
Scalable Probabilistic Power Budgeting
for Many-Cores

*Anuj Pathania, *Heba Khdr, +Muhammad Shafique, †Tulika Mitra, *Jörg Henkel
*Chair of Embedded System (CES), Karlsruhe Institute of Technology, Germany

+Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria
†School of Computing (SoC), National University of Singapore, Singapore

Corresponding Author: anuj.pathania@kit.edu

Abstract—Many-core processors exhibit hundreds to thousands
of cores, which can execute lots of multi-threaded tasks in
parallel. Restrictive power dissipation capacity of a many-core
prevents all its executing tasks from operating at their peak
performance together. Furthermore, the ability of a task to exploit
part of the power budget allocated to it depends upon its current
execution phase. This mandates careful rationing of the power
budget amongst the tasks for full exploitation of the many-core.

Past research proposed power budgeting techniques that
redistribute power budget amongst tasks based on up-to-date
information about their current phases. This phase information
needs to be constantly propagated throughout the system and
processed, inhibiting scalability. In this work, we propose a
novel probabilistic technique for power budgeting which requires
no exchange of phase information yet provides mathematical
guarantees on judicial use of the TDP. The proposed probabilistic
technique reduces the power budgeting overheads by 97.13%
in comparison to a non-probabilistic approach, while providing
almost equal performance on simulated thousand-core system.

I. INTRODUCTION

Many-cores are upcoming hundred-/thousand-core proces-
sors capable of executing scads of multi-thread tasks in
parallel [1]. Unfortunately, the limited power dissipation ca-
pacity of the many-core requires adherence to a strict power
budget called Thermal Design Power (TDP) determined by the
manufacturer [2]. TDP restricts the many-core from executing
all its tasks at peak performance simultaneously. Continuous
operation at a power consumption beyond TDP is not recom-
mended as it may cause serious damage to the processor.

Furthermore, executing tasks go through various execution
phases during their lifetime that determines how well they can
exploit the part of the TDP allocated to them [3]. Therefore,
it is necessary to ensure proper rationing of TDP amongst the
tasks. Governors are the Operating System (OS) sub-routines
responsible for judicious and safe use of TDP.

Dynamic Voltage and Frequency Scaling (DVFS) is the
knob available to the Governors for performing phase-aware
power budgeting between the tasks [4]. DVFS allows different
cores of the many-core to operate at different frequencies and
voltages. When operating at a higher DVFS level, processing
cores execute threads of an assigned task faster provided the
task is in a processing intensive phase but at the cost of
more power consumption. Increasing core frequency using
DVFS when a task is in memory intensive phase result in
no performance gain and only leads to power wastage.

0 50 100 150
1

2

3

x10 Million Instruction

D
V

FS
Sp

ee
du

p

Fig. 1: Execution profile of bodytrack (single-threaded) bench-
mark showing DVFS speedup variation during execution.

0 200 400 600 800 1,000
560

580

600

620

640
Average = 592.68

Std. Dev. = 9.38

x10 Million Cycles

To
ta

l
Sy

st
em

Sp
ee

du
p

Fig. 2: Total system speedup over time when 256 tasks (1024
threads) are using higher DVFS level on a 1024-core chip.

Speedup is the metric used for measuring performance gain
obtained from DVFS. Speedup is the ratio of Instruction per
Second (IPS) of a task when its assigned cores are operating
at a higher DVFS level to its IPS when they are operating
at a lower DVFS level. Figure 1 shows how speedup of a
single-threaded version of bodytrack benchmark changes as it
goes through different phases of its execution. In a many-core
restricted by TDP, a task should operate at a higher DVFS
level only when it can derive considerable speedup from the
level as it may deprive other tasks operating in parallel from
raising their performance.

Power budgeting under a TDP in multi/many-core is a well-
studied problem. However, all previously proposed Governors
are non-probabilistic and take power budgeting decisions
based upon phase information collected from tasks all over
the many-core requiring substantial communication. We make
an argument in this work that constant monitoring of task
phases is not required when large number of independent
tasks are running on the many-core as the total speedup that
can be obtained is autonomously self-stabilizing. This can be
seen Figure 2 where instantaneous total system speedup of



256 tasks (1024 threads) running using higher DVFS level
on 1024-core many-core has a very low standard deviation
from the average. Reason being that even though locally all
tasks are going through different execution phases, there is
no synchronization among their phases. While some tasks
transition from low- to high speedup phase at any given time,
a near-equal number of tasks perform a reverse transition;
resulting in a stable global behavior. This behavior can be
exploited by a probabilistic power budgeting governor for
many-cores to provide near-equal performance in comparison
to non-probabilistic Governors but with significantly lower
computational and communication overheads.

