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Abstract—The self-attention mechanism is the performance
bottleneck of Transformer-based language models, particularly
for long sequences. Researchers have proposed using sparse
attention to speed up the Transformer. However, sparse attention
introduces significant random access overhead, limiting computa-
tional efficiency. To mitigate this issue, researchers attempt to im-
prove data reuse by utilizing row/column locality. Unfortunately,
we find that sparse attention does not naturally exhibit strong
row/column locality, but instead has excellent diagonal locality.
Thus, it is worthwhile to use diagonal compression (DIA) format.
However, existing sparse matrix computation paradigms struggle
to efficiently support DIA format in attention computation.

To address this problem, we propose ASADI, a novel software-
hardware co-designed sparse attention accelerator. In the soft-
ware side, we propose a new sparse matrix computation
paradigm that directly supports the DIA format in self-attention
computation. In the hardware side, we present a novel sparse
attention accelerator that efficiently implements our computation
paradigm using highly parallel in-situ computing. We thoroughly
evaluate ASADI across various models and datasets. Our experi-
mental results demonstrate an average performance improvement
of 18.6× and energy savings of 2.9× compared to a PIM-based
baseline.

I. INTRODUCTION

Transformer-based neural network models have made sig-
nificant progress in achieving accuracy in Natural Language
Processing (NLP) [3], [7], [21] and Computer Vision (CV) [9],
[39], [40]. Self-attention among input tokens is the cru-
cial distinction of transformer-based models from traditional
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) models. While the quadratic complexity of
self-attention with respect to the number of tokens ensures
the accuracy of inference, it causes a high computational
complexity. Researchers propose sparse-attention [3], [6], [46]
to reduce computing complexity by eliminating the weak
connections between tokens, based on the observation that
most tokens are weakly connected to others. However, the
random distribution of non-zero values introduces additional
memory access overhead, which limits system performance.

Existing solutions primarily use software-hardware co-
design to reduce random memory access. Researchers have
proposed architecture designs better suited to sparse-attention
on variety of hardware platforms, such as GPU [3], [7],
[35], FPGA [8], [17], [45], Application Specific Integrated
Circuit (ASIC) [10], [22], [26], and processing-in-memory
(PIM)-based [18], [43], [47] sparse attention accelerators. In
software, current accelerators follow the same basic principles:
processing as many non-zero elements in the same row/column

as possible to improve data reuse and reduce random access.
However, our experimental results show that sparse attention
is poorly localized to rows or columns. Instead, the non-zero
values of sparse attention distribute along center diagonals.
Current accelerators cannot efficiently exploit diagonal locality
due to the lack of a DIA-based computation paradigm.

In hardware, the computation of Transformer produces a
significant number of intermediate matrices. Even the most
advanced PIM architectures must transfer these intermediate
matrices from on-chip memory to the computation unit. On-
chip transmission increases dramatically with increasing se-
quence length, which leads to a large amount of cross-bank
and cross-rank communications. These communications share
the same memory controller and set of control and address
(C/A) buses, making the memory controller a bottleneck and
significantly increasing C/A bus conflicts. Processing-using-
memory (PUM) architectures [4], [12], [19], [31] perform in-
situ computation, processing tasks directly in the memory cells
where the data is stored and thereby avoiding extensive on-chip
data transfers. Emerging in-situ computing hardware Resistive
Random Access Memory (ReRAM) [1] attracts lots of attention
for its non-volatile, row-wise parallelism, high density and low
energy consumption. We choose ReRAM as the default in-
situ computing platform. Nevertheless, the in-situ computing
approach presented in this paper can be easily applied to other
in-situ computing hardwares.

Given the existing landscape, we introduce ASADI, a novel
sparse attention accelerator that utilizes a co-design approach
with DIA-based in-situ computing. To support various sparse
attention models, we design a novel compression method
that can efficiently compress various sparse attention to DIA
format. Our proposed software component includes DIA-
based computation paradigms for sparse matrix multiplication,
utilizing inherent diagonal locality. On the hardware side,
we present an innovative sparse attention accelerator that
supports our DIA-based computation paradigm and utilizes
highly parallel in-situ computing. Our contributions can be
summarized as follows:

• We observe the prevalence of diagonal locality in various
sparse attention mechanisms and devise a new compres-
sion method to further enhance the diagonal locality.

• To exploit this diagonal locality, we propose DIA-based
sparse matrix computation paradigm and conduct quanti-
tative comparisons with the CSR computing paradigm.

• To support our new DIA-based paradigm, we present a



Fig. 1. End-to-end Transformer

comprehensive architecture and dataflow utilizing in-situ
computing, which we refer to as ASADI.

• We conduct experiments on sufficient models and
datasets, and the results indicate that ASADI exhibits
superior performance and energy efficiency.

II. BACKGROUND AND MOTIVATION

A. Transformer and Sparse Attention

Figure 1 illustrates the operational process of an end-to-end
Transformer, which consists of multiple layers of Encoders
and Decoders. Each Encoder and Decoder is comprised of
multi-head attention and feed-forward layers. The multi-head
attention follows a three-phase implementation. First, the input
sequence with n tokens is embedded into a matrix X ∈Rn×d (n
refers to sequence length, and d refers to model dimension).
Next, matrix X undergoes the general matrix multiplication
(GEMM) operation (O(nd2)) with three weight matrices, WQ,
WK , and WV , to obtain the matrices Q (query), K (key), and V
(value). In the second phase, matrix Q undergoes the GEMM
operation (O(dn2)) with matrix KT to yield the attention score
matrix S̃ ∈Rn×n. Subsequently, a softmax function is applied
to the attention score matrix S̃ to obtain the matrix S. In the
final phase, matrix S undergoes a GEMM operation (O(dn2))
with matrix V to obtain the output matrix.

Both the second and third phases have quadratic complexity
O(dn2) that grows with the sequence length, making it chal-
lenging for multi-head attention scaling to long sequences.
The quadratic complexity comes from the full connection
between input tokens. Researchers [3], [22], [26] identity many
connections in self-attention as weak connections, which can
be eliminated to increase the execution efficiency with a slight
loss of accuracy, namely sparse attention. According to the
sparsity pattern Yes/No related to the input sequence, re-
searchers [22] divide sparse attention into two main categories,
i.e., static sparsity (No) and dynamic sparsity (Yes).

Static sparsity involves pre-determining the sparse mask
matrix before receiving the input sequence, and several
static sparsity mechanisms use the same block-based pruning
method [3], [5], [44]. Figure 2 (a) demonstrates sparse mask
matrix of sliding window sparse-attention in Longformer [3].
In contrast, Dynamic sparsity employs a quantization phase
to determine the sparse mask matrix [22], [26], and Figure 2
(b) displays the sparse mask matrix used in Sanger [22]. Both

Fig. 2. (a) Sparse mask matrix (ω = 3 and n = 7) of Longformer [3], (b)
Sparse mask matrix of Sanger [22], (c) Examples of SDDMM and SpMM.

Fig. 3. (a) An example of sparse mask matrix, (b) CSR format, (c) DIA
format

static and dynamic sparsity mechanisms can convert the dense-
dense matrix multiplication (DDMM) operation S = Q · KT

to a sampled dense-dense matrix multiplication (SDDMM)
operation, as the sparsity of the sparse mask matrix is similar
to the score matrix S in Figure 2 (c). The DDMM operation
Z = S ·V can then be converted to a sparse-dense matrix
multiplication (SpMM) operation. Figure 2 (c) illustrates the
SpMM operation, which is a GEMM operation between a
sparse matrix S and a dense matrix V .

