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Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs)
are well-suited to resource-constrained edge devices due to
their optimal combination of performance, energy efficiency, and
adaptability. However, CGRAs typically follow a rigid execution
model — either spatio-temporal or spatial — irrespective of
the workload, limiting their efficiency. Spatio-temporal execution
requires per-cycle reconfiguration, resulting in higher energy
consumption. Conversely, spatial execution maintains the same
configuration over a longer period; but this fixed mapping
constraint can hinder the performance of complex applications
and increase data memory accesses, leading to higher energy
consumption. We introduce FLEX, a CGRA with a novel,
flexible spatio-temporal vector dataflow execution model. This
model processes a vector of data sequentially and chains them
spatio-temporally. FLEX also supports variable vector lengths
determined at compile time, enabling a more flexible execution
paradigm. Our execution model reduces the reconfiguration fre-
quency inherent in purely spatio-temporal mapping and mitigates
the performance limitations and extra data memory accesses
associated with purely spatial mapping. FLEX matches the
performance of spatio-temporal CGRA but with 45% less energy
and a 1.9× power efficiency improvement. Moreover, compared
to a baseline spatial CGRA, FLEX consumes 35% less energy
and delivers a 1.6× improvement in power efficiency at 1.5×
higher throughput.

Index Terms—Coarse Grained Reconfigurable Array (CGRA),
Edge acceleration, Vector dataflow

I. INTRODUCTION

Edge computing demands high performance within a mod-
est power budget. ASICs are powerful but lack flexibility,
driving interest in reconfigurable computing like FPGAs. Yet,
FPGAs’ bit-level reconfigurability limits power and area effi-
ciency. Coarse-Grained Reconfigurable Arrays (CGRAs), with
word-level reconfigurability, offer a balanced solution ideal for
edge computing acceleration.

Serveral academic (ADRES [1], HyCUBE [2], SNAFU [3],
Amber [4]) and commercial (Samsung SRP [5], Intel CSA [6],
Renesas DRP [7], Sambanova RDU [8]) CGRA architectures
have been proposed over the years. A CGRA consists of a
set of Processing Elements (PEs) interconnected by a network
along with on-chip memory. Each PE comprises a simple com-
pute unit, a router for interconnect, and a reconfiguration unit
with memory to hold the configurations/instructions generated
by the CGRA compiler. CGRAs are ideal for accelerating
compute-intensive loop kernels. The compiler takes the loop
kernel represented as a Data Flow Graph (DFG), places and
routes it onto the CGRA, leveraging inter- and intra-iteration
parallelism [51].
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Fig. 1: FLEX execution model spans spatio-temporal, spa-
tial1and spatio-temporal vector dataflow with variable vector
lengths (v).

CGRAs’ execution models can be characterized as spatio-
temporal [1], [2], [9] or spatial [3], [10]. Spatio-temporal
CGRAs deliver higher performance but are at the higher end
of the power spectrum (Figure 1). Here a DFG is mapped
in both spatial and temporal domains, requiring per-cycle
reconfiguration of the PE-array during execution. In spatial
execution, the DFG is only mapped spatially among the PEs;
so the PE-array completes a full set of loop iterations (N )
before switching the configuration, drastically reducing the
reconfiguration energy. However, most DFGs do not fit on
the PE-array and have to be partitioned into sub-DFGs. The
sub-DFGs are executed one at a time, hindering application
performance and leading to considerable data transfer over-
heads through on-chip memory due to dependencies among
sub-DFGs (Spatial(partitioned) in Figure 1). Moreover, spatial
CGRA proposals manually partition the DFGs [3], which is
infeasible for complex applications.

To overcome these limitations, we introduce FLEX, a CGRA
with a novel, flexible spatio-temporal vector dataflow execu-
tion model. This model processes a vector of data sequen-
tially for each configuration and chains the vectors spatio-
temporally. It supports variable vector lengths v (v ≤ N ),
determined at compile time, facilitating a more flexible exe-
cution (variable v enables multiple design points as shown in
Figure 1). FLEX covers a broad spectrum of reconfigurability,
from spatio-temporal to spatial execution, achieving the best

1FLEX follows spatial execution if a kernel fits spatially on the PE-array
without the need for partitioning.



of both worlds: high performance of spatio-temporal CGRAs
at low power of spatial CGRAs. FLEX provides a design space
exploration (DSE) framework to choose the best execution
mode and vector length (v) for individual application kernels
based on the user requirements. With this flexibility, FLEX
can deliver higher performance/watt across diverse application
kernels of varying complexity.

We design a flexible architecture, compiler, and DSE frame-
work to accommodate the proposed spatio-temporal vector
dataflow execution of FLEX. Our experimental evaluation
using a range of applications demonstrates that FLEX achieves
the same performance as spatio-temporal CGRA with 45%
less energy and 1.9× better power efficiency. FLEX improves
performance over spatial CGRA by 1.5× while saving 35%
energy with 1.6× higher power efficiency. Moreover, FLEX
can be coupled with SIMD execution (Single Instruction,
Multiple Data) to enhance the power efficiency of SIMD
CGRA by 2.0×.

Our concrete contributions include the following:
• We introduce a novel CGRA architecture FLEX with a

flexible execution model spanning spatio-temporal, spa-
tial, and variable vector length (v) spatio-temporal vector
dataflow execution.

• We design the FLEX compiler to support spatio-temporal
vector dataflow for near-optimal mapping.

• We offer design space exploration in FLEX to choose the
optimal execution model for each application and user
requirements, making it a truly general-purpose CGRA.

The framework is open-source and available at https://
github.com/ecolab-nus/FLEX.

II. BACKGROUND AND MOTIVATION

State-of-the-art (SOTA) CGRAs follow two prominent exe-
cution models: spatio-temporal and spatial. We analyze these
two extremes to identify their inefficiencies and motivate the
exploration of an alternative execution model that can morph
between these extremes.