Our Novel Contribution: In this work, we introduce an
alternative probabilistic Governor called ProGov for power
budgeting under TDP on many-cores. Our alternative approach
for power budgeting has potential to significantly reduce the
associated overheads. Further, mathematical foundations of
ProGov also allows for concrete guarantees on TDP violations.

Operations of ProGov is quite different from a non-
probabilistic Governor. While a non-probabilistic Governor
uses dynamic phase information obtained online to make deci-
sions, ProGov uses static probabilistic phase profiles collected
offline to make similar decisions. The decisions made by
a non-probabilistic governor constantly change as executing
tasks go through different phases. On the other hand, decisions
made by ProGov change only when executing task population
changes its constitution by arrival or departure of a task.
A non-probabilistic Governor is well-suited when number
of tasks is small whereas probabilistic Governor works well
when number of tasks is large. In fact, due to the law of
large numbers [5] results provided by ProGov become more
accurate as number of executing tasks increase. Therefore,
ProGov is particularly well suited for many-core paradigm.

Limitations: Results guaranteed by ProGov are also prob-
abilistic in nature. While a non-probabilistic governor can
always guarantee non-violation of TDP while extracting high
performance, ProGov only provides a high probability that
many-core will operate similarly for any given population of
executing tasks. It is important to note that for a sufficiently
loaded many-core the probability of TDP violation is always
non-zero under ProGov, if DVFS is to be used for boosting
performance substantially. Hence, ProGov is also not suitable
for hard real-time or mission-critical systems.

II. RELATED WORK

Power has always been a prime design constraint in pro-
cessors [6]. Use of power budgeting Governors for keeping a
processor safely operating close to TDP has been well-studied
for many-cores. Still, the continuous trend of adding more
cores to processors [1] warrants more scalable techniques for
power budgeting compared to ones already proposed.

Centralized bounded state-search power budgeting tech-
niques for multi-cores such as MaxBIPS, proposed in [7] are
too slow when applied on many-cores. Authors in [8] proposed
multiple light-weight power budgeting heuristics for many-
cores amongst which a greedy algorithm called SortedWS

1 1.5 2 2.5 3 3.5

0

10

20

30 Readings

Above (2.5) = 202Below (2.5) = 520

pferret(2.5) = 202/722

= .279

Speedup

Fr
eq

ue
nc

y

Fig. 3: Histogram of DVFS speedup in ferret (single-threaded)
benchmark along with calculation of pferret(2.5).

provided high performance with low overhead. Orthogonally,
authors in [9] proposed distributed approach for power budget-
ing for improved scalability. Distributed Governors reduce the
per-core processing overhead by disbursing the calculations
over multiple cores but this reduction comes at a cost of
increased communication overhead. Still, all the previous pro-
posed techniques remain non-probabilistic in nature inherently
limiting their scalability.

To best of our knowledge, probabilistic power budgeting
remains unexplored vis-a-vis multi/many-cores. Reason being
on multi-cores (small number of cores) scalability gains from
a probabilistic Governor were insignificant in comparison to
non-probabilistic Governors and on many-cores they are yet to
be applied. In other domains, probabilistic models for power
budgeting have been applied to solve large size problems in
datacenters [10] and wireless sensor networks [11].

III. POWER BUDGETING WITH ProGov

System Overview: We begin with introduction of the nota-
tion used in this work to represent a system with a many-core
processor. We assume N independent multi-threaded tasks are
running in the system, indexed using symbol i. Tasks are
assumed to be rigid, which means they do not support thread
migration once they start execution [12]. Tasks execute using
one thread per-core model well-suited for many-cores [13]. In
this introductory work, we assume the cores of the many-core
have only two DVFS level namely Low and High. This limits
the ability of this work to target energy-efficient execution on
many-cores where multiple DVFS level are available. We also
assume per-core DVFS similar to Intel SCC [14].