B. Sparse Compression Methods

The most common compression methods currently used are
compress sparse row (CSR), compress sparse column (CSC),
and coordinate format (COO). Figure 3 (b) illustrates the CSR
format of the sparse mask matrix as shown in Figure 3 (a).
The column index list stores the column coordinates of each
non-zero value, the value list stores all non-zero values using
row-wise storage, and the row pointer list stores the index of
the value list of the first non-zero element in each row. Figure 3
(c) presents the DIA format of Figure 3 (a), where the value
lists store the elements in the diagonals and the diagonal index
(DI) stores the diagonal index of each diagonal, for example,
the center-most diagonal index is ‘0’.

C. In-situ Computing

Several hardware architectures are capable of performing
in-situ computing, including ReRAM, Phase Change Memory
(PCM) [38], Spin-Transfer Torque RAM (STT-RAM) [34], and
Modified DRAM [2]. This paper focuses solely on ReRAM.
ReRAM has the ability to perform two types of in-situ
calculations: analog in-situ computing [4] and digital in-situ
computing [12]. Figure 4 (a) illustrates the storage of each bit
of the weight matrix in a separate ReRAM array. By activating
the driver (DRV) using the corresponding bits of the input
vector, the vector-matrix multiplication (VMM) operation can
be directly obtained in the sample and hold (SH) unit and
the analog-digital converter (ADC). Finally, the result of the
multi-bit VMM operation is obtained by combining all the



Fig. 4. (a) Analog in-situ computing of ReRAM arrays, (b) Digital in-situ
computing of ReRAM arrays
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Fig. 5. The distribution of non-zero elements in Sanger [22] with various ω

(four bars), and the ratio of on-chip PE runtime to overall PIM chip runtime
(broken lines).

bits using a shift adder. Figure 4 (b) shows that vec#A and
vec#B are stored in the same ReRAM array, and the bit-wise
activation of the bit lines can directly obtain the results of A
+ B in different areas of the same array.

D. Motivation

Observation#1: Diagonal locality is prevalent in both static
and dynamic sparse attention. As shown in Figure 2 (a),
static sparsity naturally follows a diagonal distribution. To
demonstrate the diagonal locality in dynamic sparsity, we
reproduced the configurations of Sanger [22] as reported in
their paper. First, we count the total number of non-zero
elements in the sparse attention score matrix S, referred to
as NNZ. Then, we count the number of non-zero elements
in the central ω diagonals of the S matrix (ω = n

16 , n
8 , n

4 ,
and n

2 ), referred to as NNZω (n refers to the sequence length,
n ≤ 512). Finally, we use Figure 5 to present the results of
NNZω

NNZ . When ω = n
8 , over 50% of the non-zero values are

distributed in the central ω diagonals area. The data density
of the ω diagonals area is 7× greater than that of other areas.
The reason for diagonal locality is that a word or pixel is
more closely associated with its neighboring words or pixels
at the application level. SparseBERT [33] reveals that various
of sparse attention have good diagonal locality.

Observation#2: Current PIM-based sparse attention accel-
erators have high on-chip communication overhead. To vali-
date this, we run the sparse attention of Sanger on the HBM-
based PIM architecture provided by Ramulator-PIM [14]. In
Figure 5, the broken lines indicate the ratio of on-chip PE
runtime to the overall PIM chip runtime. Our experimental
results demonstrate that on-chip PEs remain idle for over 40%
of PIM chip runtime. The reason for this is that each on-
chip PE of the PIM architecture can only efficiently access
its local memory, while cross-bank and cross-rank memory
access rely on the memory controller and system bus, which
is significantly slower than local access. As a result, cross-

Fig. 6. (a) Sparse S matrix (ω = 5 and n = 6) without bubbles, (b) Bubble-
free DIA compression, (c) Decompressed DIA format

bank and cross-rank transfers increase system-bus contention
and cause PE idleness.

Our goal: Observation#1 motivates us to design a new
matrix multiplication computation paradigm to efficiently sup-
port the DIA format, thus serving as our software design
motivation. Additionally, Observation#2 motivates us to de-
sign ASADI, aiming to support the diagonal locality while
minimizing on-chip transfers using in-situ computing.

III. COMPRESSION FORMAT

We refer to diagonals with all non-zero elements as bubble-
free diagonals, whereas diagonals contain zero values are
referred to as bubble-containing diagonals. In this regard,
we introduce two DIA-based compression method for sparse
matrices consisting of bubble-free and bubble-containing di-
agonals, respectively.

A. Classic Bubble-free DIA

Figure 6 (a) illustrates the sparse mask matrix of Long-
former, which exclusively consists of bubble-free diagonals.
Figure 6 (b) depicts the classic DIA format of the sparse mask
matrix, where we store each diagonal along one column and
values with the same column coordinates in the same row.
Figure 6 (c) showcases the decompressed DIA format of the
sparse mask matrix, where we store the values with the same
row coordinates in the same row. Compared with Figure 6
(a), Figure 6 (c) has fewer bubbles because the decompressed
format in Figure 6 (c) lost some information, which will not
affect the correctness of ASADI performing DIA-based SpMM
and SDDMM (more details in Section IV).

Advantages. The row-based storage format can reach the
row locality ( ω

2 + 1,ω) with diagonal window size ω . The
DIA-based format can achieve the diagonal locality with (n−
ω

2 , n). More non-zero in the same memory column means
better locality. If we assume that ω = n

8 , DIA format can get
more than 7.5× locality than row-based storage with the DIA
lower bound ( 15n

16 ) divided by row-wise upper bound ( n
8 ).

B. Bubble-containing DIA

Figure 7 (a) displays the sparse mask matrix of Sanger,
which contains many bubble-containing diagonals. As shown
in these grey cells, some non-zero values are distributed away
from the central ω = 3 diagonals with poor diagonal locality.
To enhance the diagonal locality of dynamic sparse attention,
we propose bubble-containing DIA format as follows.



Fig. 7. (a) Sparse S matrix with bubbles, (b) Bubble-free DIA compression, (c)
Bubble-containing DIA compression, (d) Decompress non-central diagonals,
(e) Decompress central diagonals

Fig. 8. Details to calculate NZω and NNZo

We first choose ω = 3 central diagonals and use the bubble-
free process compressing them to the DIA format shown in
Figure 7 (b). Next, we move the elements (grey cells in
Figure 7 (a)) not belonging to the ω diagonals to the nearest
diagonal, maintaining their original column coordinates. Since
this operation changes the row coordinates of the grey cells,
we use an additional row index list (Rd , Ro) to record the
original row coordinates of the grey cells. Rd represents the
row coordinates of grey cells in the DIA format, while Ro
represents the row coordinates of grey cells in the original
sparse mask matrix. After the two phases in Figure 7 (b) and
(c), diverse sparse matrices with good diagonal locality can
be compressed into their DIA format. Figure 7 (c) shows the
DIA format of Figure 7 (a). If there are not enough bubbles
to store the grey cells, we will store them in a new diagonal.

The decompression of the DIA format in Figure 7 (c) is
presented in Figure 7 (d) and (e). Figure 7 (d) will decompress
the grey cells by first locating their position in the Rd list and
then moving all grey cells to new columns while maintaining
their row index from the Ro list. Figure 7 (e) decompresses
the ω diagonals in accordance with Figure 6 (c).