Spatio-temporal CGRA: High reconfiguration energy.
Spatio-temporal CGRA execution requires higher energy due
to per-cycle reconfiguration. Figure 2a shows the spatio-
temporal mapping for the execution of a DFG corresponding
to a loop kernel. Each PE executes multiple configurations
(II=2, II is the number of cycles between two consecutive
loop iterations) for each loop iteration, and the schedule is
repeated cyclically for N loop iterations, resulting in II×N
reconfigurations for each PE. Figure 3a shows the average
power distribution of a spatio-temporal CGRA for the ker-
nels in Table I (see Sections IV-A, IV-B for experimental
setup). Ideally, most of the resources should be utilized in
performing actual computation (compute) and dataflow (router,
data memory). Instead, nearly half the power is consumed
to reconfigure the CGRA. The frequent reconfiguration also
limits the clock-gating opportunities as the components, espe-
cially the configuration memory, toggle fast between active and
idle states. Hence, spatio-temporal CGRAs typically consume
higher power than spatial CGRAs.
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Fig. 2: DFG schedule on 4x1 spatio-temporal and spatial
CGRAs. Original DFG in (a) is partitioned into three sub-
DFGs (each partition with II=1) in (b). For N iterations of
the loop, (a) takes 2N+2 cycles while (b) takes 3N+5 cycles.
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Fig. 3: Average power distribution in SOTA CGRAs vs FLEX

Spatial CGRA: Partitioning degrades performance and
increases data memory energy. Spatial CGRAs work well
for smaller kernels where the DFG fits spatially. However,
the DFGs are too complex for most real-world application
kernels to fit on a small spatial CGRA. In such cases, the
original DFG is partitioned into sub-DFGs, each mapped
spatially and in isolation. Figure 2b shows the execution of the
example kernel on a similar-sized spatial CGRA. The DFG is
partitioned into three sub-DFGs, and each is mapped spatially.
Additional LOAD/STORE nodes are added to handle the data
dependencies among the partitions. Each partition requires
only one reconfiguration for all loop iterations, resulting in
low reconfiguration energy (Figure 3b).

However, partitioning reduces parallelism opportunities and
introduces additional nodes handling intermediate data, caus-
ing longer execution times. In Figure 2b, spatial CGRA takes
3N+5 cycles while spatio-temporal CGRA takes only 2N+2
cycles (i.e., ∼50% fewer cycles) for the loop with N iterations.

Moreover, partitioning reduces the data locality by moving
the intermediate data (representing dependencies among sub-
DFGs) in and out of the PE-array. This results in frequent data
memory accesses, increasing power consumption. Figure 3b
shows the data memory power dominates with 62% contribu-
tion, an artifact of DFG partitioning required by spatial CGRA.

https://github.com/ecolab-nus/FLEX
https://github.com/ecolab-nus/FLEX


Spatial CGRA: Difficulty with inter-iteration depen-
dencies. Spatial CGRAs mandate the processing of inputs
in consecutive cycles. Thus, a kernel with true inter-iteration
dependency (the output of one iteration becomes an input to
the next iteration) will cause the execution of the next iteration
to halt till the output of the current iteration is generated.
In the worst-case, the spatial mapping cannot exploit any
inter-iteration parallelism leading to poor performance. These
dependencies are even more challenging for partitioning as
the parent and child nodes must be contained within the same
partition.

Spatial CGRA: Complex kernel partitioning challenges.
Kernel partitioning differs from traditional graph partitioning
with additional objectives: (a) Each sub-DFG should map
with II=1; (b) The DFG operations should be distributed to
match the compute capabilities of the CGRA and adhere to the
data memory layout; (c) Inter-sub-graph dependencies should
be acyclic for sequential execution. Current spatial CGRA
proposals [3] use manual partitioning, which is infeasible for
complex DFGs.

The challenges discussed for both the CGRA execution
models are associated with their respective reconfiguration
methods. Spatio-temporal and spatial CGRAs lie at the two
extreme ends with the highest and lowest reconfiguration
frequencies (Figure 1), respectively. Frequent reconfiguration
increases the cost of reconfiguration energy while partitioning
associated with spatial execution results in performance over-
heads. This motivated us to explore the intermediate scope
with slightly higher reconfiguration frequency than spatial
CGRA but lower frequency than spatio-temporal CGRA to
minimize the adverse impacts of each approach while main-
taining their respective advantages. We propose the concept
of spatio-temporal vector dataflow execution (Figure 4), an
innovative approach designed to create a more balanced exe-
cution model and architecture that covers the entire reconfig-
uration spectrum. Figure 3c shows that spatio-temporal vector
dataflow of FLEX reduces the power contribution from the
reconfiguration of spatio-temporal CGRA and data memory
of spatial CGRA balancing the power distribution among
reconfiguration, data memory, compute, and routing. We also
provide an automated exploration framework of the reconfig-
uration frequency spectrum through the choice of the vector
length (v). This allows the user to select the optimally tailored
execution mode and vector length (v) for each application at
compile time based on the specific performance and power
needs.

III. FLEX

FLEX CGRA architecture enables flexible execution of
application kernels with high performance and low power. We
elaborate on the complete system comprising the execution
model, micro-architecture, compiler, and DSE framework.

A. Execution Model

FLEX supports a reconfigurable execution model spanning
the spectrum from spatio-temporal to spatial execution. We
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Fig. 4: Spatio-temporal vector dataflow on FLEX

introduce the spatio-temporal vector dataflow execution, a
novel approach to cover the entire reconfiguration spectrum.
On the same silicon substrate, each application kernel can
choose the best execution mode at the compile time, depending
on the performance and power requirements. Later, we show
that spatio-temporal vector dataflow execution is beneficial for
most kernels.

