed amongst two tasks (bizp2 and lbm) without starvation.
Amongst all allocations, variance in slowdowns is minimum
for allocation (2,1) at 0.002 but it does not allocate one
of the available cores. This allocation is not Pareto-optimal,
which in our context means that there is a core allocation
possible in which slowdown of one task can be decreased
without increase in slowdown of another task. A distributed
fair scheduler needs to ensure that it does not converge to such
points for the sake of fairness. In contrast, allocations (1,3),
(2,2), (3,1) in which all four cores are allocated are not equally
fair because of imbalance in slowdowns of the two tasks in
those allocations. In our example amongst all Pareto-optimal
allocations, allocation (3,1) has the lowest variance of 0.015.
Note that it is not always possible to achieve the complete
fairness (i.e. zero variance) because a task can be allocated
only a discrete number of cores. We define Pareto-optimal task-
to-core allocations with minimum variance in task execution
slowdowns as an optimally fair allocation for many-cores.

Dynamic Scheduling Motivation: We show the decrease
in variance on multi-/many-core systems can be provided by

an optimal (brute force) phase-aware dynamic fair scheduling.
It redistributes cores every scheduling epoch in comparison
to a static scheduler that gives equal cores to all tasks. The
brute force solution is computationally too expensive to run
on systems with many-cores. We run two tasks (bzip2 and
lbm) on a 4-core system. Figures 3a and 3b show core allo-
cations over time with corresponding instantaneous variance
under the static- and dynamic scheduler, respectively. Figure 3
shows that the dynamic scheduler reduces average variance in
slowdowns by 47.49% when compared to the static scheduler.
The reduction in variance is obtained due to back and forth
transfer of core “1” amongst the two tasks based on their
relative instantaneous demands.

Our Novel Contribution: In this work, we present a
scheduler called DFMS (Distributed Fair Many-Cores Sched-
uler). DFMS performs dynamic scheduling to ensure that
the tasks executing in a many-core system experience near-
equal slowdowns throughout their execution. It distributes fair
scheduling processing overhead across all the cores enabling
scaling up with increase in number of cores.

The problem of variance minimization is well-studied [13]
and is known to be NP-Hard [14] in scheduling for a general
case. In this work we show that based on observations made
on many-cores, its fair scheduling problem’s structure can be
exploited to obtain an optimal fair schedule in polynomial time
under some conditions.

II. FAIR SCHEDULING UNDER DFMS
System Overview: DFMS uses a Multi-Agent Sys-

tem (MAS) to perform distributed fair scheduling for an N-
core system executing A tasks. There is one-to-many mapping
between tasks and cores, where one task can be assigned
multiple discrete numbers of cores but a core cannot be
assigned to more than one task. In this work, we assume
that number of tasks is always less than the number of cores.
Therefore, context-switching is not required. This keeps our
fair scheduling problem discrete allowing us to create less
complex and more scalable solutions. We also assume tasks
are malleable, which means that the number of cores allocated
to tasks can change during their execution.

System Model: We assign a unique agent to every executing
task. Let there be A agents managing A tasks indexed by
x. Each agent x holds Cx number of cores at a given time
to execute its assigned task, which can be traded with other
agents. C represents the current system-wide task-to-core
allocations (system state). γx(Cx) represents the instantaneous
slowdown of the task associated with agent x when assigned
Cx cores. γ̄(C) is the average instantaneous slowdown of
all tasks under allocation C. SS(C) and σ2(C) denote the
corresponding sum of squares and variance, respectively.

γ̄(C) = 1
A

∑A
x=1 γx(Cx) (1)

SS(C) =
∑A
x=1 γx(Cx)2 (2)

σ2(C) = 1
A

∑A
x=1(γx(Cx)−γ̄(Cx))2 (3)

Utility Model: Agents transfer cores amongst each other
based on a utility function. Let ui→j(δ) represent the utility

Begin Near-Equal Core Distribution New Scheduling Epoch New MAS Round Agents Make Negative Utility Moves Moves Made = 0? Execute Tasks
Y

MaxEpoch? Stop
Y

N

N

Fig. 4: Execution Flow for DFMS

1 2 4 8
1

2

3

4

Number of Cores Assigned

A
vg

.S
lo

w
do

w
n

astar bzip2 art bwaves
disparity mser blackscholes swaptions

Fig. 5: Average slowdown observed in benchmarks of different
types when assigned different numbers of cores.