C. Selection of ω

We refer to the central ω diagonal region as ω region
while referring the rest as other region. Figure 8 presents the
definition of NAE (number of all elements), NZ (number of
zeros), and NNZ (number of non-zeros). Our compression
method will move non-zero values in other region to the
bubbles of ω region. Therefore, it is necessary to ensure that
NZω (NZ of ω region) is slightly bigger than NNZo (NNZ
of other region). For quantitative analysis, we assume that the
sparsity of the n×n attention matrix is 10% (common scenario
in Sanger [22]). From Figure 5, we get NNZω

NNZ = 40%,50%,70%

Fig. 9. (a) Matrix multiplication between sparse S matrix and dense V matrix,
(b) In-situ computing with CSR format of matrix S, (c) In-situ computing with
DIA format of matrix S

when ω = n
16 ,

n
8 ,

n
4 , respectively. Figure 8 presents how we

calculate NZω and NNZo when ω = n
16 ,

n
8 ,

n
4 . If NZω is much

bigger than NNZo, it means we have too many bubbles in the
ω region. If NNZo is much bigger than NZω , it means we
do not have enough bubbles for all grey cells. Therefore, we
choose n

8 as the default configuration of ω .

IV. DIA-BASED IN-SITU COMPUTING

Figure 1 depicts the attention mechanism, comprising of
four operations: linear layer, Q × KT, softmax, and S ×V .
In this section, we will explain how we implement in-situ
computing to process these four operations. For exposition
purposes, we assume a sequence length of n = 6 and a model
dimension of d = 2 for the Q, K, and V matrices. Additionally,
we assume a diagonal window size of ω = 2 for both the
sparse S matrix and the sparse mask matrix M. We utilize the
diagonal index (DI) to mark the diagonals of the DIA format,
where DI0 represents the center-most diagonal.

A. In-situ S×V

High-level motivations. Figure 9 (a) illustrates the sparse
S matrix and dense V matrix. For brevity, we select two
diagonals DI−1 and DI0 from Figure 7 (c). Figure 9 (b)
presents the in-situ computation paradigm of the CSR format,
where we assume that the CSR format of matrix S and the
dense matrix V are stored in the same ReRAM array. The
fundamental concept of matrix multiplication involves coordi-
nates alignment, aligning the column coordinates of the left
matrix with the row coordinates of the right matrix. However,
the CSR storage format breaks the column coordinates of
the left S matrix, preventing its direct use for in-situ matrix
multiplication. Consequently, a row-wise remapping phase is
necessary to align the coordinates of the left and right matrices.

In the 1 iteration (red arrow), the first row of the CSR
format will be remapped for coordinates alignment. Subse-
quently, the column marked by the red arrow will be in-
situ computed with matrix V to generate the first row of
the output matrix (two valid computing with non-zeros while
four invalid computing with zeros). In the 2 iteration (green
arrow), the second row of the CSR format will be remapped
and computed with matrix V (three valid and three invalid).
After five iterations, output matrix Z is generated. Figure 9 (c)
presents the mapping of the DIA storage format of matrix S
and the dense matrix V . As the DIA format does not break
the column coordinates of the left matrix, it enables direct use
for matrix multiplication without remapping. In our example,



Fig. 10. (a) Mapping matrices S and V to two ReRAM arrays, (b) Intermediate
results of the first iteration of vector-vector multiplication, (c) Intermediate re-
sults of the second iteration of vector-vector multiplication, (d) Decompressed
intermediate results, (e) Output Z matrix

two DIA iterations (five valid computing and one invalid
computing) are sufficient to complete the calculation.

Quantitative analysis. In the above example, each diagonal
has an average of five elements, while each row has an
average of two elements. This means that the number of DIA’s
valid computing is 2.5× greater than the CSR format. Thus,
the number of CSR iterations is exactly 2.5× that of DIA
iterations. given that the diagonal locality of Longformer is
7.5× greater than the row locality (as observed in Section III),
the DIA-based computation paradigm can save 7.5× iterations
than the CSR computation paradigm, due to the poor row
locality and the presence of numerous bubbles in the ReRAM
arrays at each CSR iteration.

Algorithm 1 In-situ S×V

Require: DIA format of S ∈ Rn×ω , Matrix V ∈ Rn×d .
Ensure: Output matrix Z ∈ Rn×d .

1: Mapping matrix V to d× ReRAM arrays from Arr0 to
Arrd−1 ∈ Rn. Mapping DIA format of S from Arr0 to
Arrd−1, each array has ω

d vectors ∈ Rn (Figure 10 (a)).
2: while i < d (i = 0) do
3: For all arrays, performing vec-vec multi. I = S×V .
4: Transfer S0 to Arri, S1 to Arri+1 and so on, i++.
5: end while (Figure 10 (b) and (c))
6: For all arrays, decompress matrices I (Fig. 10 (d)).
7: For all arrays, vec-vec accum. Z = ∑ I (Figure 10 (e)).

Details of computation paradigm. In Figure 10 (a), each
dimension of the V matrix is stored in a separate ReRAM
array, totaling d = 2 arrays. The DIA format of the S matrix
is evenly distributed on d = 2 ReRAM arrays, with each array
storing ω

d diagonals (line 1 of Alg. 1). Specifically, Arr0 stores
DI−1 and Vd0, while Arr1 stores DI0 and Vd1. In Figure 10 (b),
the in-situ vector-vector multiplication is performed on each
array (line 3 of Alg. 1). In Figure 10 (c), we transfer the DIA
vectors to different arrays, i.e., DI−1 → Arr1 and DI0 → Arr0
(line 4 of Alg. 1). The in-situ vector-vector multiplication is
again performed on each array, and the results are stored in
the fourth columns of Figure 10 (c). The decompression of the
intermediate result matrices in each array follows the process
shown in Figure 7 (d) and (e), while the decompression results
are illustrated in Figure 10 (d) (line 6 of Alg. 1). Figure 10
(e) performs the in-situ vector-vector addition in each array
to obtain all dimensions of the output Z matrix (line 7 of

Fig. 11. (a) SDDMM between dense Q, K matrices, (b) In-situ computing
with CSR format of matrix M, (c) In-situ computing with DIA format of
matrix M

Fig. 12. (a) Matrices Q and K in two ReRAM arrays, (b) Vector-vector
multiplication of DI0, (c) Vector-vector multiplication of DI−1

Alg. 1). To conserve memory space, we opt to decompress
each diagonal sequentially. Specifically, we decompress two
diagonals, sum them, and then proceed to decompress and
add the remaining diagonals one by one.

B. In-situ Q×KT

High-level motivations. Figure 11 (a) illustrates the SD-
DMM between dense matrices Q and K. Figure 11 (b) presents
the SDDMM computation paradigm with the CSR format of
matrix M. The 1 iteration involves the first row of matrix
M, controlling the 0-th row of matrix Q to calculate with
the 0-th and 3-rd rows of matrix K (red arrows in Figure 11
(b)). Similarly, the 2 iteration depicts the calculation between
matrices Q and K (green arrows). Since the 1 and 2 iterations
share the 0-th row of matrix K, they must be executed serially.
The CSR format takes five iteration with only two valid
computing in each iteration.

Figure 11 (c) demonstrates the SDDMM computation
paradigm using the DIA format of matrix M. In the 1 itera-
tion, DI0 controls the vector multiplication between matrices
Q and K (red arrows in Figure 11 (c)). In the 2 iteration,
DI−1 controls the calculation marked by the green arrows. The
SDDMM results can be obtained with only two DIA iterations
with five valid computing each iteration.