Spatio-temporal vector dataflow execution: In spatio-
temporal vector dataflow execution, each reconfiguration of the
PE array processes an entire vector of v inputs sequentially,
thus reducing the overheads of configuration. The outputs are
then chained spatially and temporally so that the consumer
PEs have access to each input as soon as it is produced,
minimizing the requirement for intermediate data storage. In
FLEX, the DSE framework selects the most suitable v for
an application. Each compiler-generated configuration runs v
times consecutively, with each PE executing the same instruc-
tion on successive elements of the vector, sending the vector
of v results along identical routes to the same destination PEs.

Figure 4 shows spatio-temporal vector dataflow for the
DFG in Figure 2a. Figure 4a shows v=2 scenario, where
reconfiguration of the PEs happens every two cycles. PE0
processes two iterations of node 1 in cycle 0 and cycle 1. The
produced result is routed immediately to PE1, which executes
node 3 in cycle 1 and cycle 2. Similarly, all the intermediate
data produced are consumed immediately, which results in a
fully chained schedule without using any of the registers on the
PE-array. This schedule has a maximum of two configurations
per PE, similar to spatio-temporal execution in Figure 2a but
with half the reconfiguration frequency. With spatio-temporal
vector dataflow, all the PEs may not start simultaneously, as
indicated by the initial delay table. FLEX with v=2 takes 2N+1
cycles to execute N iterations of the loop, achieving the same



performance as the spatio-temporal CGRA.
Figure 4b is the schedule on FLEX with v=4. Every node

is executed on four inputs/iterations before reconfiguring. The
intermediate outputs produced are stored in registers for one
cycle before being consumed by the destination PEs. This
schedule requires only two configuration entries per PE and
takes 2N+2 cycles to execute, achieving the same performance
as a spatio-temporal CGRA at 75% less reconfiguration.

Spatio-temporal vector dataflow can achieve the same per-
formance as spatio-temporal execution with significantly less
reconfiguration. It also avoids the costly memory accesses and
performance impact of spatial CGRAs. The vector length v is
adaptable, allowing design space exploration to optimize the
execution for individual loop kernels.

For Vc: maximum vector length supported by the application
kernel and Vh: maximum vector length supported by the hard-
ware, vector length v ∈ {1, 2, 3, .., V } where V =min{Vc, Vh}.
We set Vh=8 in the current architecture empirically based on
application analysis. FLEX becomes a spatio-temporal CGRA
when v=1, II>1 and a spatial CGRA when v=1, II=1.

FLEX can operate in three different execution modes:
• Spatial execution: For smaller kernels that can fit spatially

onto the CGRA without partitioning.
• Spatio-temporal vector dataflow execution: For vectoriz-

able kernels with optimal v determined via DSE.
• Spatio-temporal execution: For non-vectorizable kernels

with true inter-iteration dependency between consecutive
iterations.

B. FLEX Micro-architecture

Figure 5 illustrates FLEX micro-architecture with 4x4 PE-
array connected via single-cycle multi-hop mesh network [2].

1) Processing Elements (PEs): Each PE combines a com-
pute unit, a crossbar for network connectivity, and a config-
urator for reconfiguration handling. FLEX has memory PEs
to handle all the data memory accesses and regular PEs to
perform all the remaining computations.

2) Compute Unit: The compute unit in a regular PE can
perform 16-bit arithmetic operations, logic operations, mul-
tiplication, and division. Compute unit is simplified in the
memory PEs with arithmetic required for simple memory
address generation. Any complex address calculation, like
indirect addressing, is translated to multiple DFG nodes and
computed using multiple PEs. Local storage within PE holds
constants and locally used data.

3) Router/Crossbar: The 7x7 crossbar in each PE forms
many-to-many connections among internal and external dat-
apaths. Registers are sprinkled along the datapath to buffer
the data to match the latencies. Clock-gated link registers at
the outputs, and the internal datapath cater to the buffering
required by spatio-temporal vector dataflow. More link regis-
ters improve the performance with larger vector lengths; thus,
register availability is crucial in determining v for execution.

4) Configurator: The configurator handles reconfiguration
for each PE. We split the configuration memory, which holds
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the configuration words, into two sub-memories, one for
reconfiguring the compute unit along with crossbar configura-
tions for its inputs and the other for the crossbar configurations
of the external ports. Decoupled memories allow more flexibil-
ity for the compiler to perform vectorization with chaining, as
they can be toggled individually. Individual PCs are triggered
after the specific initial delay determined by the compiler and
are incremented after v number of cycles plus idle cycles.

5) Top Level: All the memory PEs directly connect to the
global data memories. Boundary PEs are connected to the
iteration counter unit, which calculates the iteration variable.
The global vector length register is loaded with each kernel’s
compiler-determined optimal v. Based on our application pro-
filing, it is set to 3-bits (Vh=8). This global register is loaded
with other configurations and remains the same throughout
execution. All the PEs are directly connected to this register.
As each PE starts with a different initial delay, each triggered
PE needs a local vector counter, which is incremented until
the count reaches v and resets.

6) Clock Gating: Clock gating cells are inserted into the
configuration memories, program counters, and link registers.
If the PE is idle for the entire execution or a particular cycle,
PE-level clock gating cells will block the clocking. Micro-level
clock gating is applied during vector execution and when the
PE is partially active (either the compute unit or the router).
During vector execution, the configurator is clock gated for
v-1 cycles. Hence, a larger v leads to higher power savings.