of transferring δ cores from agent i to agent j assuming this
is the only move possible. σ2(C) by definition is the mean of
square of distance between slowdowns and mean slowdown.
When δ cores are transferred from i to j, γi(C) and γj(C)
change to γi(C−δ) and γj(C+δ), respectively. Their distances
from the mean γ̄(C) change. But, ui→j(δ) also changes the
mean itself from γ̄(C) to γ̄(C ′), where C ′ is the modified state
after the move. This results in a change in distance from the
mean for all elements. To make the problem tractable, effect
of a move on other elements can be temporarily ignored by
assuming γ̄(C) ≈ γ̄(C ′). Therefore, variance from a move
will decrease if combined change in the square of distance of
the new slowdowns from the mean is less than the original
ones. This inspires our definition for ui→j(δ).

ui→j(δ)=γi(Ci−δ)2+γj(Cj+δ)
2−γi(Ci)2−γj(Cj)2 (4)

Execution Flow: Figure 4 depicts the execution flow of
DFMS graphically. Initially, all cores are distributed near-
equally amongst all executing tasks. Every scheduling epoch,
a series of MAS rounds take place to make core allocations
fairer. Rounds stop when task-to-core allocations cannot be
made any fairer. Scheduling epoch is the granularity at which
scheduling is performed. DFMS operates at a granularity of 10
million cycles by default. In every MAS round, all agents com-
municate and exchange their instantaneous slowdowns. Agents
then calculate the utilities of moves involving transferring
cores they hold to every other agent. During a round, every
agent randomly picks another agent with which negative utility
moves are possible and exchanges cores with it. MAS rounds
stop for the scheduling epoch when a round is completed
without any negative utility move performed. Tasks are then
executed with the converged allocation, following which the
system state changes. MAS rounds commence again in the
next scheduling epoch till scheduling ends at “MaxEpoch”.
Instantaneous slowdowns of the tasks can be predicted at run-
time using performance prediction models for adaptive many-
cores presented in [15] to avoid any profiling.

Slowdown Observations: Figure 5 shows the average
slowdowns in embedded benchmarks of different types when
assigned different non-zero number of cores. Slowdown in a
task (benchmark) γx(Cx) associated with an agent x decreases
monotonically with increase in number of cores Cx because
each core allocation brings with it a non-negative increase in
task’s IPC moving it closer to its maximum achievable IPC.
Therefore, it is always beneficial to stay in Pareto-optimal
allocation and keep cores assigned to any task rather than
keeping them free. Slowdown is also convex with increase
in number of cores because increase in IPC brought by each
subsequent core allocation is less than the previous one until
it saturates at the maximum possible IPC. This is because of
the saturation of exploitable instruction level parallelism and
thread level parallelism required by many-cores to speedup
tasks. To the best of our knowledge, this is the first work,
which exploits these properties in the context of the fair
scheduling problem on many-cores.

Optimal Fairness: We now present proofs of theoretical
guarantees for optimality and convergence provided by DFMS.

Lemma 1. DFMS converges to Pareto-optimal allocation that
minimizes the sum of squares of slowdowns SS on many-cores
in O(A) rounds.

Proof. After ui→j(δ), SS(C) changes to SS(C ′).

SS(C′) =
∑A
x=1 γx(Cx)2+γi(Ci−δ)2+γj(Cj+δ)

2−γi(Ci)2−γj(Cj)2

= SS(C)+ui→j(δ) [∵Eq. (2) and Eq. (4)]

So SS(C ′) > SS(C) when ui→j > 0 and SS(C ′) <
SS(C) when ui→j < 0. Hence, only negative utility moves
can reduce SS from any given state. When no negative utility
move exists, SS cannot be reduced further and a minimum is
reached. We now prove that this minimum minimizes SS.

Slowdowns are piecewise linear functions that are too com-
putationally expensive to optimize [16]. Based on observations
made in Figure 5, we assume that that slowdown ∀x γx(Cx) is
convex-extensible to a non-negative discrete convex function
of Cx on many-cores and error introduced by this convex
relaxation [17] is minimal. Since square of a non-negative
convex function remains convex, γx(Cx)2 is a convex function
of Cx. SS(C) is a positive sum of convex functions, therefore
is a discrete convex function of C. Every minima of a discrete
convex function are its global minima [18].