Quantitative analysis. In the above example, the diagonal
locality is 2.5× greater than the row locality. Consequently,
each round of DIA-wise iteration has 2.5× valid computing
than the row-wise iteration, leading to less number of itera-
tions. Since all iterations are executed sequentially, the DIA-
wise computation paradigm saves 2.5× latency compared to
the CSR-wise computation paradigm. For real-world sparse at-
tention, like Longformer, the DIA-wise computation paradigm
can achieve a time saving of 7.5×.

Details of computation paradigm. Figure 12 (a) displays
the mapping of matrices Q and K. Specifically, we store two
dimensions of matrices Q and K on two ReRAM arrays. For
instance, Arr0 stores Q0 and K0, Arr1 stores Q1 and K1 (line



Fig. 13. (a) Two slices of Q0×K0 and Q1×K1, (b) We refer the slices of DI0
as SlicesS0 and DI−1 to SlicesS1, (c) All SlicesS0 and SlicesS1 are transferred
to the same ReRAM array, (d) Results of DIA-based S matrix

1 of Alg. 2). We will use Q0 and K0 in Arr0 as an example,
while the second dimension processes the same.

Algorithm 2 In-situ Q×KT

Require: DIA format of M ∈ Rn×ω , Matrix Q, K ∈ Rn×d .
Ensure: Output matrix S ∈ Rn×ω .

1: Mapping matrix Q and K to d× ReRAM arrays from Arr0
(stored Q0 and K0) to Arrd−1 (stored Qd−1 and Kd−1)
∈ Rn. Matrix M is stored on-chip (Figure 12 (a)).

2: while i < ω (i = 0) do
3: Transfer Mi to the Row Selector of all arrays.
4: For all arrays, shift up/down Q using Mi’s DIA index.
5: For all arrays, copy QRo to QRd using Mi’s (Rd , Ro).
6: For all arrays, vec-vec multi. SlicesSi = Q×K.
7: Restore QRd for next iteration, i++.
8: end while (Figure 12 (b), (c) and Figure 13 (a))
9: Transfer all SlicesSi to Arri. (Figure 13 (b) and (c)).

10: For Arri, vec-vec accum. Si = ∑SlicesSi (Figure 13 (d)).

As Figure 12 (b) shows, the DI0 vector of matrix M (M0),
along with the (Rd , Ro) list of this vector, will be transmitted to
the row selector (line 3 of Alg. 2). Then, the memory controller
shifts the Q0 up/down according to DI (diagonal index) of
M0 (line 4 of Alg. 2). If DI = DI0, nothing is done; if DI
= DI j, Q0 is shifted down j×; if DI = DI− j, Q0 is shifted
up j×. Next, the memory controller executes a memory copy
operation based on the (Rd , Ro) list of grey cells in M0 (line
5 of Alg. 2). Specifically, the memory controller copies Q00
(QRo) to Q30 (QRd). Afterward, each array performs the in-situ
vector-vector multiplication to derive one slice SlicesS0 of the
S vector (line 6 of Alg. 2).

Figure 12 (c) presents the calculation of DI−1 of the mask
matrix M (M1). The memory controller will restore Q30 of Q0
(line 7 of Alg. 2), which are modified in the previous iteration.
First, M1 with DI−1 is sent to the row selector (line 3). DI
= DI−1, so Q0 will shift up 1× (line 4). Then, the memory
controller will perform a memory copy according to the (Rd ,
Ro) list of grey cells in M−1 (line 5). Specifically, Q10 will
be copied to Q50. Finally, ReRAM arrays will perform vector-
vector multiplication SlicesS1 = Q×K to get one slice of the
S vector (line 6).

Figure 13 (a) depicts the results of the two dimensions of
SlicesSi = Q × K, which are stored in Arr0 and Arr1, each
holding SlicesS0 and SlicesS1 of the DIA-based S matrix. We
then transmit all SlicesS0 to Arr0 and all SlicesS1 to Arr1, as

Fig. 14. (a) Using analog in-situ computing for the linear layer, (b) Different
dimensions of matrices Q, K, and V are stored in different ReRAM arrays

shown in Figure 13 (b) and (c) (line 9 of Alg. 2). Finally, we
perform in-situ vector-vector addition Si = SlicesSi + SlicesSi
on all ReRAM arrays (line 10 of Alg. 2), obtaining the DIA
format of matrix S illustrated in Figure 13 (d).

C. In-situ Linear Layer

Previous studies [4], [12] demonstrate that analog in-situ
computing exhibits greater parallelism compared to digital in-
situ computing. However, analog in-situ computing inherently
possesses coarse-grained matrix-level parallelism, making it
particularly suitable for bubble-free calculations. The DDMM
calculations performed in the linear layer represent a typical
example of bubble-free computations that are well-suited for
analog in-situ computing. Due to the relatively lower compu-
tational overhead of the linear layer compared to the attention
layer, the impact of analog-to-digital conversion overhead on
ASADI is minimized.

Figure 14 (a) depicts the computation of the first bit of linear
layers using weight matrices WQ, WK , and WV , pre-stored
in ReRAM arrays. Assuming 64 dimensions of input embed-
dings, the input register receives the first bit of each dimension
and activates the corresponding DRV. Then, the ReRAM array
performs a VMM operation between Embedding#1 and the
weight matrices. The sample and hold (SH) unit holds the
output vector, which is then converted into numbers by ADC.
The Shift and Add (S&A) unit combines all bits to obtain
the 32-bit results, with each column holding one of the 64
dimensions, as illustrated in Figure 4 (a). Figure 14 (b) shows
that the obtained results are written to ReRAM arrays. Each
ReRAM array stores the same dimension of matrices Q, K, and
V , with 64 dimensions being stored in 64 different arrays. This
storage method is identical to that in Figure 12 (c). Therefore,
the in-situ Q×KT operation in Figure 14 (b) can be directly
performed without data remapping.

D. In-situ Softmax

Equation (1) involves four fundamental operations in the
softmax function: maximum, subtraction, exponential, and
summation. Prior research has addressed the use of ReRAM
arrays for subtraction and summation operations [12]. There-
fore, this paper focuses on performing high-parallel in-situ
maximum and ex operations using ReRAM arrays.

so f tmax(si) =
esi−smax

∑
n
c=1 esc−smax

(1)



Fig. 15. (a) Int4 unsigned vector for maximal operation, (b) Pruning ‘0’ rows
of bit3, (c) Pruning of the left bits

In-situ maximum operation. ReSQM [20] proposes the
original idea of this method, and we provide a visual descrip-
tion of their approach. To process the int4 unsigned vector as
shown in Figure 15 (a), the word-lines (WL) and bit-lines (BL)
selectors first activate all the WL and BL of the highest bit
(bit3). The control signals of the WL selector are referred to
as the input voltage of bit3 (IVbit3). The WL selectors charge
all DRV of the WL, setting all WLs to high voltage. The high
voltage of the WLs leaks from the ReRAM cells that store ‘1’
(low resistance) to the BL. The memory controller detects the
output voltage of bit3 (OVbit3), which records all 0’s of bit3
because the voltage leaks from all ‘1’s of bit3 as shown in
the red cells of Figure 15 (b). The OVbit3 values are not the
maximum and are filtered out.