Algorithm 1: Blockwise mapping algorithm
Data: DFG,CGRA description, v
Result: vecII,validMapping

1 sortedDFG=getALAPSortedDFG(DFG);
2 timeExtendedDFG = getT imeExtDFG(sortedDFG, v);
3 vecII = v ∗ getMinII(DFG,CGRA description);
4 while !validMapping do
5 MRRG = getMRRG(CGRA description, vecII);
6 foreach vectorOfNodes in timeExtendedDFG do
7 candidates=checkAvailability(partiallyMappedMRRG);
8 mapping=place&Route(candidates, vectorOfNodes[0]);
9 foreach node in vectorOfNodes do

10 validMapping=reserveNodeAndRoute(mapping);
11 if validMapping then
12 return {vecII, validMapping};
13 else
14 vecII = vecII + 1;

C. FLEX Compiler

We design a compiler to generate the configuration binary
starting from the application loop kernel in C. Initially, we per-
form vectorization checks with an LLVM auto-vectorization
pass to determine Vc (maximum vector length) of each loop
kernel. Next, we use LLVM-based Morphor [11] tool to gen-
erate the corresponding DFG from the kernel code. Generated
DFG and Vc are fed to our customized CGRA mapper.

We design the CGRA mapper to handle the spatio-temporal
vector dataflow execution paradigm, which is essentially a
blockwise pathfinder mapper [12]. In contrast to SOTA CGRA
mappers [11], [42], [45], which place and route individual
nodes, blockwise mapper time extends the nodes by v to form
blocks which are then placed and routed. Only the first element
is placed and routed; all the remaining vector elements will
follow the exact mapping. Thus the selected PE and the route
are reserved for v cycles.

Mapping Problem Definition: For a given DFG D =
(ND, ED) and a CGRA, the problem is to derive the
minimally time-extended Modulo Routing Resource Graph
(MRRG) [13] MvecII = (NM , EM ) for the time extended
instance of D, D[v] which has a valid mapping ϕ = (ϕN , ϕE)
on MvecII . MRRG depicts the routing and the resources for a
time-extended CGRA. D[v] = (ND[v], ED[v]) where ND[v]
corresponds to a vector of node ND and ED[v] to vector of
edge ED, v is the vector length.

Algorithm 1 elaborates on the blockwise mapping approach.
Original DFG is sorted with as-late-as-possible (ALAP) prior-
ity, and each node is time extended by v cycles (Lines 1, 2).
The algorithm iterates over all the vectors of nodes, placing
and routing the first element of the node (Lines 7, 8) and
reserving the exact placement and route for the remaining
vector elements (Line 10). Initial vecII (Initiation Interval for
vector dataflow) is set to the minimum possible value (Line
3) and incremented by 1 until a valid mapping is reached.

When v=1, blockwise mapper provides spatial or spatio-
temporal mappings. If a valid mapping exists for vecII=1,
FLEX will follow spatial execution. Any mapping with
vecII>1 and v=1 is a spatio-temporal mapping.

D. Design Space Exploration (DSE) with FLEX

FLEX performs DSE to determine the best execution mode
for each kernel. Figure 6 summarizes the DSE framework,

Loop 
kernel

LLVM auto-
vectorization 

pass

DFG,
N

FLEX JSON,
Vh

Block-wise mapper Power 
estimationVector size(v)

+1 Performance
Power

Spatial-
temporal

v=1 
VecII>1 VecII=1

v=2 
VecII>1

v=4
VecII>1v=3

VecII>1
v=V

VecII>1

Optimal 
Execution

Spatial Spatial-temporal 
vector dataflow

Design space

FLEX netlist

Vc

Fig. 6: FLEX DSE framework

Algorithm 2: DSE algorithm
Data: DFG, N , Vc, Vh, FLEX JSON, FLEX netlist
Result: optimum execution mode

1 V =min{Vh, Vc};
2 v=1;
3 {vecII1, validMapping} =

blockwiseMapper(DFG,CGRA JSON, v);
4 if V == 1 then
5 return SpatiotemporalExecution
6 else
7 if vecII1 == 1 then
8 return SpatialExecution
9 else

10 binary1= dumpConfigBinary(validMapping, v);
11 performance1 = computePerf(vecII1, N, v);
12 power1= getPower(binary1, FLEX netlist, v);
13 addToDesignSpace({performance1, power1});
14 while v < V do
15 v = v + 1;
16 {vecIIv, validMappingv} =

blockwiseMapper(DFG,CGRA JSON, v);
17 if validMappingv then
18 binaryv=

dumpConfigBinary(validMappingv, v);
19 perfv = computePerf(vecIIv, N, v);
20 powerv=

getPower(binaryv, FLEX netlist, v);
21 addToDesignSpace({perfv, powerv});
22 return selectOptimumExecution();

and algorithm 2 explains the pseudocode. Our DSE framework
receives kernel DFG, N : the number of loop iterations, Vc, Vh,
FLEX architecture description in JSON, and netlist generated
from synthesized FLEX RTL as inputs. It performs DSE
and derives the optimal execution mode. First, the DFG is
mapped with v=1 (Line 3). As V =1 denotes inter-iteration
dependency that prevents vectorization; the framework selects
spatio-temporal execution (Line 4). If initial mapping pro-
vides vecII=1, spatial execution is selected; else mapping
instances are generated for different v. For each v, the block-
wise mapper is invoked to obtain the vecII (Line 16) and
the number of cycles to complete kernel execution (Line
19). Power estimation is done using the configuration binary
corresponding to each mapping (binaryv) (Line 20). The
design instance that achieves the lowest power with accepted
performance is selected as the optimal execution mode.