Since cores-to-task allocations are discrete, there exist only
a finite number of negative utility moves. Two agents i and
j that exchange δ cores once will not exchange cores again
unless disturbed by a third agent if δ minimizes ui→j(δ).
ui→j(δ) is also a discrete convex function of δ that can be

minimized efficiently using gradient descent. We force agents
in DFMS to always make δ minimizing moves. Thus, negative
utility moves will exhaust in at worst O(A) rounds, since an
agent can interact with at most A agents (excluding repeated
interactions). Under DFMS, by design only Pareto-optimal
allocation are explored as cores are always transferred from
one executing task to the other; hence proved.

Theorem 1. DFMS converges to an optimally fair allocation
under a given performance constraint.

Proof. Beginning with Equation (3),

σ2(C) = 1
A

∑A
x=1(γx(Cx)−γ̄(C))2

= 1
A

∑A
x=1(γx(Cx)2+γ̄(C)2−2γx(Cx)γ̄(C))

= 1
A (

∑A
x=1 γx(Cx)2+

∑A
x=1 γ̄(C)2−2

∑A
x=1 γx(Cx)γ̄(C))

= 1
A (

∑A
x=1 γx(Cx)2+Aγ̄(C)2−2Aγ̄(C)2) [∵Eq. (1)]

= 1
A (

∑A
x=1 γx(Cx)2−Aγ̄(C)2)

= 1
A (

∑A
x=1 γx(Cx)2)−γ̄(C)2

= 1
ASS(C)−γ̄(C)2 [∵Eq. (2)] (5)

We measure many-core performance as the sum of slow-
downs. We operate DFMS with an extra condition that per-
formance

∑A
x=1 γx(Cx) should not change while performing

ui→j(δ). Based on Equation (1), this makes γ̄(C) a constant
independent of C since A is also a constant. Therefore, based
on Equation (5) variance σ2(C) is minimized when SS(C) is
minimized; hence proved using Lemma 1.

Polynomial time algorithm for maximizing performance on
many-cores is known [19]. Since slowdowns on many-cores
saturate after certain number of core allocations, they are
convex but not strictly convex. Therefore, there exist multiple
allocations with maximum performance but not all of these
allocations are equally fair in slowdowns. Theorem 1 as a
special case allows search of allocations with optimal fairness
under optimal performance in polynomial time. To the best of
our knowledge, ours is the first work that present this result.

Heuristic Fairness: When performance is not fixed, γ̄(C)
remains a function of C. −γ̄2(C) is a concave function of C.
Based on Equation (5), σ2(C) is a sum of a concave function
and convex function, which is neither concave nor convex.
This makes variance hard to minimize optimally even while
executing tasks with convex slowdowns. For a general case,
we change DFMS to be a heuristic distributed local search.

When δ cores are transferred from agent i to agent j,
variance changes from σ2(C) to σ2(C ′). Let ∆S and ∆SS

represent the difference between new slowdowns and old
slowdowns, and difference between square of new slowdowns
and square of old slowdowns, respectively.

∆S = γi(Ci−δ)+γj(Cj+δ)−γi(Ci)−γj(Cj)

∆SS = γi(Ci−δ)2+γj(Cj+δ)
2−γi(Ci)2−γj(Cj)2

σ2(C′) = 1
A (SS(C)+∆SS)−(γ̄(C)+

∆S
A)2 [Similar to Eq. (5)]

= SS(C)
A +

∆SS
A −γ̄(C)2−∆2

S
A2 −

2γ̄(C)∆S
A

= σ2(C)+
∆SS
A −∆2

S
A2 −

2γ̄(C)∆S
A [∵Eq. (5)]

Benchmarks Multi-Core Simulator (Cycle-Accurate) Traces (1-8 Cores)

Many-Core Simulator (Trace) with SchedulerFinal Trace (128-2048 Cores)

Fig. 6: Experimental Setup.

Now σ2(C ′) < σ2(C) if,

0 > ∆SS
A −∆2

S
A2 −

2γ̄(C)∆S
A

> ∆SS−
∆2
S
A −2γ̄(C)∆S

> ∆SS−2γ̄(C)∆S [∵A>>∆2
S on many-cores] (6)

We redefine ui→j(δ) = ∆SS − 2γ̄(C)∆S , for minimizing
variance under no performance constraint. Note that this
version of DFMS is not optimal because it does not guarantee
that local minima reached are also the global minima. Other
heuristics can also be used here but the question of finding a
polynomial time distributed algorithm for performance inde-
pendent optimal fairness on many-cores still remains open.

