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ABSTRACT
Multi-core processors have become an integral part of mainstream
high performance computer systems. In parallel, exponentially in-
creasing power density and packaging costs have necessitated sys-
tem level thermal management solutions for multi-core systems.
Dynamic thermal management (DTM) techniques monitor on-chip
temperature continuously and typically employs dynamic voltage
and frequency scaling (DVFS) to lower the temperature when it ex-
ceeds a pre-defined threshold. State-of-the-art DTM solutions for
multi-core systems include distributed DVFS (where each core can
scale the voltage/ frequency individually) and global DVFS (where
all cores scale voltage/frequency simultaneously). Distributed DVFS
generally offers higher performance than global DVFS, but it is
hard to implement and has major scalability issues.

We propose a hybrid local-global thermal management approach
for multi-core systems that offers better performance than distributed
DVFS, while maintaining the simplicity of global DVFS. We em-
ploy global DVFS across all the cores but locally tune the per-
formance of each core individually through architectural adapta-
tions. We exploit easily reconfigurable micro-architecture parame-
ters such as instruction window size, issue width, and fetch throt-
tling in per-core thermal management. Our hybrid solution is easy
to implement and highly effective towards temperature manage-
ment. The key challenge is appropriate choice of configurations at
runtime to provide optimal performance under thermal constraints.
We formulate it as a configuration search problem and design an ef-
ficient software-based solution that selects the appropriate configu-
ration. Our hybrid method, though simpler to implement, achieves
5% better throughput compared to distributed DVFS.
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1. INTRODUCTION
Exponentially rising power density and on-chip temperatures are

some of the key challenges in micro-processor design. While pack-
aging techniques are the first line of defence against rising on-chip
temperatures, modern processors are already pushing the limits of
what cost-effective packaging solutions can offer. Hence, there is
widespread interest in thermal management at different levels of
system design. The goal of thermal management techniques is to
maximize the performance of a computing system while maintain-
ing its temperature below the threshold.

System and micro-architecture level dynamic thermal manage-
ment (DTM) techniques have gained prominence in recent years.
DTM is an on-line technique where the on-chip temperature is con-
tinuously monitored (during system execution) through tempera-
ture sensors. When the temperature exceeds a pre-defined thresh-
old, appropriate mechanisms are invoked to reduce it sufficiently.
Dynamic voltage and frequency scaling, clock gating, fetch gat-
ing [5] are some of the most popular mechanisms employed by
state-of-the-art DTM solutions to reduce the temperature.

Initially, most thermal management solutions were proposed in
the context of single core systems. The advent of multi-core archi-
tectures — where a number of physical processors are integrated
in the same chip — calls for innovative DTM techniques that can
exploit the unique and additional opportunities offered by such sys-
tems. A detailed overview of thermal management options for
multi-core processors is presented in [9].

DTM techniques for multi-core architectures can be broadly clas-
sified into distributed techniques (which operate at individual core
level) and global techniques (which operate globally across all the
cores on chip). For instance, dynamic voltage/frequency scaling
can be employed in a distributed fashion (distributed DVFS) where
each core can scale its voltage/frequency independently. Alter-
atively, a global approach constrains all the cores to scale their volt-
age/frequency uniformly and simultaneously (global DVFS).

Multi-core systems also provide thread migration opportunity to
manage temperature. Depending on the workload executing on a
multi-core system, there can be substantial variation in temperature
among the different physical cores on the same die. Migration-
based DTM techniques exploit this temperature differential by pe-
riodically moving the threads away from the hot cores to the cold
cores and thereby balancing the temperature of the cores.

Let us consider a heterogenous workload comprising of four
SPEC benchmarks wupwise, art, gcc and crafty execut-
ing on a 4-core system. Figure 1 shows the temperature profiles
of the four cores without DTM and with the previously proposed
DTM techniques1. We assume a threshold temperature of 82.5oC.
The temperatures of all the four cores remain above the threshold

1The experimental setup for the plots will be detailed in Section 6.
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(d) Global DVFS + Migration
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Figure 1: Temperature profiles for a workload on multi-core
(core 0: wupwise, core 1: gcc, core 2: art, core 3: crafty).
Thread to core mapping is not applicable for migration.

for the entire duration of execution when no thermal management
is deployed (see Figure 1(a)). However, we observe a large vari-
ation in temperature between the core executing the hottest thread
(gcc) and the core executing the coldest thread (art).

