
Accelerating Edge AI with Morpher: An Integrated
Design, Compilation and Simulation Framework for

CGRAs

Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs)
hold great promise as power-efficient edge accelerator, offering
versatility beyond AI applications. Morpher, an open-source,
architecture-adaptive CGRA design framework, is specifically
designed to explore the vast design space of CGRAs. The com-
prehensive ecosystem of Morpher includes a tailored compiler,
simulator, accelerator synthesis, and validation framework. This
study provides an overview of Morpher, highlighting its capabili-
ties in automatically compiling AI application kernels onto user-
defined CGRA architectures and verifying their functionality.
Through the Morpher framework, the versatility of CGRAs is
harnessed to facilitate efficient compilation and verification of
edge AI applications, covering important kernels representative
of a wide range of embedded AI workloads. Morpher is available
online at https://github.com/ecolab-nus/morpher-v2.

I. INTRODUCTION

In the ever-evolving era of artificial intelligence, the growing
need for edge devices to adeptly manage advanced machine
learning (ML) workloads is becoming increasingly important.
These devices, operating under severe power and computa-
tional performance constraints, must not only efficiently exe-
cute a wide range of ML algorithms, but also cater to an array
of diverse workloads such as signal and image processing.
Even within the ML sphere, the advent of new kernel types
presents a continuous challenge, outpacing the capabilities of
current ML accelerators. Despite their efficiency in traditional
ML workloads, these accelerators fall short in adaptability for
non-ML tasks, highlighting the urgent need for more flexible
solutions.

Emerging as a solution to this, Coarse-Grained Recon-
figurable Arrays (CGRAs) represent an innovative class of
hardware accelerators, combining the flexibility of FPGAs
with a higher energy efficiency comparable to ASIC-based
ML accelerators. Their inherent word-level reconfigurabil-
ity and high energy efficiency make them ideal for power
and area-constrained edge devices. Additionally, the use of
dataflow computing in CGRAs naturally aligns with the
computational patterns of many AI workloads. Their unique
blend of adaptability and efficiency has led to adoption of
CGRAs commercially in Samsung Exynos 7420 SoC [9], Intel
Configurable Spatial Accelerator [10], Sambanova RDU [17],
Renesas Configurable Processor [11], and academic prototypes
like HyCUBE [2], [3] among others [20], [23], [26], [27].

A CGRA architecture, as depicted in Figure 1, is character-
ized by a grid of interconnected Processing Elements (PEs)
and multi-banked memories accessible to a subset of PEs,
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Fig. 1: A 4x4 CGRA Architecture
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Fig. 2: (a) a loop DFG (b) a loop schedule (c) a loop scheduled
on MRRG (Modulo Resource Routing Graph).

rendering it simple yet robust. The PEs consist of config-
urable switches, a register file, ALU, and control memory,
enabling the time-multiplexed execution of instructions. The
use of static scheduling negates the need for hardware struc-
tures for conflict resolution and synchronization, leading to a
lightweight footprint for CGRAs. However, the effectiveness
of CGRAs relies heavily on high-quality compiler mapping of
application kernels onto the architecture, marking the CGRA
compilation problem a substantial research area [5]–[7], [12]–
[15], [22].

Application kernels are typically statically scheduled on
CGRAs, a process that exposes all architectural features to
the compiler for spatio-temporal mapping of dataflow graph
(DFG) nodes, as illustrated in Figure 2. This mapping includes
assigning operations to CGRA PEs and routing data dependen-
cies through configurable switches and registers. A common
strategy, loop pipelining, allows concurrent scheduling of
operations from different iterations, enhancing the kernel’s
throughput as shown in Figure 2b. This process, also known as
modulo scheduling, can be achieved by mapping DFG onto a
modulo spatio-temporal resource graph, known as the Modulo
Routing Resource Graph (MRRG) (Figure 2c) [8].