To generate the input signals for the second highest bit
(bit2), we perform a subtraction IVbit2 = IVbit3 − OVbit3. If
the result of the subtraction is zero, the input signal remains
unchanged. We perform these operations sequentially from the
highest bit to the lowest bit (bit0), and then we perform a
subtraction Max index = IVbit0 − OVbit0 to obtain the row
index of the maximum. We can read out the Max index row
to obtain the maximum value of the vector. For a vector of
n× 32-bit floating-point numbers, it requires only 32 cycles
to find the maximum.

In-situ ex. Figure 16 (a) displays two vectors, i.e., 20 and x,
both stored in the same ReRAM array. To begin, we load the
highest bit of vector x to the word-line selector and activate
the word-line DRVs with ‘1’. As shown by the red word lines
in Figure 16 (b), we left-shift all activated rows of vector
20 2× (4× for bit2, 8× for bit3, and so on). After loading
all bits of vector x to the word-line selector and performing
the above operations, we can obtain 2x in the same ReRAM
array, as illustrated in Figure 16 (c). For a vector x of n×
32-bit fixed-point numbers, we can calculate 2x in just 32
cycles. Since ex = 2x log2 e, we can perform in-situ vector-vector
multiplication y = x log2 e to get vector y, followed by 2y to
obtain ex.

V. ASADI

A. ASADI Architecture

Figure 17 (a) presents the architecture of ASADI, com-
prising of multiple Decoder processing elements (De-PE) and
Encoder processing elements (En-PE). The En-PE and De-PE
have the same components, allowing a De-PE to operate as

Fig. 16. (a) Vector 20 and vector x, (b) Shift operation of bit1, (c) Shift
operation of bit0

Fig. 17. (a) Overall ASADI architecture, (b) Details of one En-PE, (c) Details
of the analog module, (d) Details of the digital module

an En-PE when it receives the weight matrices of an Encoder.
ASADI possesses a single input and output (I/O) interface to
receive input sequences. The number of En-PE and De-PE is
equivalent to the number of Encoders and Decoders in the
Transformer models. This structure is well-suited for scaling
up to larger models requiring more Encoders and Decoders, as
we can configure multiple ASADI chips, with a small number
of off-chip transfers between them.

Figure 17 (b) illustrates the En-PE’s details, which are
composed of several Tiles equal to the number of attention
heads. Each Tile consists of two analog modules, one digital
module, and one microcontroller. The first analog module per-
forms the linear layers before multi-head attention to generate
matrices Q, K, and V . The digital module utilizes matrices
Q, K, and V to execute the multi-head attention operation
and generate matrix Z. The second analog module conducts
the feed-forward layer after the multi-head attention. The
microcontroller performs three functions: controlling the data
transfers between the analog and digital modules, managing
the compression and decompression of the sparse mask matrix,
as depicted in § III, and sending four types of control signals
to the analog and digital modules, i.e., S×V signals, Q×KT

signals, linear layer signals, and softmax signals. The ReRAM
array performs the corresponding in-situ operations based on
the type of control signals.

Figure 17 (c) and (d) present the details of the analog and
digital modules, respectively. The analog module consists of
read-only ReRAM arrays that store the weight matrices of
the linear layers. In contrast, the digital module comprises
write-enable ReRAM arrays that store the matrices Q, K, V ,
and S generated during runtime. The analog module’s input
register (IR) caches the input embeddings from the previous
layer, while the output register (OR) caches the output of the
vector-matrix multiplication (VMM) operations. The digital
module’s IR caches the control signals of the bit-line and



word-line selectors, while the OR caches the output voltage
when performing in-situ computing (similar to the row buffer
in DRAM). The S&A unit and ADC in Figure 17 (c) and (d)
function similarly to Figure 4 (a).

B. ASADI Dataflow

Cross-Encoder Dataflow: The input sequences are pro-
cessed by ASADI in batches, which allows sequences of any
length to be included in the same batch if there is enough
memory. We use only one En/De-PE for one Encoder/Decoder
layer. To introduce a dataflow between Encoders/En-PEs, two
batches and two Encoders/En-PEs are used as an example. The
first Encoder/En-PE processes the first batch and generates the
output. While the first Encoder/En-PE processes the second
batch, the output of the first batch is sent to the second
Encoder/En-PE.

Intra-Encoder Dataflow: The dataflow within one Encoder
consists of three phases, as illustrated in Figure 17 (b). In phase
1 , the embeddings within the same batch are sequentially
transferred to the analog module for VMM operation, which
generates the matrices Q, K, and V . Once created, the Q, K,
and V matrices of one embedding are written to the digital
module. Therefore, once the analog module has processed the
embeddings, the generated matrices are stored in the digital
module. In phase 2 , the digital module performs the in-situ
Q×KT, S×V , and softmax operations to generate the output
matrix Z. All the intermediate matrices and the output matrix
Z are stored in the same digital module due to the in-situ
computing nature. In phase 3 , the matrix Z is sequentially
read and sent to the second analog module to perform the
feed-forward layer. The output of the feed-forward layer is
then sent to the next Encoder.

C. ASADI Complexity

Time complexity: We analyze the time complexity of one
En-PE of ASADI for processing a batch of n embeddings, each
with dimension d. In the 1 phase of Figure 17 (b), the analog
module generates matrices Q, K, and V for one embedding in
one cycle. The latency of writing these matrices to the digital
module is also one cycle, allowing the digital module to write
matrices of embeddingi−1 while the analog module processes
embeddingi. As a result, the analog module will take O(n)
cycles to process all embeddings and write the output to the
digital module. In the 2 phase, the digital module processes
the multi-head attention in constant cycle c with high parallel
in-situ computing. Each element of matrices Q, K, V , and
S are stored and processed in parallel by one ReRAM row.
Finally, the 3 phase takes n cycles, similar to the 1 phase.
These phases operate sequentially due to data dependencies,
and there is no possibility of forming a pipeline. Thus, the
overall time complexity of one En-PE is O(n)+ c+O(n).

Memory complexity: Suppose the DIA format of S matrix
has a diagonal window size ω . The analog module requires
d × d ReRAM capacity to store the weight matrix WQ. The
metrices WQ, WK , and WV require d×d×3 ReRAM capacity,
which is O(d2) memory complexity. The digital module needs

TABLE I
ASADI CONFIGURATIONS

Component Area (mm2) Power (mW) Params. Spec.
Analog module properties

ReRAM
Arrays 0.0013 2.45

Bit per Cell 1
Size 64×64
Total 96

IR 0.0002 0.057 Size 64B
OR 0.0002 0.057 Size 64B

ADC 0.0047 8 resolution 6-bit
Total 16

DRV 0.0005 6 resolution 1-bit
Total 64×96

S&A 0.001 0.8 Total 16
AM total 0.0079 18.43 Size 49KB

Digital module properties

ReRAM
Arrays 1.76 3143.6

Bit per Cell 1
Size 1024×1024
Total 512

IR 0.0608 20.89 Size 64KB
OR 0.0322 11.47 Size 32KB

DRV 0.0423 506.4 resolution 1-bit
Total 1024×512

S&A 0.032 25.62 Total 512
DM total 1.927 3708 Size 67.2MB

En-PE properties

AM 0.19 442.32 Total 24
Size 1176KB

DM 23.12 44.5K Total 12
Size 806.6MB

Controller 0.0048 7.8 Total 12
En-PE total 23.31 44.9K Size 807.8MB

ASADI properties

En/De-PE 279.8 538.9K Total 12
Size 9.7GB

memory capacity of O(nd) to store matrices Q, K, and V .
The digital module requires O(nω) memory capacity to store
matrix S and softmax matrix S̃, and O(nk) memory capacity
to store intermediate results during in-situ computing. Here,
k is a constant number. The total memory capacity required
for storing all original and intermediate matrices is O(d2)+
O(nd)+O(nω)+O(nk). Since both d and k are constants, and
ω = n

8 , the memory complexity of ASADI is O(n)+O(nω)+
O(n). When n exceeds the memory capacity of ASADI, we set
ω to a constant. In this case, the memory complexity becomes
O(n). To support longer sequences, we use this method with
some loss of accuracy, and in this work, n is set to a maximum
of 8192.