IV. EXPERIMENTAL EVALUATION

A. Baseline Architectures

We evaluate FLEX against spatio-temporal [1], [2] and
spatial CGRAs [3], [10]. Our prototypical baseline spatio-
temporal and spatial CGRAs are modeled after HyCUBE [2]
and SNAFU [3], respectively, with the following parameters
for fair comparison:
PE-array: 16 PEs arranged in a 4x4 single cycle multi-hop [2]



mesh network with 8 memory PEs on the boundary columns
and 8 regular PEs.
On-chip data memory: Spatio-temporal CGRA and FLEX
have 512B×4 dual-port memories connected to boundary
columns. Spatial CGRA has 1KB×4 dual-port memories,
slightly larger to accommodate intermediate values due to
partitioning if necessary.
Configuration memory: Spatio-temporal CGRA and spatial
CGRA have a single configuration memory per PE with 8
and 16 entries, respectively, to fit the selected kernels. FLEX
has separate routing and compute configurations with 8 entries
each (Section III-B4).
Reconfiguration: Spatio-temporal CGRA reconfigures the
PEs every cycle. Spatial CGRA reconfigures once a sub-DFG
execution completes for all the data elements N . FLEX in
vector dataflow mode reconfigures every v cycles.
Power management: Clock gating is implemented in all
three architectures. Idle PEs are clock gated throughout the
execution, and partially active PEs are clock gated during idle
cycles. Clock gating for FLEX is presented in Section III-B6.

B. Experimental Setup

All three architectures are implemented in System Verilog
HDL, synthesized on a commercial 22 nm FDSOI process
using Cadence Genus Synthesis Solution at 100 MHz clock.
We generate the binary code for the CGRA configurations
as described in Section III-C along with the data layout for
simulation. We use the same compiler set to v=1 for generating
configuration binaries for the baselines. Generated binaries are
used to perform RTL simulation using the Cadence Xcelium
tool, followed by power analysis with the Cadence Joules tool.

An additional kernel partitioning step is done for spatial
CGRA if the kernel is too big to fit with II=1. We partition the
DFG into sub-DFGs, ensuring minimal dependencies among
the partitions. For the dependencies, intermediate values are
stored in the on-chip data memory. LOAD/STORE operations
are added to handle the flow of intermediate values between
the sub-DFGs. The configuration binary is generated for each
sub-DFG and combined sequentially for complete execution.
For smaller kernels, we use manual partitioning, ensuring a
near-optimal solution. For partitioning complex DFGs (e.g.,
jpegdct), we use a modified version of Clauset-Newman-
Moore greedy modularity maximization [14].

C. Benchmark Applications

Table I summarizes the benchmark kernels used, the DFG
sizes, and any additional memory required for spatial execu-
tion to hold the intermediate values. The kernels are selected
from popular edge benchmarking suites MachSuite [15], Poly-
bench [16], Wavelib [17], and BEEBS [18], covering multiple
domains and constitute commonly used edge applications (e.g.,
object detection, speech recognition algorithms use fft, conv2d
and GeMM kernels). All the kernels except GeMM require
partitioning to execute on the spatial CGRA. In aes, fir, and
jpegdct kernels, more than 50% of the memory operations
in the partitioned DFGs are for handling the inter-partition

TABLE I: Application kernels used in the evaluation
App.

Kernel Description No. of nodes Additional
memoryOriginal Partitioned

fft 256-pt stockham FFT 19 22 20.0%

conv2d 2D convolution , 3x3 filter
(64x64 matrix) 29 39 44.4%

aes Rajndeal with 256 block size and 32-bit
key size 37 49 52.2%

stencil3d 7pt stencil calculation on 3D data
(16x32x32) 18 20 20.0%

idwt Sym inverse discrete wavelet transform
with db8 wavelet 23 32 42.9%

fir FIR filter with redundant load elimination 17 25 54.5%

jpegdct jpeg encoding
(8x8 discrete cosine transform) 71 126 77.5%

GeMM General matrix multiplication, unrolled 4
(64x64 matrix) 16 - 0.0%

nw Dynamic programming algorithm for
optimal sequence alignment (len=128) 30 ✗ -

TABLE II: Selected execution modes on FLEX. STV: Spatio-
temporal vector, ST: Spatio-temporal, S: Spatial

Kernel fft Conv2d aes stencil3d idwt fir jpegdct GeMM nw
Execution Mode STV STV STV STV STV STV STV S ST
Vector length (v) 4 4 4 8 4 4 2 - -
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Fig. 7: Kernel runtime normalized w.r.t. spatio-temporal
CGRA runtime.

dependencies. Kernel nw with inter-iteration dependency does
not meet the partitioning criteria and thus cannot execute on
the spatial CGRA.

D. Experimental Results

We perform DSE for each kernel and choose the optimum
execution mode based on the lowest power under performance
constraint (≤10% degradation of optimal performance under
spatio-temporal). Table II summarises the derived execution
modes. All the kernels that can be vectorized follow spatio-
temporal vector dataflow with different v. GeMM kernel is
small enough to fit spatially on FLEX. Kernel nw requires
spatio-temporal execution due to the inter-iteration dependency
that does not allow vectorization.

1) Performance: We present the performance of each
kernel in terms of the number of cycles it takes for a complete
execution on each of the architectures. Figure 7 shows the
normalized performance of each kernel w.r.t. the performance
on spatio-temporal CGRA. FLEX vectored execution achieves
nearly the same performance as spatio-temporal CGRA for all
the kernels. In fft and aes, FLEX achieves slightly better per-
formance as vector chaining improves latency. Spatial CGRA
takes longer execution time in all kernels, mainly due to the
impact of partitioning; on average, it requires 49% more cycles
compared to the spatio-temporal CGRA and FLEX. Due to its
complexity, kernel jpegdct suffers the maximum performance
degradation (2.8×) on spatial CGRA.

2) Power: We compare the average power consumption
throughout the execution of each of the kernels. Figure 8a de-
picts the total power consumption. FLEX executing in spatio-
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Fig. 9: Total energy comparison normalized w.r.t. spatio-
temporal CGRA.

temporal vector dataflow shows 45% average reduction in
total power compared to the spatio-temporal CGRA baseline.
Moreover, FLEX achieves nearly the same low power as
the spatial CGRA. For increased vector length (stencil3d),
FLEX consumes even lower power than spatial CGRA. Power
savings of FLEX is mainly due to the less frequent reconfigu-
ration. Figure 8b depicts how FLEX overcomes the significant
reconfiguration power in spatio-temporal CGRA by reducing
the configuration memory access power by an average of
63% Similarly, FLEX avoids unwanted data memory access
in spatial CGRA, saving 45% power (Figure 8c).