In this study, we direct our attention to the optimization
of ML workloads on user-defined CGRAs, employing the
Morpher tool chain—a comprehensive design tool developed
for CGRA modeling and compilation. Morpher is an open-
source framework that provides comprehensive support for
modeling diverse CGRA architectures, supporting complex

https://github.com/ecolab-nus/morpher-v2
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Fig. 3: Overview of Morpher Framework

kernels, and verifying functionality. It enables users to design
architecture characteristics through its architecture description
language (ADL) and proficiently maps complex compute
kernels. Morpher also auto-generates Verilog RTL for cus-
tom CGRAs, and validates functionality through Verilator-
based simulations [13], [28]. Hosted on GitHub, it integrates
workflows for compilation, RTL generation, simulation, and
verification, while incorporating Continuous Integration (CI)
workflows to ensure error-free code and tested use cases.

The organization of this paper is as follows: Section II pro-
vides an overview of Morpher framework. In Section III, we
detail how the target CGRA is modeled. Section IV not only
outlines our approach to accelerate ML kernels on CGRAs,
but also presents evaluations of the applied optimizations and
verification process of their execution.

II. MORPHER FRAMEWORK OVERVIEW

Fig. 3 illustrates the overall Morpher framework. The pieces
of the framework are numbered for easy reference. Yellow
pieces represent user-provided inputs, blue pieces represent the
functional components, and grey ones represent intermediate
results generated by the functional components. The frame-
work has three inputs: application source code with annotated
kernel 1 , the abstract architecture model 2 , and a library of
hardware description of basic CGRA modules 3 . The main
components of the framework are Data-Flow Graph (DFG),
and data layout generation 4 , CGRA Mapper 5 , hardware
(RTL) generation 6 , test data generation 7 , simulation and
emulation 8 .

CGRAs target loop kernels where the application spends a
significant fraction of the execution time. The DFG generator
4 is an LLVM-based pass that extracts the DFG of the target

loop annotated in the application source code. Additionally,
it constructs the multi-bank data layout by allocating the
variables in the loop kernel to the on-chip memories of the
target CGRA.

The CGRA mapper 5 maps the extracted DFG onto the
CGRA fabric to maximize parallelism by exploiting intra-
and inter-iteration parallelism with software pipelining (i.e.,
modulo scheduling) [8]. Morpher ADL supports a rich set of
primitive constructs that model functional units, register files,
complex software-defined routers, and multi-banked memories
accessible via shared bus interfaces. The mapper models the

CGRA as a time-extended resource graph called MRRG [5]
where the nodes of the DFG are mapped to the time-space
resource instances to maximize throughput and minimize data
routing cost. The resultant mapping configuration file describes
the configuration for each resource cycle-by-cycle.

The architecture generator 6 generates the Verilog RTL of
the target CGRA design based on the user-provided abstract
architecture model and the library of basic CGRA modules
written in Chisel. The test data generator 7 for an application
creates the data required for simulation and verification of the
application execution. Finally, the simulator and emulator 8
use the mapping configurations, the test data, and Verilog RTL
to simulate and emulate the execution of the application on the
specified architecture.

III. MODELING THE TARGET CGRA ARCHITECTURE

For this study, the target CGRA is designed with an 8×8 PE
array, comprising 8 data memories connected to the boundary
PEs located on the left and right sides. The CGRA is logically
structured into four clusters, with each cluster accommodating
a 4x4 PE array and two 8kB memory banks, in line with a
16-bit data path, as shown in Figure 1. This arrangement is
described using the abstract ADL of Morpher, a flexible tool in
.json format adept at capturing a range of CGRA architectures.

Morpher’s ADL balances high abstraction for user-
friendliness with the need to handle intricate architectural
specifics vital for verilog RTL generation. It does this by
incorporating a library of crucial CGRA hardware modules
like ALUs, LSUs, register files, multiplexers, and memory
units, all developed in the Chisel language. This lets users
tailor optimized architectures. Consequently, Morpher stream-
lines the design process, translating the ADL into an scala
based Intermediate Representation (IR) that forms the Chisel
top design and verilog RTL.