Global DVFS scales down the operating frequency of all the
cores from 3.6GHz to 2.92GHz in an effort to lower the temper-
ature of the hottest core (core 1) below the threshold. Clearly,
this scheme is unfair for the cold threads (e.g., art) as their per-
formance penalties are at par with those of the hot threads. Dis-
tributed DVFS addresses this fairness issue by allowing each core
to choose its operating frequency independently based on the work-
load. Thus, distributed DVFS selects a higher operating frequency
for the cold thread (3.4 GHz) and a lower operating frequency (2.86
GHz) for the hot thread resulting in substantially better throughput
for the overall system.

Clearly, the additional flexibility of being able to manage the
temperature of each core independently results in significant perfor-
mance advantage. However, this advantages for distributed DVFS
(which is the only distributed multi-core DTM in the literature)
comes at the cost of escalating design complexity. First, allowing
each core to have its own supply voltage creates multiple voltage
islands on-chip and suitable mechanisms need to be built in for
communication among the voltage islands. Secondly, voltage reg-
ulators have to be provided per core (so that each core can scale
its supply voltage independently) increasing the complexity of the
power delivery network [14]. Finally, as the communication among
the cores need to be verified for each possible voltage state of each
core, the verification complexity for the chip increases exponen-
tially.

Thread migration can mitigate, to some extent, the performance
impact of global DVFS without the additional hardware complexity
of multiple voltage islands [10, 15]. As threads are periodically mi-
grated among the cores, any single core is less likely to get heated
up significantly. Global DVFS coupled with thread migration help
to smoothen out the temperature difference across the cores and
hence boost the operating frequency of the chip. The thermal pro-
file of global DVFS + migration is shown in Figure 1(d). Employ-
ing thread migration along with global DVFS has enabled the en-
tire chip to operate at 3.14GHz as opposed to 2.92GHz for global
DVFS alone. However, migration has its own limitations. First,
migration does not reduce the total power dissipated in the system;
it simply moves the hot spots around instead of eliminating the hot
spots. Secondly, the huge penalty associated with switching a task

from one core to another constraints the time scale at which migra-
tion can be performed. Finally, migration is not very scalable as it
has quadratic complexity in the number of cores.
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Figure 2: Temperature profiles for hybrid DTM on multi-core
(core 0: wupwise, core 1: gcc, core 2: art, core 3: crafty).

In this paper, we propose a novel two-level hybrid DTM scheme
for multi-core systems. We observe that per-core control is quite
powerful in achieving high performance as long as it does not add
substantially to the design complexity. Clearly, DVFS is only suit-
able at a global level for the entire chip. We need a different set
of knobs to control the performance and power per core indepen-
dently. We recently proposed non-DVFS techniques such as fetch
gating and architecture adaptations (runtime reconfiguration of in-
struction window size and issue width) for dynamic thermal man-
agement of single cores [11]. These techniques are easy to imple-
ment at individual core level as they are largely localized and do not
create complexity in terms of communication among the cores and
multiple voltage islands. At the same time, they provide effective
response (though gentler than DVFS) to thermal stress.

Our hybrid scheme thus combines local non-DVFS techniques
(fetch gating and architecture adaptation) at per core level with
global DVFS. Each core can chose an appropriate configuration
(fetch gating level and architectural parameters) to maintain its own
temperature. Thus the global operating frequency need not be low-
ered to keep the hottest thread below the threshold. This is illus-
trated in Figure 2, where our hybrid DTM scheme employs non-
DVFS techniques at individual core level to balance the core tem-
peratures and the global supply frequency is no longer limited by
the temperature of the hottest thread.

The major challenge for our hybrid DTM technique is that it
should be accompanied by an efficient runtime mechanism that can
select the appropriate per-core settings and the global setting so
as to control the temperature below the threshold while achieving
near-optimal performance. We rephrase the thermal management
problem as a configuration search problem and design an efficient
software based mechanism to adapt the local and global thermal
management parameters at runtime depending on the workload.
Our thermal management strategy results in 12% better through-
put than global DVFS plus migration based scheme and 5% better
throughput than the more complicated distributed DVFS scheme.

2. RELATED WORK
Dynamic thermal management leverages on on-chip tempera-

ture sensors to control the processor temperature dynamically. Dy-
namic control of processor temperature can be either implemented
in hardware or software. Hardware based DTM schemes employ
hardware controllers to monitor the temperature continuously and
employ appropriate mechanisms to lower the temperature when it
exceeds a certain threshold. Commonly employed mechanisms in
hardware DTM include DVFS [18], fetch gating [5] and others.