Complexity: Under DFMS, every agent does O(A) utility
calculations in every round. Each utility calculation ui→j(δ) is
required to find the value of δ, requiring a worst-case of O(N)
calculations. Further, there can be at worst O(A) rounds.
Hence, worst-case complexity of total calculations is O(A2N)
in a scheduling epoch. Calculations are randomly distributed
over N cores and therefore per-core worst-case calculations
are approximately O(A2). Since O(A) messages need to be
broadcasted every round, DFMS has a total communication
complexity of O(A2) per scheduling epoch. DFMS has only
O(1) space complexity since no additional data structure needs
to be maintained for performing scheduling.

III. EXPERIMENTAL EVALUATIONS

We evaluate DFMS using a two stage simulator as shown in
Figure 6. The first stage of this simulator is derived from cycle-
accurate gem5 [20] simulator based on Bahurupi [11] adaptive
many-core architecture. It is used to obtain isolated execution
traces of tasks with up to eight cores allocated. These traces
are then used in a second trace-driven simulator to produce
approximate time-wise feasible many-core simulations with
hundreds of processing cores and executing tasks. Each core
in the many-core is a 2-way out-of-order core implementing
ARMv7 ISA with a 4-way associative 64KB L1 instruction-
and data caches. Cores share an 8-way associative 2MB unified
L2 cache. All caches have a line size of 64 bytes. This ex-
perimental setup is unable to capture the performance impact
of concurrent task execution due to different communications
involved vis-a-vis shared-cache and NoC [21]. We plan to
extend this work with a communication model in the future.

We use 36 benchmarks (26 sequential and 10 parallel)
as listed in Table I from SPEC- 2000 and 2006 [22], SD-
VBS [23], PARSEC [24] and SPLASH-2 [25] suites with
“ref”, “full-hd” and “sim-small” inputs, respectively to create
workloads. All benchmarks are executed in syscall emulation
mode. Workloads are created from random composition of all
available benchmarks with uniform distribution.

TABLE I: Benchmarks used in the evaluations.

Type Benchmark Name
Integer astar, bzip2, gobmk, h264ref, hmmer, mcf, omnetpp, perl-

bench, sjeng, twolf, vortex
Float art, bwaves, calculix, equake, gemsfdtd, lbm, namd, povray,

tonto
Vision disparity, mser, sift, svm, texture, tracking
Parallel blackscholes, cholesky, fmm, fluidanimate, lu, radix, radiosity,

swaptions, streamcluster, water-sp

1 1.5 2 2.5 3

0

10

20

30
Variance = 0.2123

Standard Deviation = 0.4608

Mean = 1.5690

Slowdown

N
o.

of
Ta

sk
s

(a) Before DFMS

1 1.5 2 2.5 3

0

10

20

30
Variance = 0.1211

Standard Deviation = 0.3481

Mean = 1.5518

Slowdown

N
o.

of
Ta

sk
s

(b) After DFMS

Fig. 7: Distribution of slowdowns of executing tasks around
mean slowdown before and after DFMS is applied on 256-core
system with 128 tasks with an initial equal core distribution
under performance constraint.

Scheduling is performed at a granularity of 10 million
cycles, which translates to a scheduling epoch of 10ms on
system running at 1GHz. All simulations are executed for a
minimum of two billion cycles. For our evaluation, we use
closed systems where task instances restart execution from
the beginning as soon as they finish. Closed systems facilitate
scheduler evaluations, but DFMS is not limited to them.

Comparative Baselines: We compare DFMS against two
other schedulers to prove its efficacy. EQUAL is a static
fair scheduler that distributes cores near-equally amongst all
executing tasks. We choose to compare against this simple ap-
proach to show that EQUAL does not result in fair scheduling
even though it is intuitive, scalable and easy to implement.

We also choose to compare against a heuristics based
dynamic fair scheduler for many-cores called PDPA [8],
which works on the notion of “ExecutionEfficiency” defined as
speedup per unit core. Note that ExecutionEfficiency is neither
a convex nor a concave metric on many-cores even though
speedup can be assumed to be a concave function. It has
two empirically determined thresholds target eff and high eff,
whose values are based on the system load. Tasks are allo-
cated cores in every scheduling epoch so that their execution
efficiencies are between target eff and high eff. We choose to
compare against this approach (with default threshold values)
to show that threshold based heuristics though scalable and
easy to implement, can be easily outperformed. PDPA is
modified to enforce Pareto-optimality for fair comparison.