Each Task i is assigned a strategy Si by ProGov, which
represents a speedup threshold. Task i chooses to operate
at Low- or High DVFS level depending upon whether the
instantaneous speedup is above or below Si, respectively. It
is important to note that once Si is assigned to the Task i by
ProGov there is no further communication between ProGov
and Task i. Decision to boost performance using DVFS is
taken by Task i independently and locally based on expected
speedup boost. Expected instantaneous speedup boost can be
calculated using locally available- profiles or DVFS perfor-
mance prediction models [15]. We also assume that by design
all cores assigned to a task always operate at same DVFS level.
Let S = ∪Ni=1Si represent the combined strategic profile of all
executing tasks determined by ProGov.



Probabilistic Performance Model: Given an Si for a
Task i, let pi(Si) be the probability that Task i is using a
High DVFS level. Probability pi(Si) ∈ [0, 1] represents the
fraction of time Task i under its execution exhibits speedup
higher than Si. Figure 3 shows histogram of DVFS speedup
corresponding to single-threaded version of ferret benchmark
and also shows as a numerical example how pferret(2.5) is
calculated.
pi(Si) is a monotonically non-increasing function of

speedup threshold Si because as we increase the Si a lesser
or equal fraction of Task i would remain above the threshold.
We obtain this information for discrete values of Si for each
unique task type and store it in a lookup table available with
ProGov. The granularity of speedup data discretization is .01.

While executing in parallel with a given system strategy
profile S, each Task i acts as an independent Bernoulli trial
which uses High DVFS level with probability pi(Si) and uses
Low DVFS level with probability 1 − pi(Si). Therefore, our
system exhibits Poisson binomial distribution and probability
that K ≤ N tasks will be in High DVFS level simultaneously
is given by following Probability Mass Function (PMF) [16].

Pr(K) =
∑

A∈FK

∏
i∈A

pi(Si)
∏

j∈AC
(1− pj(Sj)) (1)

where FK is set of combinations of K tasks selected from
N tasks. AC is complement set of A.

Probabilistic Performance Metric: Scheduling epoch is
the time granularity at which Governors operate in an OS. We
set it to 10 ms; same as the default Linux Governors [17]. We
choose the maximum number of tasks in a scheduling epoch
that can accelerate without violation of TDP as the metric for
optimization. This metric has positive correlation with stan-
dard non-probabilistic performance metrics like throughput.
Therefore, we want to optimize Equation (1) to peak at the
highest value for K feasible under the TDP.

Binomial Simplification: Even obtaining a PMF distribu-
tion for any given S using Equation (1) has O(n!) com-
plexity, making direct optimization computationally infeasible
when N >> 1. To make problem tractable, we propose a
simplification that converts the Poisson binomial distribution
into a binomial distribution; a well-studied and much more
mathematically tractable discrete probability distribution.

By design instead of choosing a unique Si and thereby
a unique pi(Si) for every Task i, ProGov instead selects a
single global High DVFS level probability p. Each Task i is
then assigned a strategy Si such that pi(Si) u p. This also
introduces fairness into the system because each task has now
equal probability of using DVFS to boost its performance. On
the other hand, in a Quality of Service (QoS) based system
this simplification can result in wastage of energy as the
heterogeneity in speedup behaviors then remains unexploited.

Under the above simplification, each task executing in
parallel acts as an independent Bernoulli trial which uses High
DVFS level with probability p and uses Low DVFS level
with probability 1 − p. Our system now exhibits binomial

distribution and probability that K ≤ N tasks will be using
High DVFS level together is given by the following PMF.

Pr(K) =

(
N

K

)
pK(1− p)N−K (2)

We aim to maximize Equation (2) with respect to a given
K using p. Since natural logarithm is a positive function,
maximizing log of Equation (2) is same as maximizing the
equation itself. By taking log of Equation (2) we get

log(Pr(K)) = log

(
N

K

)
+K log(p) + (N −K) log(1− p)

Derivating with respect to p and equating to zero we get

K

p
− (N −K)

1− p
= 0 =⇒ p =

K

N
(3)

Therefore, if we know the target K then we can use
Equation (3) to find a p which maximizes probability of many-
core boosting K tasks using DVFS in a given scheduling
epoch. The strategy S can be then determined by ProGov for
a target p using probabilistic speedup profiles.