With the advent of multi-core processors, thermal management
of multi-core systems has received a lot of attention. Donald et
al. [9] classify thermal management approaches into distributed



(per core) and global schemes and show that distributed schemes
can outperform global schemes. Migration based thermal manage-
ment schemes exploit the heterogeneity in thermal characteristics
among threads executing on different cores of a multi-core archi-
tecture. The temperature of the cores are controlled by periodi-
cally migrating threads and thus changing the mapping of threads
to cores [10, 15, 9].

In this paper, we propose a hybrid two-level thermal manage-
ment scheme for multi-core system. We show that employing a
combination of simple local schemes and global DVFS results in
simple and effective thermal management solutions. We have re-
cently proposed runtime reconfigurable architectural parameters (in-
struction window size and issue width) as an effective mechanism
for single-core DTM [11]. Applying multiple knobs simultane-
ously for thermal management of multi-cores is more challenging
because (a) all the cores are constrained to use identical operating
frequency preempting the possibility of choosing per-core param-
eters independently, and (b) the configuration and workload of a
core has significant impact on the temperature of the neighboring
cores due to lateral coupling (lateral heat transfer among adjacent
cores). In this work, we design a software based thermal manage-
ment framework that adapts the local and global thermal manage-
ment parameters at runtime.

3. OVERVIEW OF HYBRID DTM
In this section, we provide an overview of our hybrid local-global

thermal management framework.

3.1 Adaptive Multi-Core Architecture
We assume that each core in our multi-core architecture em-

ploys out-of-order execution engine. The only difference between
our adaptive multi-core architecture and a normal multi-core is the
presence of three runtime reconfigurable micro-architectural pa-
rameters: the issue width, the instruction window size and the fetch
gating level. We chose these parameters because they can directly
impact the temperature of the hotspots within the processor and are
easily configurable at runtime [20]. Unlike DVFS, the above men-
tioned schemes are easier to implement at per core level as these
knobs are localized within a core and do not affect communication
among different cores.

The issue width can be scaled down by disabling the appropri-
ate selection tree [3]. Fetch unit can be controlled by setting the
appropriate fetch gating level. When the fetch gating level is set
to T, the fetch unit is deactivated once after every T cycles. When
the gating level is set to 0, the fetch unit is active for all cycles
(no fetch gating). The instruction window has four equal partitions
and each partition can be enabled/disabled separately [7]. Chang-
ing the window size involves a pipeline flush followed by resetting
the window to the appropriate new size. As our adaptivity is coarse
grained (large sampling interval in the order of milliseconds), such
pipeline flush has negligible impact on performance.

We employ DVFS globally in conjunction with the above men-
tioned per-core knobs. For a time varying multi-programmed work-
load, the challenge is to determine, at runtime, the appropriate set-
ting for all these knobs that maximizes performance of the system
while maintaining the temperature of all the cores below the thresh-
old. Next we formally define the thermal management problem as
a configuration search problem.

3.2 Problem Formulation
The goal of our thermal management framework is to determine

the optimal parameters for each core (issue width, window size and
fetch gating level) as well as the global supply voltage/frequency

that maximizes performance (in billion instructions per second or
BIPS) while maintaining the temperature of all the cores below
the threshold. To state formally, given N cores, we would like to
choose a configurations for each core Ci (1 ≤ i ≤ N, 1 ≤ Ci ≤
M) where M is the total number of configurations per core and a
global operating frequency F such that

• The system performance Perf = F × ΣN
i=1IPCi is maxi-

mized where IPCi is the instructions per cycle of core i for
configuration Ci

• For all cores 1 ≤ i ≤ N , Tempi < Th where Tempi is the
temperature of core i and Th is the threshold temperature.

The configuration Ci for each core consists of three parameters:
issue width (IWi), window size (Wi), and fetch gating level (Ti).

There are two main challenges to solving the configuration search
problem. Given a specific configuration for each core and global
operating frequency, we need to determine if this configuration is
thermally safe and evaluate the performance for this configuration.
In our framework, we use a neural classifier to determine if a con-
figuration is thermally safe and a performance prediction model to
evaluate the performance of a given configuration.