IV. ACCELERATING ML KERNELS ON CGRA

In this section, we illustrate our strategy for accelerating
diverse ML workloads, focusing primarily on the General
Matrix Multiply (GEMM) and Convolution (CONV) kernels,
using the Morpher toolchain. These kernels, despite being
merely two examples among many ML kernels, act as crucial
components in a plethora of ML models, contributing signif-
icantly to layers such as Fully Connected (FC), Convolution,
Transformer models, LSTM, GRU, Bilinear, Self-Attention,
and Graph Neural Networks (GNN) layers. While our method-
ology is demonstrated using GEMM and CONV kernels, it
maintains broad applicability to numerous ML kernels on
user defined CGRAs. Our attention is centered on diverse
optimization strategies, including loop tiling, unrolling, and
loop coalescing, which when combined, facilitate improved
utilization of the CGRA resources and substantially boost
performance.

A. Tiling Strategy for ML Kernels

The GEMM and CONV (single-input multiple-output chan-
nels) kernels are implemented on CGRA in a tiled manner



using an output stationary dataflow, as shown in Listing 1 and
2. This is just one instances of many tiling techniques widely
explored for spatial accelerators and effectively applicable to
CGRAs [24], [25].

At the single CGRA level (lines 9-12 in Listing 1 and lines
9-16 in Listing 2), a specific-sized kernel, called “TILE,” is
mapped to an individual CGRA cluster. For GEMM, a matrix
multiplication of size TI × TK × TJ is mapped to a CGRA
cluster. For CONV, a convolution of a tile of size TO1 ×
TO2× TCo with a filter of size K ×K is carried out. Each
cluster computes an output matrix (O) with weights (W) and
an input matrix (I) as inputs, the sizes of which are governed
by the capacity of on-chip memory banks within each CGRA
cluster. This mapping process is facilitated by the Morpher
tool chain, detailed further in the next section.

The sequential loops manage data transfer from off-chip
to on-chip memory, while computation is handled by parallel
loops mapped onto CGRA clusters (lines 2-7 in Listing 1
and Listing 2). At the CGRA cluster level, data parallelism
among different output tiles is leveraged. This allows multiple
tiles to be spatially mapped on the CGRA cluster array, with
each CGRA computing a single output tile. At the off-chip to
on-chip level, any data exceeding the capacity of the on-chip
memory banks is stored in off-chip memory, ensuring efficient
data management throughout the system.

1 // Sequential loop: from off-chip to on-chip
2 for m in range(M/(TI*X)):
3 for n in range(N/(TJ*Y)):
4 for k in range(K/(TK)):
5 // Parallel loop: CGRA clusters
6 for x in range(X):
7 for y in range(Y):
8 // Single CGRA level
9 for i in range(TI):

10 for j in range(TJ):
11 for k in range(TK)://map this
12 O[][] += W[][]* I[][];

Listing 1: GEMM loop tiling and dataflow

1 //Sequential loop: from off-chip to on-chip
2 for i.0 in range (O1/ X*TO1):
3 for j.0 in range (O2/ Y*TO2):
4 for c.0 in range(Co/ TCo):
5 // Parallel loop: CGRA clusters
6 for x in range(X):
7 for y in range(Y):
8 // Single CGRA level
9 for i in range(TO1):

10 for j in range(TO2):
11 for c in range(TCo):
12 temp = 0;
13 for k1 in range(K):
14 for k2 in range(K):// map this:
15 temp += I[] * W[];
16 O[] = temp;

Listing 2: CONV loop tiling and dataflow

B. Micro Kernel Mapping on CGRA

In this section, we explore the process of optimizing and
mapping GEMM and CONV kernels, onto a single CGRA
cluster. We further analyze the performance implications of

these optimizations. The evaluated GEMM and CONV kernels
have dimensions of 643 and 643 × 32, respectively. Their
corresponding tile sizes fitting into onchip memory banks
of single CGRA cluster are 64 × 16 × 64 for GEMM and
642 × 1× 32 for CONV.