The mean (µ) and standard deviation (σ) of the targeted
binomial distribution is given by following equations.

µ =

N∑
K=1

KPr(K) = Np (4)

σ =

√√√√ N∑
K=1

K2Pr(K)− µ2 =
√
Np(1− p) (5)

Probabilistic Power Consumption Model: We now at-
tempt to predict the probabilistic power consumption of the
system for a given high DVFS level probability p. For each
Task i, let WL

i and WH
i be its expected power consumption

in Low- and High DVFS level, respectively. This include both
static and dynamic power consumption of the task at those
levels. Let WL and WH be the average power consumption
of all tasks in the system at Low- and High DVFS level,
respectively. Assuming an additive power consumption of
tasks, quick rough estimate for their values at run-time can
be made using the following equations.

WL =

∑N
i=1W

L
i

N
WH =

∑N
i=1 WH

i

N
(6)

Since the number of tasks that boost up using DVFS
follow a binomial distribution, system’s power consumption
will also thereby exhibit a equivalent normal distribution [18].
Let W (x) represent the normal distribution of the power
consumption given by the following equation.

W (x) =
1√

2(σW )2π
e
− (x−µW )2

2(σW )2 (7)

where µW and σW represent the mean and standard devia-
tion of the normal distribution.

To obtain the total power consumption distribution we
reason that at for any given value of p, Np number of tasks
are expected to use High DVFS level consuming WH power



each. Similarly, we can expect N(1 − p) number of tasks to
use Low DVFS level consuming WL power each. Therefore,
following relation between K and x holds.

∀K∈[0,N ]∃x =WHK +WL(N −K) | Pr(K) =W (x) (8)

Using above equation, we can derive the following equa-
tions for µW and σW .

µW = N(1− p)WL +NpWH (9)

σW =
√
Np(1− p)(WH −WL) (10)

The full proofs of Equation (9) and Equation (10) from
Equation (4) and Equation (5), respectively using Equation (8)
are extensive and not shown here due to space limitations.

Assumption of normality in distribution is a strong as-
sumption but is necessary to provide a formal mathematical
analysis. Fortunately, the error introduced by this assumption
become less severe as the number of independently executing
tasks on many-core increase due to central limit theorem [5].
Central limit theorem applied in our context states that dis-
tribution of the arithmetic sum of power consumption of in-
dependently executing tasks approaches a normal distribution
as the number of tasks approaches infinity irrespective of
power consumption distribution of individual tasks. Therefore,
ProGov feasibility and accuracy increases with the size of the
problem making it especially suitable for many-cores.

It is important to note that if tasks are not executing
independently or the tasks in a workload are not diverse
enough then system would not exhibit any normal distribution.
For system with interdependent tasks, covariance between
them is not insignificant and needs to be consider using a
much more complex probability model than presented here.

Probabilistic TDP Model: Provided system is not severely
under loaded, the probability of TDP violation under ProGov
can be non-zero if DVFS has to be used aggressively. There-
fore, it is important to quantize the risk the many-core is taking
for a given High DVFS level probability p and a given task
population N . Let Ŵ symbolically represent the TDP of the
many-core. The probability that many-core will stay within the
TDP Ŵ is given using cumulative distribution function F (Ŵ )
of normal distribution defined by the following equation.

F (Ŵ ) =

∫ Ŵ

0

W (x)dx =

∫ Ŵ

0

1√
2(σW )2π

e
− (x−µW )2

2(σW )2 dx

(11)
No closed form solution exists for calculation of F (Ŵ ).

However, it can be numerically approximated with high accu-
racy using Chebyshev fitting [19] in constant time. The proba-
bility that TDP is violated is given by Q-function symbolically
represented by Q (Ŵ ) and is given by the following equation.

Q (Ŵ ) = 1− F (Ŵ ) = 1−
∫ Ŵ

0

1√
2(σW )2π

e
− (x−µW )

2(σW )2 dx

(12)
Power Budgeting: Based on mathematical foundation laid

above, we now present the power budgeting algorithm used by
ProGov. Unlike a non-probabilistic Governor, ProGov cannot

Algorithm 1 Proposed probabilistic power budgeting tech-
nique named ProGov.