Secondly, the large configuration space and the online nature of
our scheme makes exhaustive search of all configuration points in-
feasible. For instance, given a 4-core architecture with five pos-
sible issue widths, four possible window sizes and eight possible
fetch gating levels at each core and eight global frequency lev-
els, there is a total of 1604 × 8 configuration points. We devise
a three-phase search strategy that efficiently solves this configura-
tion search problem.

3.3 Thermal Management Framework
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Figure 3: Overview of our hybrid DTM framework.

Figure 3 presents the structure of our hybrid local-global thermal
management framework. During execution, each core periodically
(0.1 ms) samples the on-chip thermal sensors. In addition, it col-
lects the performance counter values and the instruction signatures
once every 3 ms. The instruction signatures are used to determine
if there is a phase change [8] in the application executing on the
core. A phase change will trigger a configuration search process to
better fit the architecture according to the new workload. Note that
local phase change in the workload of processor Pi might result in
a new configuration for processor Pj (i 6= j) that did not encounter
phase change itself.

The central component of our framework is an efficient multi-
phase configuration search strategy. As mentioned earlier, the con-
figuration space is too large to be searched at runtime. On the other



hand, we cannot nicely partition the search space at core bound-
aries as the frequency has to be selected globally and the config-
uration selected for a core impacts the temperature of the cores in
the neighborhood due to lateral transfer to heat. Our search strat-
egy breaks this cyclic dependency by employing multiple phases:
(1) a local phase suggests optimal configuration at every global fre-
quency level based on minimal global information, (2) a global
phase follows that selects the global operating frequency, and (3)
another local phase concludes the search by selecting appropriate
local configurations armed with more global information.

The first search phase proceeds locally (i.e., independently) for
all the cores that detect phase changes in their workload. It suggests
for each core the optimal safe configurationCf

i (highest throughput
without exceeding temperature threshold) at every frequency level
f and the expected instructions per cycle (IPC) for this configura-
tion. This phase uses an estimate of lateral coupling as minimal
global information is known at this point. Our local search algo-
rithm is a modified version of the binary search and examines a very
small portion of the entire search space (presented in Section 4). It
employs a neural classifier to determine if a configuration is ther-
mally safe for a workload. As we predict the thermal safety of a
configuration, we must provision for a failsafe mechanism in case
of rare misprediction that may result in the system exceeding ther-
mal threshold. Thus, our technique is backed up by global clock
gating where all the cores are made inactive (by hardware) for one
sampling interval of thermal sensors (0.1 msec) when the tempera-
ture of any core hits the threshold.

The second phase is global in nature. It takes in the results from
the local configuration searches as input and determines the global
operating frequency F that maximizes throughput. In addition, it
estimates the core coupling factor. The temperature of a core de-
pends on configuration and workload of all the cores in the system.
The core coupling factor (defined in Section 4.1) reflects the oper-
ating conditions of the other cores in the system.

Now that more accurate lateral coupling information is available,
we need one final local phase for each core to check the thermal
safety and optimality of the suggested configuration at frequency
level F . If the previously suggested configuration (with limited
global information) is either unsafe (more thermal impact from
neighbors) or sub-optimal (less thermal impact from neighbors al-
lowing higher performance configuration), the core can choose an
appropriate safe and optimal configuration Ci.

Once all the three phases are over, the global operating frequency
is set to F and the reconfigurable components of each core are
scaled according to the selected parameters.

4. LOCAL CONFIGURATION SEARCH
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Figure 4: Overview of local configuration search

An overview of the local configuration search is presented in
Figure 4. It has two main components: the configuration search
algorithm and the classifier.

The highest performing configuration that is feasible at a given
frequency depends on the workload running on a specific core.
Clearly, determining this configuration requires us to evaluate the
IPC and the thermal safety of the configuration. We use an analyti-
cal performance model to quickly estimate the IPC for a {configu-
ration, workload} pair using the sampled performance counters as
input. We use a neural classifier to predict if a given {configuration,
workload, frequency} tuple is thermally safe.

Next we present our neural classifier. The performance predic-
tion model is presented in Section 4.2.1 and the search strategy is
presented in Section 4.2.2.

4.1 Neural Network Classifier
We model the problem of determining if a particular {config-

uration, workload, frequency} tuple is thermally safe as a neural
classifier problem. The neural classifier accepts parameters reflect-
ing the configuration of the cores, workload and frequency as input
and predicts if the corresponding execution is thermally safe.