Both GEMM and CONV kernels consists of nested loops.
The user only needs to provide the application C source code
to the Morpher toolchain and annotate the innermost loop that
should be mapped onto the CGRA, here annotated as ”map
this” (Line 11 in Listing 1 and line 14 in Listing 2). The
toolchain then generates a dataflow graph, representing the
innermost loop body, and maps it onto the CGRA cluster. This
mapping generates the necessary configurations to exploit the
parallel computational capacity of the CGRA for executing
the kernel. The toolchain also manages data layout in memory
banks, mapping data arrays onto them to synchronize compu-
tation and data mapping.

Table I provides a performance evaluation. The Initiation
Interval (II) represents the cycle count between start of two
consecutive iterations, while the Minimum II (MII) is the
smallest possible II dictated by the CGRA resource and loop’s
recurrence constraints [21]. For both the base GEMM kernel
(26 DFG nodes) and the base CONV kernel (27 DFG nodes),
total execution times are 2.69 ms and 314.70 ms. In both
cases, Morpher succeeds in achieving the theoretical MII
of 4. Notably, the lower performance of the CONV kernel
arises due to an increased kernel invocation overhead, which
includes transferring outer loop iteration variables from the
host processor to the CGRA, as well as extended pipeline
draining time. The latter refers to the period during which the
pipeline completes executing instructions after the final loop
iteration has commenced. These factors are amplified due to
the CONV kernel’s higher number of nested loop levels (5
compared to GEMM’s 3). This overhead, combined with less
than optimal resource utilization (40% for GEMM and 42.19%
for CONV), spotlights the opportunities in optimizing CGRA
performance for complex ML kernels.

Incorporating loop unrolling optimization into the GEMM
kernel, as shown in Listing 3, significantly elevates perfor-
mance. This optimization inflates the number of operations
within the loop body, hence increasing the number of DFG
nodes and amplifying parallelism, which optimizes the uti-
lization of the CGRA PEs. As a result, the unrolled version
(GEMM-U) demonstrates an increased DFG nodes count from
26 to 58 and an enhancement in utilization from 40% to
60%. This culminates in a decrease in computation time from
0.56ms to 0.25ms. These reductions confirm that loop un-
rolling efficiently enhances the compute utilization, resulting
in an an improved performance, which is 1.13× better than
the base kernel.

1 for (i=0;i<TI; i++)
2 for (j=0;j<TJ; j++)
3 for (k=0;k<TK; k=k+4): //map this
4 O[i][j] += W[i][k]* I[k][j]+ W[i][k+1]* I[k+1][j]
5 W[i][k+2]* I[k+2][j]+W[i][k+3]* I[k+3][j];

Listing 3: Unrolled GEMM kernel (GEMM-U)



TABLE I: Performance comparison of different kernels on target CGRA with speedup compared to base kernels

Kernel Nodes II (MII) Utilization Compute
time (ms)*

Data transfer
time (ms)*

Total execution
time (ms)* Speedup

GEMM 26 4 (4) 40.63% 0.56 2.13 2.69 1×
GEMM-U 58 6 (4) 60.42% 0.25 2.13 2.38 1.1×
GEMM-U-C 79 8 (8) 61.72% 0.27 0.49 0.76 3.5×
CONV 27 4 (4) 42.19% 8.32 306.38 314.70 1×
CONV-U-C-1 100 12 (7) 52.08% 1.53 12.75 14.28 22×
CONV-U-C-2 153 11 (10) 86.93% 1.26 11.19 12.45 25.2×
* The evaluation is conducted at a 100 MHz CGRA frequency and a 50 MBps host-to-CGRA data transfer rate.

The primary focus of this study is to evaluate performance enhancement through compilation, not striving for
the maximum performance achievable through efficient RTL silicon implementation, which is currently in the
development phase.