3) Energy: We compute the energy consumed by each
architecture for the complete execution of a loop kernel.
Figure 9 compares the total energy consumption normalized
w.r.t. that of spatio-temporal CGRA. FLEX delivering higher
performance at lower power shows significant improvement
in energy consumption compared to the baselines. Spatio-
temporal vector dataflow execution in FLEX achieves an
average energy reduction of 45% and 35% compared to spatio-
temporal CGRA and spatial CGRA baselines, respectively.

4) Power efficiency: Figure 10 shows the effective power
efficiency. FLEX achieves a maximum of 373 MOPS/mW
power efficiency with an average of 327 MOPS/mW across
all kernels, which is 1.9× and 1.6× improvement over spatio-
temporal and spatial architectures, respectively. FLEX execut-
ing in either spatio-temporal (nw) or spatial (GeMM) execution
delivers nearly the same power efficiency as the baselines.
Moreover, FLEX can handle complex kernels like jpegdct

fft conv2d aes stencil3d idwt fir jpegdct GeMM nw
0

100

200

300

400

✗Po
w

er
E

ffi
ci

en
cy

(M
O
P
S
/
m

W
)

Spatio-temporal CGRA Spatial CGRA FLEX

Fig. 10: Power Efficiency

TABLE III: Area

Architecture Area 
(mm2)

Spatio-temporal 
CGRA 0.091

Spatial CGRA 0.095
FLEX 0.100

1 2 3 4 5 6 7 8
0

0.5

1

1.5 perf. margin

Vector length (v)

No. of cycles Power

Fig. 11: DSE on fir kernel

much better.
We can conclude that FLEX provides a better tradeoff

between power and performance, achieving the lowest energy
consumption and best power efficiency among the compared
architectures.

5) Area comparison: Table III compares the total area of
the architectures. FLEX has a slight area increase (<10%)
mainly due to the partitioned configurations for router and
compute. Marginal area increase in spatial CGRA (<5%) is
due to the increased size of data and configuration memories.

6) Flexibility: For any given kernel, FLEX DSE allows
users to explore spatio-temporal, spatial, or spatio-temporal
vector dataflow execution with different vector sizes. Figure 11
depicts DSE on fir kernel. Performance and power values are
calculated for all v ∈ {1, 2, 3, .., 8} (normalized w.r.t. v=1 in
Figure 11) and v=4 is selected, which meets the performance
goal with minimum power (achieves power efficiency of 338
MOPS/mw).

E. FLEX on SIMD CGRA

SIMD execution on CGRA [19], [20] can improve perfor-
mance and reduce reconfiguration. The spatio-temporal vector
dataflow execution in FLEX is orthogonal to SIMD and hence
can be coupled with SIMD to provide even better efficiency. To
demonstrate this advantage, we introduce minimal additional
resources required by FLEX (vector counters, link registers,
and additional clock gating cells) on a SIMD CGRA. Figure 12
shows the energy estimation on SIMD spatio-temporal CGRA
(SIMD factor of 2) and FLEX on SIMD CGRA (SIMD factor
of 2) normalized w.r.t. generic spatio-temporal CGRA. FLEX
+ SIMD achieves 54% and 48% energy improvements over
spatio-temporal and SIMD spatio-temporal CGRAs, respec-
tively. We note that kernels requiring complete or partial
sequential execution are not compatible with SIMD, but they
can be executed well on standalone FLEX (e.g., idwt and fir
with accumulation).
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Fig. 12: FLEX on SIMD CGRA
TABLE IV: FLEX compared to SOTA CGRAs

UE-CGRA
[21]

HyCUBE
[22]

SNAFU∗

[3], [23]
TRANSPIRE

[24]
RIPTIDE

[23]
FLEX

(This work)
Execution S ST S ST S ST/S/STV
Tech node TSMC 28 40nm CMOS Intel 22FFL 28 FDSOI Intel 22FFL 22 FDSOI
Setup Post P&R Post-synthesis simulation
Frequency
(MHz) 750 853 50 50 50 100

Benchmark fft ** fft fft **
Power (mW) 14 72 0.54 - 0.24 2.56 2.40
Throughput
(MOPS) 625 6483 71 - 62 800 786

Power Effi.
(MOPS/mW) 45 90 134 166 254 313 327

* Based on the latest values mentioned in Table III of RipTide [23] paper.
** Average across all the benchmarks reported.

F. FLEX vs. SOTA CGRAs

Table IV compares FLEX against SOTA CGRAs w.r.t.
power, performance, and efficiency (reported numbers are
absolute simulation results from respective sources). This is
our best effort to make a fair comparison because of the in-
consistent details among sources. SOTA CGRAs follow a fixed
execution, either spatio-temporal (ST) or spatial (S), while
FLEX’s execution is flexible. Spatial CGRAs achieve lower
power but at the cost of performance. Spatio-temporal CGRAs
deliver higher performance but with high power budget. FLEX
balances power and performance with an improved average
power efficiency of 327 MOPS/mw.

V. RELATED WORK

A. Spatial and Spatio-temporal CGRAs

We categorize SOTA CGRAs into two categories: spatial
and spatio-temporal. In spatial architectures, the configura-
tion remains static for complete loop execution. Spatial ar-
chitectures like Softbrain [10], Tartan [25], Piperench [26],
Warp [27], and FPCA [28] follow a static instruction sched-
ule, whereas SNAFU [3], DySer [29], Plasticine [20], RIP-
TIDE [23], and Q100 [30] trigger instruction firing on data
arrival. Spatial execution in SNAFU [3] is mentioned as
spatial vector-dataflow execution, and kernels are written in
vectorized C code. Spatio-temporal architectures add tem-
poral multiplexing to the spatial scheduling of operations.
ADRES [1], HyCUBE [2], Morphosys [9], MATRIX [31], and
Remarc [32] adopt static scheduling. TRIPS [33], SGMF [34],
Wavescalar [35], and dMT-CGRA [36] allow data-triggered
execution.