Parameters. Our neural classifier is shown in Figure 5. In a multi-
core system, the temperature of a core depends both on the power
dissipation of the core as well as power dissipation of the other
cores in the system. In our adaptive multi-core architecture, the
temperature of a core Corei depends on the workload, configura-
tion of Corei, the workload and configuration of the other cores
Corej (j 6= i, 1 ≤ j ≤ N), as well as the global operating
frequency F of the system. Our classifier includes both local and
global parameters to reflect this requirement.

An example classifier running on core 0 (C0) of a four-core sys-
tem is shown in Figure 5. The top four inputs correspond to the
workload on this core in the form of number of instructions of dif-
ferent classes issued per cycle. The instruction classes (integer,
floating point, load/store, and branches) are chosen based on the
observation that these parameters strongly affect the utilization of
the execution core and the branch predictor — the hottest units in
a core. These values are obtained from the performance predic-
tion model. This is followed by the configuration of the core and
the global operating frequency. We reduce the configuration space
consisting of three variables (issue width, widow size and throttling
level) into a single variable based on the observations from the per-
formance model. The value of this single variable is input to the
classifier to reflect the configuration.
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Figure 5: Neural network classifier.

The remaining parameters correspond to global effect. The global
power dissipation (and hence the lateral coupling) is captured through
two parameters per core, namely, the total instructions issued per



cycle (TIPCj) and the configuration (Cj) of the core. We use
multiple parameters to reflect the workload of the local core, while
we use only a single parameter for the other cores as temperature
depends more strongly on local parameters than remote parameters.
The global phase updates the neural classifier at each core with the
global parameters. As explained in Section 5, the structure of the
classifier ensures that the global phase can pre-compute and trans-
fer a single value to reflect the global parameters corresponding to
all the other cores.

Architecture. We use a back propagation network with a single
hidden layer and one neuron in the hidden layer as shown in Fig-
ure 5. We chose this configuration as it provides a good tradeoff
between classification accuracy and complexity. The input layer
performs the following computation.

OutL1=w1×I1+w2×I2+...+w6×I6+CF+b1 (1)
CF=w7×I7+w8×I8+...+w12×I12 (2)

where OutL1 is the output of the first layer (input layer) of the
neural classifier, w1 − w12 are the weights in the neural classifier,
I1−I6 are the inputs corresponding to the local workload and con-
figuration parameters, I7 − I12 are the inputs corresponding to the
workload and configuration of the other cores in the system. CF
is the core coupling factor that can be computed by the global con-
figuration routine and transferred to the local configuration routine
(see Section 5).

The hidden layer applies the sigmod function and the output
layer applies the threshold function as shown in Figure 5. The fi-
nal output of the classifier is a binary output which predicts if the
combination of configuration of the cores, workload and global op-
erating frequency is thermally safe.

Training and Accuracy. We train our neural classifier using a set
of microbenchmarks. Each micro-benchmark comprises of a loop
body with 100 randomly generated instructions. The instructions
are chosen from the input instruction classes and the random selec-
tion of instructions is skewed to represent the instruction mix found
in real benchmarks. We generate thirty such micro-benchmarks.
We then generate 3,000 different training examples, each consisting
of a randomly generated workload mix of four micro-benchmarks
and randomly chosen core configurations. Each of these 3,000
examples are executed to observe if the temperature of any core
hits the threshold. After generating the training set, we use the
Levenberg-Marquardt [1] training algorithm to train the classi-
fier. The training algorithm is an iterative process that adjusts the
weights and bias values in the neural network to minimize the num-
ber of miss-classifications in the training set. We also verified the
accuracy of our classifier for the workload mix presented in Table 1
and found that it has an accuracy of over 95%.

4.2 Search Algorithm
The configuration search algorithm examines points in the fre-

quency, architecture adaptation space to determine the best per-
forming thermally feasible configuration at each frequency level.
It encompasses a performance model to predict the performance at
a given configuration.

4.2.1 Performance Prediction Model
Our model takes in the performance counters at a specific config-

uration as input and evaluates the IPC and total instructions issued
per cycle at a different configuration. The performance counters
collected are the following (i) Number of committed instructions
Ninst, (ii) Number of cycles in the interval Cycles, (iii) Number
of committed instructions of typeX: NX

inst whereX can be of type

integer, floating point, branch, or load/store, (iv) Instruction cache
misses ICmiss, Data cache misses DCmiss, and Branch mispre-
dictions Brmiss.