VI. METHODOLOGY

Benchmarks. We evaluate the performance of ASADI using
BERT-Base (BERT), BART, GPT-2-Small (GPT2) models for
NLP (natural-language processing) tasks, and ViL-Medium-
Wide (ViL) model for CV (computer vision) tasks. To achieve
dynamic sparsity, we adopt the quantize-and-pruning method
of Sanger [22] for all models. For NLP models, we select
nine datasets from the General Language Understanding
Evaluation (GLUE) [36], including cola, mnli, mrpc, qnli,



qqp, rte, sst-2, stsb, and wnli. The maximal sequence length
(MSL) of all GLUE datasets is less than 384. Additionally, we
evaluate the models on MSL 512 Stanford Question Answering
Dataset (SQuAD v1.1) [27], MSL 1K WikiText-2 [24], and
MSL 2K IMDB [23] datasets. For ViL model, we use MSL
1K ImageNet-1K [28] dataset. To measure the efficiency of
processing long sequences, we synthesize MSL 4K Syn-4K
and MSL 8K Syn-8K by repeating the same sentence of IMDB
multiple times to generate longer sentences. Note that Syn-4K
and Syn-8K are not used for accuracy evaluation, but only
for latency and energy consumption. The data precision used
in this paper is Float32, and we limit the maximum length of
sequences to 8192. However, ASADI can theoretically process
sequences of any length if the memory capacity is sufficient.

Baseline PIM platform. Previous research has demon-
strated the significant performance and energy efficiency ad-
vantages of PIM-based Transformer accelerators over tradi-
tional von Neumann architectures, such as CPU, GPU, FPGA,
and ASIC-based architectures, as revealed by numerous stud-
ies [18], [41], [43], [47]. TransPIM [47], ReTransformer [41],
CPSAA [18], and SPRINT [43] have already explained the
reasons why PIM architectures outperform traditional ar-
chitectures. Therefore, to emphasize the benefits of in-situ
computing, we establish a PIM-based baseline and do not
compare ASADI with non-PIM traditional architectures. We
also note that the differences between PIM and full-flow
in-situ computing architectures has not been well-studied in
the literature. The PIM baseline employs Samsung’s novel
function-in-memory DRAM (FIMDRAM) [16], which incor-
porates programmable computing units in the I/O circuits of
the memory banks. We choose the standard configurations of
FIMDRAM to support large-scale SpMM with high bandwidth
and parallelism. We store the sparse S matrix in CSR format
for baseline, which comprises 10GB HBM2 memory and 500
MHz on-chip logic units per bank. We use Ramulator-PIM
[14] to obtain the baseline’s latency and energy consumption.

ASADI configurations. Unlike previous PIM accelerators,
ASADI is a full-flow in-situ Transformer accelerator that
stores all original and intermediate data in the ReRAM arrays.
The full-flow refers to the fact that we calculate all basic
operations of Transformer in-situ. As a result, the memory
capacity of ASADI is directly related to the input sequence
length. We configure the ASADI accelerator to process a
maximal sequence length (MSL) of 8192 and diagonal window
size ω = MSL

8 for all datasets, with 12 En-PE and De-PE as
shown in Table I. Each Encoder has 12 heads, and each En-
PE has 12 Tiles, with each embedding having 64 dimensions
for a single head. Both the analog and digital modules use
one ReRAM cell to present only 1-bit to ensure accuracy
and noise immunity. Thus, the analog module has 32 × 3
64×64 ReRAM arrays for Float32 WQ, WK , and WV matrices,
while the digital module needs 64× 8192

1024 1024×1024 ReRAM
arrays for all intermediate matrices. We use 1000GB/s On-
Chip Interconnect (OCI) [13] for inner-Encoder transfer and
PCIe-6.0 [32] with 128GB/s for cross-Encoder transfer. The
details of the ReRAM arrays are described below.

We use 1GHz 1-bit one transistor and one memristor
(1T1M) ReRAM arrays for both analog and digital modules.
The array-level area and power configurations of the 1T1M
ReRAM array are obtained from [12]. ReRAM arrays are
read/written column-parallelly, and the SET/RESET voltage
for 1-bit ReRAM cell is 1.62/3.63V [11]. To serve as four
6-bit ADCs, we use one 8-bit ADC since the maximum value
of 1-bit VMM operation of 64×64 ReRAM array is less than
64 (26). We configure 16 ADC for 96 ReRAM arrays with
six arrays sharing one ADC for area saving, using the 8-bit
1.2GS/s single-channel asynchronous SAR ADC from [15].
The area and power of the S&A unit and all on-chip SRAM
buffers (IR and OR) are obtained from [31]. The DRV is
obtained from 1-bit digital-analog converter (DAC) from [29].
We modify ZSim [30] to simulate the behaviors of ReRAM
arrays. We further design an in-house cycle-accurate simulator
to obtain the latency and energy consumption of ASADI,
following the mathematical proof from [42].

Sisters of ASADI. We design two sister systems to evaluate
the software and hardware efficiency of ASADI. To evaluate
the hardware efficiency of ASADI, we configure DIA-PIM by
using our DIA-wise computation paradigm for our baseline
PIM platform. To evaluate the software efficiency of ASADI,
we configure CSR-ASADI by using the CSR computation
paradigm in Figure 9 (b) and Figure 11 (b) for ReRAM arrays.

Comparison with modern accelerators. We compare
ASADI with one GPU platform and two modern sparse atten-
tion accelerators that utilize in-memory computing: NVIDIA
RTX A6000 with 46GB memory, 300W TDP, CUDA v11.6,
and PyTorch v2.0.0 [25], SPRINT [43] and CPSAA [18].
SPRINT prunes weak connections using ReRAM arrays
(64KB) while using their ASIC accelerator with 10GB DRAM
to process the multi-head attention. CPSAA stores part of the
intermediate matrices (K and V ) in ReRAM arrays (27.5MB)
while storing other intermediate matrices (Q and S) in 10GB
DRAM buffer. In contrast, ASADI has only ReRAM arrays
of 9.7GB. We configure SPRINT and CPSAA with their
algorithms, data flow, and hardware. All comparison platforms
have two parts to area, i.e., (i) on-chip logic area and (ii)
DRAM area. ASADI has only one area because computation
and storage are both in memory (iii). It is unfair to ASADI if
we keep (i) and (iii) the same. It’s unfair to the comparison
platforms if we keep (ii) the same as (iii) because ReRAM
has higher memory density. Therefore, we keep the memory
capacity the same, i.e., 10GB for all platforms.