Input: N, Ŵ , Q̂;
Output: S;
1: ∀i ∈ N read profiled (or estimate) WL

i and WH
i ;

2: Calculate WL and WH using Equations (6)
3: for K = 1 to N do
4: Calculate p for a given K using Equation (3);
5: Calculate W (x) using Equation (7);
6: Calculate F (Ŵ ) using Equation (11);
7: Calculate Q(Ŵ ) using Equation (12);
8: if Q(Ŵ ) ≥ Q̂ then
9: break;

10: end if
11: end for
12: Calculate p for K − 1
13: ∀i ∈ N set Si such that pi(Si) u p;
14: return S;

guarantee that TDP is never violated. However, it provides
formal guarantees on the risk of TDP violations. Let TDP
threshold Q̂ represent the fraction of TDP violating scheduling
epochs, a system designer is willing to tolerate. Accordingly,
expected number of tasks to boost using DVFS K needs to
be determined based on current task population N . Value of
K should be as high as possible for performance.

For a given task population N , K ∝ p based on Equa-
tion (3). Therefore, maximizing High DVFS level probability
p is same as maximizing K. It is a common observation
that all tasks consume less or equal power while using Low
DVFS level than when using High DVFS level. Hence, for
any given task population N we know WH ≥WL. Based on
this knowledge and Equation (9), we can state µW ∝ p.

Being a normal distribution, W (x) is unimodal with peak
around µW . Since TDP Ŵ is fixed, increase in µW will push
more cumulative distribution beyond Ŵ . Therefore, we can
conclude Q (Ŵ ) is monotonically non-decreasing with µW .
Based on transitivity of above proportionality argumentation,
risk of TDP violation Q (Ŵ ) is monotonically non-decreasing
with task boost target K.

Determination of optimum value of K by ProGov is thereby
simplified to a search in discretized domain K ∈ [0, N ] such
that Q (Ŵ ) u Q̂. Algorithm 1 summarizes the technique
used in ProGov using a simple linear search. Since Q (Ŵ ) is
inherently sorted with value of K, for improved efficiency a
binary search can also be used.

Computational Complexity: Since ProGov under any step
requires not more than one iteration over the executing tasks,
it has a linear time computational complexity of O(N). Use of
centralized lookup tables leads to a communication complexity
of O(1) for ProGov. In comparison, a probabilistic greedy
Governor SortedWs [8] has a computation complexity of
O(N lgN) and communication complexity of O(N). Both
techniques will have a O(N) space complexity. Furthermore,
the greedy algorithm needs to be invoked in every scheduling
epoch to operate. On the other hand, ProGov is executed only
when a task arrives or leaves the system.



blackscholes, bodytrack, canneal, dedup, ferret,

fluidanimate, freqmine, streamcluster, swaptions, vips, x264

PARSEC [20] gem5 [21] Multi-Core Simulator + McPat [22] Traces (8 Cores)

Trace based Many-Core Simulator with GovernorFinal Trace (1024 Cores)

Fig. 4: Experimental Setup.

IV. EXPERIMENTAL EVALUATION

We use a two-stage simulator for empirical evaluation of
ProGov as shown in Figure 4. In stage one, we use gem5 [21]
cycle-accurate simulator bridged with McPat [22] power sim-
ulator. Due to limitations on execution time, cycle-accurate
simulations are limited to maximum eight cores. Each core
uses Alpha ISA and holds a 16 KB L1 data- and instruction
cache, along with a 32 KB private L2 cache. Cores can run at
two DVFS frequencies 1 GHz and 3 GHz representing Low and
High DVFS level, respectively. Unused cores are aggressively
power-gated. We believe at 22 nm low-power in-order cores
with small caches are the most representative cores for a real-
world thousand core chip.

Cycle-accurate isolated execution traces of tasks with up to
eight cores allocated from stage one is piped into a trace-based
simulator in stage two. Stage two simulator then combined
traces together for a final many-core trace with up to a
thousand cores assuming a 2D mesh Network on Chip (NoC)
between the cores. NoC has a concentration of 1 router per-
core and operates at 1 GHz using 256-bits flit. NoC links have
bandwidth of 1 flit per cycle and latency of 4 cycle per hop.
Program logic for Governors operating at granularity of 10 ms
is also implemented in this simulator.