Our performance prediction model is adapted from the interval
analysis [13]. Interval analysis is based on the notion that a super-
scalar model has a sustained background level performance that is
interrupted by miss events such as branch mispredictions and cache
misses. Thus the cycles per instruction (CPI) can be expressed as

CPI=CPIsteady+CPImiss (3)

CPImiss=CPIbrmiss+CPIicmiss+CPIdcmiss (4)

whereCPIsteady is the background sustainable performance when
there are no miss events and CPIbrmiss, CPIicmiss, CPIdcmiss

represent the performance loss from branch miss-predictions, in-
struction cache misses and data cache misses, respectively.
CPImiss can be computed from the individual miss events and

their miss penalties as follows

CPImiss=
ICmiss×ICpenalty+DCmiss×DCpenalty+Brmiss×Brpenalty

Nuseful

(5)
where ICmiss,DCmiss, andBrmiss are number of I-cache misses,
D-cache misses and branch mispredictions over a particular interval
and Nuseful is number of useful instructions committed over the
same interval. The penalties (ICpenalty , DCpenalty , Brpenalty)
are estimated using the first order superscalar model [13].

We assume that CPImiss remains constant across configura-
tions. Thus CPI at a specific configuration C can be expressed as

CPI(C)=CPIsteady(C)+CPImiss (6)

We now proceed to examine how the different points in the con-
figuration space affect CPIsteady . The steady state IPC (which is
the inverse of CPI) at window size W and issue width IW can be
expressed as [13]

IPCsteady(IW,W )=min(IW,
√

W ) (7)

At fetch gating level T , the fetch unit can deliver at most T
T+1
×

FW instructions per cycle, where FW is the fetch width. In the
steady state, the number of instructions fetched per cycle should be
equal to the number of instructions issued per cycle. So the steady
IPC at configuration C = 〈T, IW,W 〉 can be expressed as

IPCsteady(C)=min( T
T+1×FW, IW,

√
W ) (8)

This equation assumes that all instructions are unit latency. If we
account for the variable instruction latencies [13]

IPCsteady(C)=min( T
T+1×FW, IW,

√
W
L

) (9)

where L is the average instruction latency. L is an application
dependent parameter. However we simply set the value of L to
the highest average instruction latency across all our benchmarks,
which turns out to be 1.77.

Equation 9 presents the relationship between our configuration
parameters and performance. Clearly the steady IPC can be limited
by either the issue width, window size or gating level. Hence, given
a specific value of steady IPC, it can be sustained by a balanced
architecture. Given a specific value for the steady IPC (Sipc),

IW=Sipc; W=S2
ipcL2; T=

Sipc
(F W−Sipc) (10)

Over-dimensioning the architecture along any one of the con-
figuration parameters does not increase performance significantly.
Thus our micro-architecture configuration space comprising of three
parameters can be reduced to a single parameter.



Given a specific configuration presented by steady IPC Sipc, the
corresponding architectural parameters can be derived from Equa-
tion 10. The actual CPI (including miss events) at the particular
configuration Sipc is given by

CPI(Sipc)= 1
Sipc

+CPImiss (11)

where CPImiss can be computed from the sampled miss events
(performance counters) using Equation 5.

However, our neural classifier accepts the total number of issued
instructions (right path and wrong path instructions) of different
classes as input because power consumption depends on the issued
instructions. We modify the performance prediction model [12] to
estimate the total number of issued instructions per cycle TIPC.
The number of instructions issued per cycle of different types is

TIPCX (Sipc)=
NX

inst
Ninst

×TIPC(Sipc) (12)

where Ninst is the total number of committed instructions in the
previous sampling period, and NX

inst is the total number instruc-
tions of type X (integer, floating point, branch, or load/store) com-
mitted in the previous sampling interval.

4.2.2 Search Process
The configuration search process proceeds along two axes: the

operating frequency and the steady IPC. For each {frequency level,
steady IPC} pair, it first uses the performance prediction model to
determine the actual IPC and the total instructions issued per cy-
cle (TIPC). These values and the core coupling factor (from global
phase) are given as input to the neural classifier, which determines
if the {frequency, steady IPC} pair is thermally safe. Using this
process, the highest performing thermally safe configuration at each
operating frequency level can be determined.