Loop coalescing significantly enhances the efficiency of
the CGRA implementation, by reducing invocation overheads
and pipeline draining time. This is clearly demonstrated in
the results for the GEMM-U-C (Listing 4) and the CONV-
U-C (Listing 5) kernels. The GEMM-U-C kernel coalesces
all three loops, resulting in a DFG with 79 nodes and an II
of 8. This kernel requires only a single loop invocation per
CGRA cluster to complete 643 kernel size. The data transfer
time is reduced to 0.49 ms, culminating in a total execution
time of 0.76 ms. This significantly enhances the overall
performance, as evidenced by a performance boost of 3.54
times compared to base kernel. Similarly, the CONV kernel
also shows marked improvement when optimized. The CONV-
U-C-1 kernel, which coalesces the innermost two loops and
fully unrolls them when K=3, results in a DFG with 100 nodes
and an II of 12. The compute time is significantly reduced to
1.53 ms, as is the data transfer time to 12.75 ms, yielding a
total execution time of 14.28 ms. This optimization leads to
an impressive performance increase to 22.03× compared to
the base kernel.

Finally, the CONV-U-C-2 kernel, which coalesces all five
loop levels, demonstrates a further improvement. This kernel
necessitates 16 invocations per CGRA cluster to complete
643 × 32 kernel size. It results in a DFG with 153 nodes and
an II of 11 with 86% utilization. This optimization results
in a performance boost of 25.28× compared to the base
CONV implementation. These findings underscore the vital
role and efficacy of loop coalescing in achieving significant
performance gains in CGRA implementations.

1 for (n=0;i=0;j=0;k=0;n<TI*TJ*TK; n++){: //map this
2 O[i][j] += W[i][k]*I[k][j]+W[i][k+1]*I[k+1][j]
3 W[i][k+2]*I[k+2][j]+W[i][k+3]*I[k+3][j];k = k + 4;
4 if(k+1 >= TK) {k=0; ++j;}
5 if(j == TJ) {j=0; ++i;}}

Listing 4: Unrolled & coalesced GEMM kernel (GEMM-U-C)

1 for (int ijk=0;ijk<TCo*TO1*TO2; ijk++){: //map this
2 O[] = I[] * W[] + I[] * W[] + I[] * W[]
3 + I[] * W[] + I[] * W[] + I[] * W[]
4 + I[] * W[] + I[] * W[] + I[] * W[]; j = j + 1;
5 if(j+1 > O2){j=0;++i;}
6 if(i == O1){i=0;++c;}}

Listing 5: Unrolled & coalesced CONV kernel (CONV-U-C-2)

C. Functional Verification

Morpher simplifies the task of generating application test
data for the simulation of loop kernels, an indispensable
component of CGRA functional verification. It instruments the
application source code by inserting data recording functions
to capture the live-in (I, W, O arrays, iteration variables
transferred from outermost loops) and live-out (output O
array) variables of the target loop kernel. This instrumented
program is then run on a general-purpose processor, and the
variables are recorded as test data for use by the simulator.
In the ensuing simulation and verification phase, the Chisel
top design of the target CGRA is simulated using Verilator
and Chisel I/O testers, with the CGRA model functioning as
a memory-mapped slave device to a host processor. The live-
in variables from the recorded test data are loaded into each
memory unit, and the mapping configurations from the mapper
are uploaded into the automatically generated control modules.
The simulator then carries out the operations, routing data
through multiplexers, operating on the functional units, and
recording the results to registers and memories, all as per the
mapping configurations. The post-simulation memory content
is finally compared with the expected results, validating the
CGRA functionality with Morpher generated configurations.

V. CONCLUSION AND FUTURE WORKS

CGRAs backed by the efficient kernel mapping of the
Morpher toolchain, offer a promising route for ML applica-
tion acceleration. In our future work, we aim to merge the
Morpher toolchain with MLIR’s high-level compilation front-
end. This integration will automate optimization techniques,
further exploring the CGRA design space, and enhancing
performance. This effort continues to strive towards unlocking
the full potential of CGRA technology.
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