Optimal Fairness for Fixed Performance: Theoretically
there exist an exponential number of allocations of equal

128 160 192 224 256

0

1

2

3

Number of Tasks

N
or

m
.V

ar
.

EQUAL PDPA [8] DFMS

(a) Variance in Slowdown based Fairness (Lower Value Better)

128 160 192 224 256

0.2

0.3

0.4

0.5

Number of Tasks

M
in

-M
ax

Fa
ir.

(b) Min-Max Slowdown Ratio based Fairness (Higher Value Better)

Fig. 8: Fairness under different schedulers on a closed 256-
core system with varisized workloads. DFMS provides supe-
rior fairness in comparison to other schedulers.

performance with different fairness. In practice, such alloca-
tions only exist when there exists a core transfer such that
increase in slowdown of one task is exactly equal to decrease
in slowdown in another task. This would be at best rare in
real world under full precision. We define ∆γ̄ = ∆S/γ̄(C) as
change in sum over mean. Equation (6) can be rewritten as
0 > ∆SS − 2γ̄2(C)∆γ̄ to include ∆γ̄ . As long as ∆γ̄ ≈ 0,
variance can be minimized near-optimally using DFMS. We
run DFMS under a constraint |∆γ̄ | ≤ .01, the closest to
zero we can get in our experiments for any reconfiguration
to happen. The bounds on ∆γ̄ can be relaxed further but
only with loss of optimality. On a 256-core system with 128
tasks this results in 42.95% reduction in variance with only
1.09% change in mean from an initial equal core distribution.
Figure 7 shows how the physical distribution of slowdowns
of the executing tasks shifts around the mean slowdown in
the system before and after DFMS is applied. It can be seen
that after DFMS the dispersion in the slowdowns reduces
substantially resulting in more fairness.

Improved Fairness for Variable Performance: DFMS
operates heuristically using Equation (6) as utility when per-
formance is unspecified. Figure 8a shows average variance
on a 256-core system with varisized workloads under differ-
ent schedulers (normalized to EQUAL scheduler). With full
load (256 tasks), the completely fair allocation is simply to
assign one core to each task as under any other allocation a
task will inevitably starve pushing system variance to infinite.
All schedulers are able to discover the same optimal solution.
As system load decreases further, number of surplus cores
increase. This results in expansion of the optimization search-
space, making it more challenging to maintain fair allocations.
Figure 8a shows that DFMS results in better fair schedules
in comparison to EQUAL and PDPA under all loads. EQUAL
performs worse since tasks have inherently different execution
patterns resulting in different slowdowns for the same number

TABLE II: Different overheads when scheduling under DFMS
on varisized systems while executing half loads. Overheads are
normalized to the first test case of 128-core system.

Cores Tasks Total Proc. Per-Core Proc. Comm.
128 64 1x 1x 1x
256 128 5.64x 2.74x 1.25x
512 1024 25.90x 6.16x 3.01x

1024 2048 103.82x 12.34x 9.06x
2048 1024 415.69x 24.41x 16.60x

of allocated cores as shown in Figure 5. PDPA does not work
because there is no unique set of thresholds that can result in
optimal fair schedule for all possible kind of workloads.

Another common metric used to measure fairness is the ratio
of minimum and maximum slowdown amongst all executing
task in the system. Value “1” indicates maximum fairness
while value “0” indicates the minimum fairness. We observed
in our experiments that this metric has high correlation to
the variance metric that DFMS optimizes. Figure 8b shows
average min-max fairness for different schedulers. Evaluations
show that DFMS also performs better than the baselines when
using the min-max fairness metric.

Scalability: True overhead numbers can only be shown in
real hardware and also depends upon the quality of the imple-
mentation. In our simulations, we assume average number of
message broadcasted per scheduling epoch as an approximate
measure of communication overhead and average number of
floating point operations per scheduling epoch for scheduling
estimation as an approximate measure of processing overhead.
Total processing overhead is measured as floating point oper-
ations performed across all cores, while per-core processing
overhead is measured as maximum floating point operations
performed by a core amongst all cores in a scheduling epoch.

Table II shows how different overheads increase as we
move from 128-core system to 2048-core system, all with half
loads. The overheads are normalized to 128-core system test
case. The observations made are in sync with the theoretical
complexity of DFMS stated in Section II.