FLEX covers the entire spectrum from spatial to spatio-
temporal execution with its flexible temporal multiplexing at
varying frequencies. Most of all, SOTA CGRAs adhere to a
fixed execution model while FLEX provides a flexible model
that can be configured based on application requirements.

B. Exploiting Parallelism in CGRA Execution

Several prior CGRAs exploit parallelism beyond SISD
for performance improvements. The spatio-temporal vector

dataflow in FLEX is orthogonal to these approaches and can
be combined with minimal changes. SIMD RA [37] supports
dynamic reconfiguration of modular regions which operate
in SIMD fashion. Smartcell [38] supports both SIMD- and
MIMD- parallelism. Plasticine [20] supports SISD- and SIMD-
type parallelism and can natively map vector operations. On
the other hand, SGMF [34] focuses on the SIMT model.
TRANSPIRE [24] supports SIMD-type parallelism with cus-
tomized binary8 data type. Bio-signal processing CGRAs like
BioCare [39], HEAL-WEAR [40], and [41] also employs
SIMD execution. Blocks [43] proposes runtime construction of
VLIW-SIMD processors on reconfigurable fabric. [19] enables
reschedulable dataflow and SIMD execution for improved
utilization.

FLEX extended with SIMD achieves 48% energy improve-
ment over a generic SIMD CGRA.

C. Power Management Techniques

System-level and circuit-level approaches are proposed to
reduce the power consumption in CGRAs. REVAMP [44]
proposes a systematic framework for deriving low-power
heterogeneous CGRAs from homogeneous CGRAs. On-
the-fly CGRA [50] proposes approximate computing for
reduced power. UPTPU [46] improves energy efficiency
by power-gating the MAC units based on their idleness.
Samsung’s ULP-SRP [5] adopts fine-grained power gating
and dynamically switches between three performance modes
for low-power design in biomedical devices. IPA [47]
proposes an array of PEs that operate at a near-threshold
voltage and clock-gates idle PEs to reduce dynamic power.
i-DP CGRA [48] clock-gates idle PEs and interleaves the
datapaths to execute two instructions concurrently within
each PE. SysCore [49] leverages DVFS for power benefits,
whereas Ultra-Elastic CGRAs [21] optimize energy with
DVFS for irregular loops.

Traditional power management techniques add significant
overhead on low-power CGRAs. With its lightweight power-
efficient configuration structures, FLEX enables configuring
of the hardware to suit each application so that simple clock
gating can deliver 45% power savings.

VI. CONCLUSION

CGRAs provide an excellent balance between performance,
power efficiency, and adaptability. However, the current CGRA
reconfiguration paradigm fails to reconcile low-power with
high-performance for complex application kernels. We propose
FLEX, a novel CGRA architecture with a flexible execution
paradigm that can easily adapt to the application requirements
delivering an average of 1.6×-1.9× power efficiency over
traditional CGRAs.

ACKNOWLEDGMENT

This research is partially supported by the National Re-
search Foundation, Singapore under its Competitive Research
Programme Award NRF-CRP23-2019-0003.



REFERENCES

[1] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix,” in FPL’03.

[2] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” in DAC’17.

[3] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann, “Snafu:
An ultra-low-power, energy-minimal cgra-generation framework and
architecture,” in ISCA’21, pp. 1027–1040.

[4] A. Carsello et al., “Amber: A 367 gops, 538 gops/w 16nm soc with
a coarse-grained reconfigurable array for flexible acceleration of dense
linear algebra,” in VLSI’22, pp. 70–71.

[5] C. Kim et al., “Ulp-srp: Ultra low power samsung reconfigurable
processor for biomedical applications,” in FPT’12.

[6] K. E. Fleming et al., “Processors, methods, and systems with a config-
urable spatial accelerator,” Feb. 11 2020, uS Patent 10,558,575.

[7] T. Fujii et al., “New generation dynamically reconfigurable processor
technology for accelerating embedded ai applications,” in VLSI’18, pp.
41–42.

[8] M. Emani et al., “Accelerating scientific applications with sambanova
reconfigurable dataflow architecture,” Computing in Science & Engi-
neering’21, vol. 23, no. 2, pp. 114–119.

[9] H. Singh et al, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” in IEEE Trans.
Comput.’00.

[10] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in ISCA’17.

[11] D. Wijerathne, Z. Li, M. Karunaratne, L.-S. Peh, and T. Mitra, “Morpher:
An open-source integrated compilation and simulation framework for
cgra,” WOSET’22.

[12] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for fpgas,” in FPGA’95, pp. 111–117.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable ar-
chitectures using modulo scheduling,” in DATE’03, pp. 296–301.

[14] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E’04, vol. 70.

[15] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
IISWC’14.

[16] L.-N. Pouchet, “Polybench/c.” [Online]. Available: http://web.cse.
ohio-state.edu/∼pouchet.2/software/polybench/

[17] “C Implementation of Discrete Wavelet Transform .” [Online].
Available: https://github.com/rafat/wavelib

[18] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks for
energy measurements on embedded platforms,” 2013.

[19] C. Yin, N. Jing, J. Jiang, Q. Wang, and Z. Mao, “A reschedulable
dataflow-simd execution for increased utilization in cgra cross-domain
acceleration,” TCAD’23.

[20] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for parallel
patterns,” in ISCA’17, pp. 389–402.

[21] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-elastic cgras for
irregular loop specialization,” in HPCA’21, pp. 412–425.