Evaluation of ProGov requires large number of scheduling
epochs to be observed. Even though our trace-based sim-
ulator lacks the sophistication of cycle-accurate simulators,
we believe our setup is the only thousand-core many-core
setup fast enough to evaluate a probabilistic Governor. For
each experiment, around 3 hours of system time is simulated.
Systems simulated are closed [12], which means all tasks in
the system immediately start execution once they finish. To
simulate independent task execution in a closed system each
task is initiated with a random instructional skew.

For software, eleven multi-threaded benchmarks as enumer-
ated in Figure 4 from PARSEC benchmark suite [20] are used
as tasks. Multi-program workloads are formed from random
composition of these tasks and each task randomly spawning
between zero to eight threads. The benchmarks are run in
Full System (FS) mode of gem5 with sim-small input. Out of
thirteen PARSEC benchmarks, only two benchmarks facesim
and raytrace were not used due to lack of sim-small input.

Comparative Baseline: In this work, we choose to compare
against a scalable non-probabilistic greedy algorithm called
SortedWS [8] designed for many-cores. SortedWS allocates
power budget to tasks in decreasing order of instantaneous
speedup without TDP violation for maximizing throughput.
Throughput is measured as aggregate of speedups of all tasks.

0 50 100 150 200 250

0

20,000

40,000

60,000
Average Error = 0.55%

Std. Dev. Error = 1.05%

Number Of DVFS Boosted Tasks

N
o.

of
Sc

he
du

lin
g

E
po

ch
s

Observed Predicted

(a) Task Boost Distribution

70 80 90 100 110 120 130

0

500

1,000
Average Error = 1.50%

Std. Dev. Error = 7.91%

Power Consumption [W]

N
o.

of
Sc

he
du

lin
g

E
po

ch
s

(b) Power Consumption Distribution

70 80 90 100 110 120 130

0

0.5

1

·106

Target TDP [W]

N
o.

of
T

D
P

V
io

la
tin

g
E

po
ch

s

(c) TDP Violation (Q-Function) Distribution

Fig. 5: Observed- and predicted distributions for a 256 tasks
(1024 threads) workload with boost target of 192 tasks (p =
.75) on a 1024-core many-core.

Probabilistic Modeling Accuracy: We ran 256 tasks (1024
threads) workload on a 1024-core many-core with target of
192 tasks (75 %) to boost using DVFS in a given scheduling
epoch. Figure 5a plots the predicted- and observed distribution
of DVFS boosted tasks. Figure 5b shows the corresponding
predicted- and observed total system power consumption dis-
tribution. Results show that our model can predict distribution
of both speedup and power consumption with high accuracy.
Figure 5c plots the predicted- and observed distribution of
TDP violating scheduling epochs with different targeted TDP
values. Results show that our model can also predict TDP
violation distribution accurately.

Performance Comparison: Figure 6 compares the through-
put for a 256 tasks (1024 threads) workload under ProGov
and SortedWS [8] Governor for different values of TDP
Threshold Q̂ with TDP Ŵ set at 100 W. Average speedup per
scheduling epoch is selected as the throughput metric. Since
SortedWS does not allow for any TDP violation, it ignores
Q̂ and produces only one fixed result in Figure 6. On the
other hand, ProGov allows for an increase in throughput with
increase in the value of Q̂. When TDP Threshold Q̂ is set to its



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

TDP Threshold Q̂

T
hr

ou
gh

pu
t

(T
ot

al
Sp

ee
du

p)

ProGov SortedWS [8]

Fig. 6: Throughput comparison between ProGov and Sort-
edWS [8] for different values of TDP Threshold Q̂ with
TDP Ŵ set at 100 W while executing 256 tasks (1024 threads)
workload on 1024-core many-core.

32 64 128 256 512 1024
0

100

200

300

Number of Tasks

O
ve

rh
ea

d
[µ

s]

ProGov SortedWS [8]

Fig. 7: Expected overhead for power budgeting varisized
workloads with ProGov.

lowest value zero, there is practically no risk of TDP violation
but at this setting it also has 2.85% lower performance than
SortedWS. When TDP Threshold Q̂ is set to one, TDP is
completely ignored and system runs all tasks using high DVFS
level resulting in maximum system performance. Intermediate
values of Q̂ allows for trade-off between performance and TDP
violation risk (Figure 6).