Pre-processing. We conduct the following pre-processing
phases. First, all models are fine-tuned from pre-trained check-
points with the corresponding training datasets to get the
weight matrices. Second, all weight matrices are pre-stored
in the ReRAM memory. Finally, we perform the quantize-
and-pruning sparse attention to get the sparse mask matrix of
all datasets, and the sparse mask matrices are compressed to
CSR and DIA format. For GLUE and SQuAD datasets, we
set the learning rate and batch size the same as Sanger [22].
We set the learning rate 2e-5 and batch size of one for all
other datasets. These pre-processing phases are implemented
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Fig. 18. Performace comparison between ASADI and PIM baseline

on our GPU server. Our code is modified from the GitHub
project of Sanger [22]. All models and datasets are obtained
from Hugging Face’s models library [37] and datasets library.

VII. EVALUATION

A. Performance and Energy Efficiency

Figure 18 displays the speedups achieved by ASADI in
comparison to the PIM baseline. ASADI yields a 6.4×
speedup when processing the ViL model on the ImageNet
dataset. The ViL model has only one bar because it is a CV
model that only runs ImageNet dataset. When processing the
BERT model, ASADI demonstrates speedups from 2.3× to
63.7× on GLUE, SQuAD, WikeText, IMDB, Syn-4K, and
Syn-8k datasets. For the BART model, ASADI has 1.9×
to 60.1× speedups on all datasets. For the GPT2 model,
ASADI shows speedups from 2.1× to 61.7× on all datasets. In
all benchmarks, ASADI surpasses the PIM baseline’s perfor-
mance because ASADI uses full-flow in-situ computation for
sparse attention, which significantly reduces on-chip random
access. The PIM baseline uses near-memory computation,
where the on-chip logic units need to random access many
cross-bank data. ASADI outperforms the PIM baseline by
only 2.1× on the GLUE dataset, primarily because the GLUE
dataset has small sequence lengths, allowing the PIM baseline
to distribute input sequences evenly to each bank, achieving
high computing parallelism with minimal cross-bank transfers.

In the case of longer sequences, the performance gap
between ASADI and the PIM baseline widens. This gap arises
due to two factors: the decrease in performance of the PIM
baseline and the increase in performance of ASADI. The
PIM’s performance decline results from the fixed number of
banks, or PEs, which do not increase with sequence length.
Longer sequences cause local PEs to access more cross-bank
data, further constraining PE parallelism. Conversely, ASADI
functions as an accelerator with full-flow in-situ computing,
utilizing minimal memory for processing short sequences. As
explained in Section V-C, each row of ASADI operates in
parallel for in-situ calculations. Longer sequences increase
the amount of ReRAM rows, namely PEs, that hold data in
ASADI, thereby enhancing overall parallelism.

Figure 19 illustrates the energy savings achieved by ASADI
over the PIM baseline. Processing the ImageNet dataset on the
ViL model, ASADI achieved 1.8× energy savings. For the
BERT, BART, and GPT2 models, ASADI produced energy
savings of 1.5× to 5.2× when processing GLUE, SQuAD,
WikiText, IMDB, Syn-4K, and Syn-8k datasets. Across all
datasets, ASADI demonstrated higher energy efficiency than
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Fig. 20. Speedups of ASADI and its sister systems compared with PIM
baseline

the PIM baseline. The energy savings of ASADI, compared to
the PIM baseline, are mainly due to the reduced data transfers
between on-chip memory and PEs. With increasing sequence
length, ASADI is capable of reducing more on-chip transfers,
which results in more energy savings.

B. Comparison of Sister Platforms

ASADI is a hardware-software co-designed sparse attention
accelerator, where the hardware design and software design
complement each other and are indispensable. This section
conducts experiments to compare ASADI with two sister
systems, i.e., DIA-PIM and CSR-ASADI to evaluate the con-
tributions of hardware and software optimizations in isolation.
The average performance of each model on each dataset is
shown in Figure 20, with all performance metrics normalized
to the speedups of the PIM baseline.

ASADI vs. DIA-PIM. Figure 20 demonstrates that DIA-
PIM offers an average 1.3× speedup when compared to the
PIM-baseline. This speedup can be attributed to the DIA for-
mat’s superior data locality when performing S×V operation.
However, it is worth noting that the DIA format involves
both compression and decompression phases. While DIA-PIM
benefits from the compression phase, it does not gain any ad-
vantage from the decompression phase, as it requires the same
number of cross-bank transfers as the CSR format. The cross-
bank transfer of DIA-PIM increases with sequence length,
similar to the PIM-baseline, resulting in similar performance
when processing various datasets.

ASADI vs. CSR-ASADI. Figure 20 presents the speedups
of CSR-ASADI compared to the PIM baseline. However,
CSR-ASADI underperforms compared to the PIM baseline
when processing GLUE and SQuAD datasets due to limited
in-situ parallelism with short sequence length and poor row
locality of sparse attention. As shown in Figure 9 (b) and
Figure 11 (b), the CSR-based SDDMM and SpMM compu-
tation paradigms involve many bubbles when performing in-
situ computing and severely impact the overall parallelism.
In contrast, ASADI utilizes the DIA computation paradigm
utilizing the inherent diagonal locality to reduce the number



0.09
0.13 0.17 0.11 0.05 0.03 0.01

0.24 0.37 0.45 0.26 0.12 0.08 0.032.9 4.6 5.2 3.3 4.7 6.6 9.56.4
2.1 2.9

6.4
13.7

28.6

61.8

0
10
20
30
40
50
60
70

ImageNet GLUE SQuAD WikiText IMDB Syn-4K Syn-8K

Sp
ee

du
ps

GPU SPRINT CPSAA ASADI

Fig. 21. Speedups of ASADI and modern sparse attention accelerators
(Normalized to PIM baseline)

of bubbles significantly, resulting in better speedups than
CSR-ASADI. Moreover, as the in-situ computing parallelism
increases with sequence length, CSR-ASADI shows improved
speedups when processing longer sequence datasets.

We can draw four conclusions from the above comparisons.
First, in-situ computing is more effective in processing long
sequences than PIM architecture. Secondly, the current PIM
architecture cannot fully utilize the diagonal locality of the
DIA format without fine-grained software-hardware co-design.
Thirdly, compared to CSR-based computation paradigm, our
proposed DIA-based ccomputation paradigm effectively re-
duces the bubbles and enhances the parallelism of in-situ
computing. Finally, our DIA-based in-situ architecture can
expose the superiority of the proposed DIA computation
paradigm for sparse attention.

C. Comparison with Modern Accelerators

ASADI vs. GPU. Figure 21 illustrates the comparative per-
formance of GPU and ASADI across various datasets, reveal-
ing ASADI’s superiority. As a memory-processor separated
architecture, GPU takes many latency to load/store massive
intermediate results from/to the off-chip DRAM, widely recog-
nized as the bottleneck of GPUs [12], [47]. These off-chip data
transfers significantly impede GPU performance, especially
when handling lengthy sequences. Furthermore, the utilization
of the CSR format in GPUs introduces considerable random
access for skipping bubbles. Lastly, GPU’s latency experiences
quadratic growth with increasing sequence length. Conversely,
ASADI’s exceptional performance can be attributed to three
point-to-point pivotal factors. First, ASADI operates as a PIM-
based accelerator, negating the need for extensive off-chip
DRAM access. Second, ASADI supports the DIA format,
which exhibits superior data locality, substantially mitigating
random access demands. Finally, ASADI leverages in-situ
computing hardware, featuring linear complexity growth with
increasing sequence length.