IV. CONCLUSION

In this paper, we proposed a fair scheduler for many-cores
called DFMS. DFMS is a lightweight dynamic scheduler that
can be applied at runtime for constant partial reallocation of
processing cores to maintain fair allocation at all times even
under the continuously changing processing requirements of
the executing tasks. DFMS is proven theoretically to converge
to the optimal fair allocation state for a given performance.
Further, by distributing its fair scheduling processing overhead
across all cores in the system, it can scale up as the number
of cores on many-core chips increase.

ACKNOWLEDGEMENT

This work was supported in parts by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Centre Invasive Computing (SFB/TR 89) and in parts
by Huawei International Pte. Ltd. research grant in Singapore.

REFERENCES

[1] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe,
“Invasive Manycore Architectures,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2012.

[2] J.-A. Carballo, W.-T. J. Chan, P. Gargini, A. Kahng, and S. Nath, “ITRS
2.0: Toward a Re-Framing of the Semiconductor Technology Roadmap,”
in International Conference on Computer Design (ICCD), 2014.

[3] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-Core Systems: Survey of Current and Emerging Trends,”
in Design Automation Conference (DAC), 2013.

[4] C. S. Pabla, “Completely Fair Scheduler,” Linux Journal, 2009.
[5] J. C. Saez, A. Pousa, F. Castro, D. Chaver, and M. Prieto-Matias, “ACFS:

A Completely Fair Scheduler for Asymmetric Single-ISA Multicore
Systems,” in Symposium On Applied Computing (SAC), 2015.

[6] C. Wu, J. Li, D. Xu, P.-C. Yew, J. Li, and Z. Wang, “FPS: A Fair-
Progress Process Scheduling Policy on Shared-Memory Multiproces-
sors,” Transactions on Parallel and Distributed Systems (TPDS), 2015.

[7] T. Ebi, M. Faruque, and J. Henkel, “TAPE: Thermal-Aware Agent-
Based Power Economy Multi/Many-core Architectures,” in International
Conference On Computer Aided Design (ICCAD), 2009.

[8] T. Sun, H. An, T. Wang, H. Zhang, and X. Sui, “CRQ-Based Fair
Scheduling on Composable Multicore Architectures,” in International
Conference on Supercomputing (ICS), 2012.

[9] A. Sembrant, D. Black-Schaffer, and E. Hagersten, “Phase Behavior
in Serial and Parallel Applications,” in International Symposium on
Workload Characterization (IISWC), 2012.

[10] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core Fusion: Ac-
commodating Software Diversity in Chip Multiprocessors,” in SIGARCH
Computer Architecture News, 2007.

[11] M. Pricopi and T. Mitra, “Bahurupi: A Polymorphic Heterogeneous
Multi-core Architecture,” Transactions on Architecture and Code Op-
timization (TACO), 2012.

[12] H. Vandierendonck and A. Seznec, “Fairness Metrics for Multi-Threaded
Processors,” Computer Architecture Letters (CAL), 2011.

[13] W. Kubiak, “Completion Time Variance Minimization on a Single
Machine is Difficult,” Operations Research Letters (ORL), 1993.

[14] T. Baker, J. Gill, and R. Solovay, “Relativizations of the P=NP Ques-
tion,” SIAM Journal on Computing (SICOMP), 1975.

[15] V. Vanchinathan, “Performance Modeling of Adaptive Multi-core Ar-
chitecture,” Master’s thesis, National University of Singapore, 2015.

[16] A. Toriello and J. P. Vielma, “Fitting Piecewise Linear Continuous
Functions,” European Journal of Operational Research (EJOR), 2012.

[17] E. Chlamtac and M. Tulsiani, “Convex Relaxations and Integrality
Gaps,” in Semidefinite, Conic and Polynomial Optimization, 2012.

[18] K. Murota, “Submodular Function Minimization and Maximization in
Discrete Convex Analysis,” RIMS Kokyuroku Bessatsu B, 2010.

[19] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger,
“Multitasking Workload Scheduling on Flexible-Core Chip Multiproces-
sors,” in Parallel Architectures and Compilation Techniques, 2008.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood, “The gem5 Simulator,” in
SIGARCH Computer Architecture News, 2011.

[21] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
Aware Heuristics for Run-Time Task Mapping on NoC-Based MPSoC
Platforms,” Journal of Systems Architecture (JSA), 2010.

[22] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Computer Architecture News, 2006.

[23] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego Vision
Benchmark Suite,” in International Symposium on Workload Charac-
terization (IISWC), 2009.

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in SIGARCH Computer Architecture News, 1995.