Scalability: The real motivation behind using a probabilistic
Governor is its ability to scale up much more gracefully with
increase in problem size. We run ProGov and SortedWs cycle-
accurately on gem 5 with representative input and report its
worst case problem solving time in Figure 7 with workloads
of different sizes. Results show that ProGov can solve a
problem of allocating power budgets to 1024 tasks many-
core in only 29 µs. For a Governor operating at default 10 ms
scheduling granularity of current multi-core OS [17], this
translates into an overhead of 0.29%. In comparison, SortedWS
takes 351 µs to perform power budgeting for same number of
tasks. Therefore, ProGov provides a 97.13% (or 12x) reduction
in overhead.

V. CONCLUSION

In this work, we proposed a Governor called ProGov based
on a probabilistic technique for power budgeting on many-
cores. ProGov provides superior scalability in comparison to
existing non-probabilistic power budgeting techniques, while
providing mathematical guarantees on risk of TDP violations.
Proof of concept cycle-accurate simulations show that ProGov
results in 97.13% less overhead than non-probabilistic greedy
Governor on a thousand-core many-core.

ACKNOWLEDGMENT

This work was supported in parts by the German Research
Foundation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89) and in
parts by Singapore Ministry of Education Academic Research
Fund Tier 2 MOE2014-T2-2-129.

REFERENCES

[1] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe,
“Invasive Manycore Architectures,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2012.

[2] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical Power Management for Asymmetric Multi-Core
in Dark Silicon Era,” in Design Automation Conference, 2013.

[3] A. Das, A. Kumar, B. Veeravalli, R. Shafik, G. Merrett, and B. Al-
Hashimi, “Workload Uncertainty Characterization and Adaptive Fre-
quency Scaling for Energy Minimization of Embedded Systems,” in
Design, Automation & Test in Europe (DATE), 2015.

[4] K. Kang, J. Kim, S. Yoo, and C.-M. Kyung, “Temperature-Aware
Integrated DVFS and Power Gating for Executing Tasks with Runtime
Distribution,” Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2010.

[5] P. S. Mann, Introductory Statistics. John Wiley & Sons, 2007.
[6] T. Mudge, “Power: A First-Class Architectural Design Constraint,”

Computer, 2001.
[7] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An

Analysis of Efficient Multi-core Global Power Management Policies:
Maximizing Performance for a Given Power Budget,” in International
Symposium on Microarchitecture (MICRO), 2006.

[8] J. Sartori and R. Kumar, “Three Scalable Approaches to Improving
Many-Core Throughput for a Given Peak Power Budget,” in Interna-
tional Conference on High Performance Computing (HiPC), 2009.

[9] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price Theory based
Power Management for Heterogeneous Multi-Cores,” in Architectural
Support for Programming Languages and Operating Systems, 2016.

[10] S. Fan, S. M. Zahedi, and B. C. Lee, “The Computational Sprinting
Game,” in Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2016.

[11] Z. Li and B. Li, “Probabilistic Power Management for Wireless Ad Hoc
Networks,” Mobile Networks and Applications, 2005.

[12] D. G. Feitelson and L. Rudolph, “Metrics and Benchmarking for Parallel
Job Scheduling,” Job Scheduling Strategies for Parallel Processing,
1998.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y.-h. Dai et al., “Corey: An
Operating System for Many Cores,” in Operating Systems Design and
Implementation (OSDI), 2008.

[14] J. Held, “Single-chip Cloud Computer,” in Euro-Par-Workshop, 2010.
[15] B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. De Supinski,

“Practical Performance Prediction under Dynamic Voltage Frequency
Scaling,” in Green Computing Conference and Workshops, 2011.

[16] Y. H. Wang, “On the Number of Successes in Independent Trials,”
Statistica Sinica, 1993.

[17] V. Pallipadi and A. Starikovskiy, “The Ondemand Governor,” in The
Linux Symposium, 2006.

[18] I. Ukhov, P. Eles, and Z. Peng, “Probabilistic Analysis of Power and
Temperature under Process Variation for Electronic System Design,”
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2014.

[19] W. J. Cody, “Rational Chebyshev Approximations for the Error Func-
tion,” Mathematics of Computation, 1969.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008.

[21] N. Binkert et al., “The gem5 Simulator,” in SIGARCH Computer
Architecture News, 2011.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in International
Symposium on Microarchitecture (MICRO), 2009.