The search process can be optimized further based on the obser-
vation that any increase in steady IPC (wider configuration) results
in an increased performance and temperature. Thus, if at a given
frequency f , steady IPC Sipc is infeasible, then all steady IPC val-
ues higher than Sipc are also infeasible. Exploiting this property,
our configuration search can proceed as a binary search along the
steady IPC axis. It first examines the midpoint of the steady IPC
space. If this point is feasible, it proceeds to the upper half of the
search space; otherwise it proceeds to the lower half of the search
space. Given F frequency levels and S steady IPC levels, the total
number of points examined is at most F × ln(S).

In our experiments, we have eight frequency levels between 3.6
GHz and 2.2 GHz and 9 steady IPC levels between 2 and 6 result-
ing in at most 32 search points. The configuration search routine
takes about 8,000 cycles in the worst case. Even if the routine is
invoked once every phase detection sample (3 msec), it represents
an overhead of only 0.8%. In reality the overheads are less than
0.1% as the routine is invoked infrequently.

5. GLOBAL CONFIGURATION SEARCH
The global configuration routine is responsible for determining

the global operating frequency and the core coupling factors.

Inputs. The input to the global configuration routine is a set of
tables: one from each of the local search routines. The table for
each core is indexed by the different operating frequency levels. At
each frequency level f , the entries contain the highest performing
configurationCi, the IPC (IPCi) and the total instructions (correct
+ wrong path) issued (TIPCi) in this configuration.

Operating Frequency. The aim of the framework is to maximize
the system performance which is defined by P = F×

∑N
i=1 IPCi,

where F is the operating frequency, N is the number of cores, and
IPCi is the IPC of the ith core. The global configuration routine
can easily determine the system performance by making a linear
scan of all the tables at a particular frequency level. It then se-
lects the frequency level with the maximum system performance as
the global operating frequency. Note that the global configuration
routine can be easily modified to maximize other metrics such as
weighed speedup, harmonic speedup, etc.

Core Coupling Factor. In section 4.1, we presented how the core
coupling factor approximates the global effects on the temperature
of a particular core. The coupling factor for each core is a weighed
sum of the configurations and the total IPC of other cores in the
system. For example, the coupling factor for core 0 is

CF0=wc01config1+wt01tipc1+wc02config2

+wt02tipc2+wc03config3+wt03tipc3

The weights in the coupling factor are the classifier weights deter-
mined during off-line training of the classifier (Section 4.1). Once
the optimal frequency is calculated, the global configuration routine
determines the coupling factor for all the cores using the configu-
ration and the total instructions per cycle from the tables.

Final Tuning. The computed optimal global frequency F and the
core coupling factor are updated for the individual cores. Each core
then re-runs the local configuration search only for the optimal fre-
quency F with the new coupling factor to determine the configura-
tion for execution.

Overheads. Our global search algorithm performs a maximum of
O(N2 +F) multiplications andO(NF +N2) additions whereN
is the number of cores and F is the number of distinct frequency
levels. We implemented and profiled our algorithm and determine
the overhead in the worst case to be 1,215 cycles for a four-core
system with eight different frequency levels. We assume worst case
overhead for each invocation of our algorithm in our results.

6. EXPERIMENTAL EVALUATION
We now proceed to evaluate our DTM technique for multi-cores.

Experimental Settings. We use a modified multi-core version of
SimpleScalar [4] toolkit for experimental evaluation. We model a
4-core architecture and obtain the performance numbers through
detailed cycle-accurate simulation. Each core is configured similar
to the Alpha 21264 out-of-order processor with a 128 entry ROB,
peak issue width of six instructions per cycle. The cache sizes are
configured to 64 KB of L1 data cache and instruction cache and a
2MB unified L2 cache.

We use the Wattch [6] libraries to compute the power dissipated
every cycle. We use the linear scaling of Wattch [6] to obtain the
power consumption at 1.4V and 3.6GHz at 100 nm (voltage and
frequency levels for Pentium 4). We employ eight different fre-
quency levels between 3.6GHz and 2.2GHz for DVFS and assume
a penalty of 10µs per voltage transition [9].

We extend our performance and power models to handle archi-
tectural adaptivity, that is, configuring issue width, window size
and fetch throttling level. We modify Wattch power models to re-
flect an adaptive instruction window implementation described in
[7] and other core logic from [17].

The power values are averaged over the sampling interval (0.1
msec) and the resulting power trace is fed to the thermal model-
ing libraries from HotSpot-3.0 [19] to calculate the temperature
of each micro-architecture unit within each core. The temperature
values are input to the DTM module to guide the thermal manage-
ment decisions (frequency scaling, architecture adaptation, clock



gating, etc.) and these decisions are communicated back to the
core pipeline models.