[22] B. Wang, M. Karunarathne, A. Kulkarni, T. Mitra, and L.-S. Peh,
“Hycube: A 0.9v 26.4 mops/mw, 290 pj/op, power efficient accelerator
for iot applications,” in A-SSCC’19, pp. 133–136.

[23] G. Gobieski et al., “Riptide: A programmable, energy-minimal dataflow
compiler and architecture,” in MICRO’22, pp. 546–564.

[24] R. Prasad et al., “Transpire: An energy-efficient transprecision floating-
point programmable architecture,” in DATE’20, pp. 1067–1072.

[25] M. Mishra et al., “Tartan: Evaluating spatial computation for whole
program execution,” in ASPLOS’06, p. 163–174.

[26] S. Goldstein et al., “Piperench: a reconfigurable architecture and com-
piler,” Computer, vol. 33, no. 4, pp. 70–77, 2000.

[27] M. Annaratone et al., “The warp computer: Architecture, implementa-
tion, and performance,” IEEE Trans. Comput.’87, vol. C-36, no. 12, pp.
1523–1538.

[28] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and
dynamically composable architecture of cgra,” in FCCM’14, pp. 9–16.

[29] V. Govindaraju et al., “Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing,” MICRO’12, vol. 32, pp.
38–51, 2012.

[30] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The
architecture and design of a database processing unit,” in ASPLOS’14,
p. 255–268.

[31] E. Mirsky and A. DeHon, “Matrix: a reconfigurable computing architec-
ture with configurable instruction distribution and deployable resources,”
in FCCM’96, 1996, pp. 157–166.

[32] T. Miyamori and K. Olukotun, “Remarc : Reconfigurable multimedia
array coprocessor,” Information and Systems’99, vol. 82, pp. 389–397.

[33] K. Sankaralingam et al., “Exploiting ilp, tlp, and dlp with the polymor-
phous trips architecture,” in ISCA’03, pp. 422–433.

[34] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for gpgpus,” in ISCA’14, pp. 205–216.

[35] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in MICRO’03, pp. 291–302.

[36] D. Voitsechov, O. Port, and Y. Etsion, “Inter-thread communication in
multithreaded, reconfigurable coarse-grain arrays,” in MICRO’18, 2018,
pp. 42–54.

[37] Y. Kim et al., “Exploiting both pipelining and data parallelism with simd
reconfigurable architecture,” in ARC’12, pp. 40–52.

[38] C. Liang and X. Huang, “Smartcell: An energy efficient coarse-grained
reconfigurable architecture for stream-based applications,” EURASIP J.
Embedded Syst.’09, no. 1, p. 518659, Jun.

[39] Z. Ebrahimi and A. Kumar, “Biocare: An energy-efficient cgra for bio-
signal processing at the edge,” in ISCAS’21, pp. 1–5.

[40] L. Duch et al., “Heal-wear: An ultra-low power heterogeneous system
for bio-signal analysis,” TCAS-I’17, vol. 64, no. 9, pp. 2448–2461.

[41] B. de Bruin et al., “Multi-level optimization of an ultra-low power
brainwave system for non-convulsive seizure detection,” TBCAS’21,
vol. 15, no. 5, pp. 1107–1121.

[42] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, “Himap: Fast
and scalable high-quality mapping on cgra via hierarchical abstraction,”
in DATE’21, pp. 1192–1197.

[43] M. Wijtvliet, A. Kumar, and H. Corporaal, “Blocks: Challenging simds
and vliws with a reconfigurable architecture,” TCAD’22, vol. 41, no. 9,
pp. 2915–2928.

[44] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: A sys-
tematic framework for heterogeneous cgra realization,” in ASPLOS’22,
p. 918–932.

[45] Z. Li, D. Wu, D. Wijerathne, and T. Mitra, “Lisa: Graph neural network
based portable mapping on spatial accelerators,” in HPCA’22, pp. 444–
459.

[46] P. Pandey, N. D. Gundi, K. Chakraborty, and S. Roy, “Uptpu: Improving
energy efficiency of a tensor processing unit through underutilization
based power-gating,” in DAC’21, pp. 325–330.

[47] S. Das, K. J. M. Martin, P. Coussy, and D. Rossi, “A heterogeneous
cluster with reconfigurable accelerator for energy efficient near-sensor
data analytics,” in ISCAS’18, pp. 1–5.

[48] L. Duch et al., “i-dps cgra: An interleaved-datapaths reconfigurable
accelerator for embedded bio-signal processing,” ESL’19, vol. 11, no. 2,
pp. 50–53.

[49] K. Patel, S. McGettrick, and C. J. Bleakley, “Syscore: A coarse grained
reconfigurable array architecture for low energy biosignal processing,”
in FCCM’11, pp. 109–112.

[50] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate
on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications,” in DAC’18, pp. 1–6.

[51] Z. Li, D. Wijerathne, and T. Mitra,“Coarse Grained Reconfigurable
Array CGRA,” Book Chapter in Springer Handbook of Computer
Architecture 2022.

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/rafat/wavelib

	Introduction
	Background and Motivation
	Flex
	Execution Model
	FLEX Micro-architecture
	Processing Elements (PEs)
	Compute Unit
	Router/Crossbar
	Configurator
	Top Level
	Clock Gating

	FLEX Compiler
	Design Space Exploration (DSE) with FLEX

	Experimental Evaluation
	Baseline Architectures
	Experimental Setup
	Benchmark Applications
	Experimental Results
	Performance
	Power
	Energy
	Power efficiency
	Area comparison
	Flexibility

	FLEX on SIMD CGRA
	FLEX vs. SOTA CGRAs

	Related work
	Spatial and Spatio-temporal CGRAs
	Exploiting Parallelism in CGRA Execution
	Power Management Techniques

	Conclusion
	References