ASADI vs. SPRINT. Figure 21 demonstrates that
SPRINT [43] performs worse than the PIM baseline in var-
ious datasets. SPRINT, as an ASIC-based sparse attention
accelerator, follows the same data access approach as other
von Neumann architectures. Although SPRINT reduces un-
necessary calculations through an in-memory pruning phase,
the remaining calculations generate numerous intermediate
matrices that are transferred from the off-chip DRAM to
the on-chip PEs. These off-chip transfers considerably hinder
SPRINT’s performance when processing long sequences. In
contrast, ASADI’s superior performance can be attributed to
three key factors. Firstly, ASADI is a PIM-based accelerator

0%
20%
40%
60%
80%

100%

ImageNet GLUE SQuAD WikiText IMDB Syn-4K Syn-8K

R
at

io

OCT Linear QK Softmax SV CTRL

Fig. 22. ASADI latency breakdown

that eliminates all off-chip DRAM access. Secondly, ASADI
is a full-flow in-situ computing accelerator, which further min-
imizes on-chip communications. Finally, ASADI is capable of
perfectly supporting the DIA format, which has significantly
better locality than the CSR format.

ASADI vs. CPSAA. CPSAA’s in-memory computing fea-
ture can reduce massive off-chip transfer and ReRAM write
overhead. CPSAA uses the CSR format and eliminates bubbles
using more than 10× of redundant data, reducing time com-
plexity but increasing memory complexity. The performance
comparison between ASADI and CPSA [18] is shown in
Figure 21. CPSAA outperforms ASADI in GLUE and SQuAD
datasets, as it can store all the intermediate Q and S matrices in
ReRAM arrays with fewer on-chip communication overhead
when the sequence is short. Furthermore, CPSAA adopts
analog in-situ computing, which has higher parallelism than
ASADI’s digital in-situ module. However, CPSAA utilizes
redundant memory to reduce the bubbles of the CSR format,
which grows quadratically with the length of the sequence.
Thus, CPSAA requires many on-chip buffers to store the
intermediate Q, S matrices when processing long sequences,
and these cross-array transfers limit the overall performance.
In contrast, ASADI has two advantages over CPSAA. First,
ASADI is an in-situ accelerator with few cross-array transfers,
while CPSAA is an in-memory accelerator with massive on-
chip scheduling overhead. Second, ASADI utilizes diagonal
locality to reduce bubbles, while CPSAA utilizes massive
redundant memory to reduce bubbles in the CSR format.

D. Latency and Energy Breakdown of ASADI

This section provides a breakdown of the latency and
energy consumption of ASADI into six parts: on-chip transfer
(OCT), linear layer (Linear), multiplication between Q and
KT (QK), Softmax, multiplications between S and V (SV),
and the controller (CTRL). The area and memory breakdown
are presented in Table I.

Latency breakdown. Figure 22 depicts that the OCT and
CTRL make up a small fraction of the latency, which is less
than 4%, supporting the goal of ASADI to reduce on-chip
communication and peripheral circuits. The in-situ Softmax
operation takes up approximately 5% of the latency, while the
QK and SV operations take up more than 80%. As analyzed
in Section V-C, the time complexity of multi-head attention is
constant because all tokens are processed in parallel. However,
performing the multi-head attention requires more than 105

bit-wise operations. The ratio of linear layers increases as
the sequence length grows, as the time complexity of the
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linear layer is O(n) as described in Section V-C. However, this
phenomenon does not imply that the linear layer is a bottleneck
for ASADI. This is because the memory capacity of the linear
layer is fixed while the memory capacity of the attention layer
grows with the sequence length.

Breakdown of energy consumption. The breakdown of
ASADI’s energy consumption is illustrated in Figure 23. The
digital module, consisting of Softmax, QK, and SV, accounts
for more than 98% of the total energy consumption. The
energy is mainly consumed by the voltage drivers during
calculations and read/write. This is because the digital module
requires a large memory space and operates in a space-for-
time mode. While the parallel operation of all ReRAM rows
reduces latency, it increases the energy consumed per second,
namely power. This is evident in Table I, where the digital
module’s power is significantly higher than other components.
The linear layer accounts for approximately 1%, while the
CTRL accounts for less than 1% of the energy consumption
due to their smaller area.

E. Other Analysis

Impact of diagonal locality. As discussed in Section II-D,
diagonal locality is the fundamental principle behind the
design of ASADI. To study its impact, we artificially construct
a sparse mask matrix with six different diagonal localities,
ranging from 60% to 10%. Here, the term 60% has the same
meaning as the NNZω

NNZ value discussed in Section II-D. We
evaluate the performance of ASADI on the BERT model with
the GLUE and SQuAD datasets, using speedups to the baseline
platform as the metric. The experimental results, depicted
in Figure 24, indicate a clear performance degradation as
diagonal locality decreases. We identify two reasons for this
phenomenon. First, a lower diagonal locality leads to more
bubbles in the DIA format and reduces parallelism in the
ReRAM arrays. Secondly, a lower diagonal locality increases
the complexity of the decompression operation, which results
in more on-chip transfers. Although the compression phase is
done during pre-processing, the ASADI calculation involves a
decompression phase, as shown in Figure 10 (g).
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Fig. 25. The impact of sparsity

Impact of sparsity. In this section, we present experiments
that investigate the impact of sparsity on the performance
of ASADI. We evaluate six pruning threshold configurations
ranging from 1.5τ to 4τ and measure ASADI’s performance
on the GLUE and SQuAD datasets using speedups relative to
the baseline platform. Figure 25 illustrates the experimental
results, which demonstrate a clear performance degradation
as sparsity (τ) increases. This is due to the increased bubbles
in the DIA format caused by the higher sparsity. More bubbles
will increase the ratio of invalid computations, which in turn
decreases ASADI’s performance. To mitigate this, we suggest
reducing ω to either n

16 or n
32 when processing sparse attention

with high sparsity (< 1%). By concentrating non-zero values
on a few diagonal lines in the center, bubbles are reduced, and
the ratio of ASADI’s valid computations are improved.

Scalability analysis. Supporting long sequences with sparse
attention accelerators is critical. We do not conduct specific
scalability experiments since our datasets already contain
sequences of various lengths. Figure 18 shows that ASADI
achieves linearly increased speedups compared to the baseline
when processing longer sequences. Because ASADI’s latency
grows linearly while baseline’s latency grows quadratically
with sequence length. The overall latency (OL) is related to
the latency of one iteration (LOI) and the number of iterations
(NI), i.e., OL = LOI ×NI. Taking length-1K and length-8K
sequences as an example, ASADI takes the same LOI for
length-1K and length-8K sequences. The NI of length-8K is
8× of length-1K because the ω of length-8K is 8× of length-
1K. For the PIM baseline, both the NI and LOI increase as
sequence length increase, indicating quadratic increasing.

VIII. CONCLUSION

The objective of this study is to accelerate the execution
of the widely used Transformer-based neural network models.
We conduct several experiments to demonstrate that sparse
attention retains good diagonal locality. Additionally, we in-
vestigated the communication overhead of current PIM-based
sparse attention accelerators. To improve the performance
of sparse attention while reducing transmission overhead,
we propose a DIA-based computation paradigm. The new
computation paradigm is aimed to leverage diagonal locality.
Moreover, we created a novel DIA-based in-situ computing
accelerator, supporting our computation paradigm, which re-
duces on-chip transmission. Finally, our experimental results
show that our proposed method, ASADI, achieves state-of-the-
art performance and energy efficiency.
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