We use a four-core floorplan similar to previous work [9, 10]
containing four identical cores and L2 cache occupying the rest of
the die-area. We assume an ambient temperature of 45oC, heat
sink convection resistance of 1.0oC/W , and a maximum tolera-
ble temperature of 85oC [19]. After adjusting for placement and
sensor errors, we get a threshold of 82.5oC [19].

Label Benchmarks Label Benchmarks
T1 bzip,parser,wupwise,gcc T2 crafty,mesa,gcc,vortex
T3 bzip2,gzip,equake,vortex T4 eon,gcc,art,wpwise
T5 gzip,vortex,art,parser T6 fma3d,parser,facerec,bzip2
T7 wupwise,gcc,art,crafty T8 parser,gzip,bzip,gcc
T9 voretx,bzip,eon,equake T10 mesa,vortex,facerec,parser

Table 1: Multi-programmed workloads used for evaluation
Workload. We use multi-programmed workloads each compris-
ing of four threads. Each thread is chosen from one of fifteen SPEC
CPU 2000 [2] benchmarks. For each benchmark, we fast forward
to the first simulation point specified by [16] and then perform de-
tailed simulation. Our simulation includes architectural warmup
and thermal warmup [19] phases after which the statistics are col-
lected. The workload mix is shown in Table 1.

DTM Techniques. We compare our proposed technique, called
Hybrid, that combines global DVFS with local architectural adap-
tivity against three other state-of-the-art multi-core DTM techniques.

• Global DVFS: The frequency/voltage of all cores are scaled
equally in response to a thermal stress on any of the cores.
We use feedback control (PI controller) to set the appropriate
frequency level for a given thermal stress [9].
• Distributed DVFS: Each core can chose its own frequency

and voltage settings. We use feedback control (distributed PI
controller) to set the appropriate frequency levels for a given
thermal stress [9].
• Global DVFS + Migration: We compared a number of ap-

proaches for migration in conjunction with global DVFS to
avert thermal stress [10, 15, 9]. We observed that the multi-
loop based method combining an inner feedback loop for
global DVFS with an outer feedback loop for migration per-
formed the best among all the migration techniques investi-
gated and we present the results for the same. We assume
100µs overhead per migration [9].

In addition, we include a variation of our Hybrid DTM tech-
nique, called Hybrid-Simple in the evaluation. Hybrid-Simple is a
simplified version of Hybrid where we engage global voltage scal-
ing with local fetch gating to control the temperature. This mecha-
nism is suitable when per core adaptivity cannot be supported and
a simpler technique needs to be employed at per-core level.

The throughput of different DTM schemes (from left to right
Distributed DVFS, Global DVFS, Global DVFS + Migration, Hy-
brid, Hybrid-Simple) is shown in Figure 6.

Throughput. The execution of a heterogenous workload gener-
ally exhibit large variation in temperature across the cores. Perfor-
mance of Global DVFS is limited by the temperature of the hottest
core, while Distributed DVFS can select appropriate frequency for
each core. Employing migration in conjunction with DVFS can
bridge the performance gap between global and distributed DVFS
to some extent. On an average, Distributed DVFS has 18% higher
throughput than Global DVFS. Migration helps boost throughput
of Global DVFS by 7.25%.

Our proposed technique Hybrid, where adaptive architecture is
employed locally in conjunction with global DVFS, can outper-
form the more complex Distributed DVFS resulting in 5% better
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Figure 6: Comparison of throughput for different DTM
schemes.
throughput. It has 12% better throughput than Global DVFS+ Mi-
gration. Even a simpler version of our scheme Hyrbid-Simple,
which only uses fetch gating per core along with global DVFS, per-
forms comparably with Distributed DVFS (4% lower) and better
than Global DVFS + Migration (3% higher). The results show that
there is significant performance advantage for hybrid DTM tech-
niques that combines global DVFS with local adaptivity.

7. CONCLUSIONS
In this paper we presented a two-level hybrid thermal manage-

ment scheme for multi-core systems. Our scheme employs a com-
bination of non-DVFS techniques (architecture adaptation and fetch
throttling) at a per core level and global DVFS for thermal man-
agement. It is simpler to implement and outperforms previously
proposed multi-core thermal management schemes.
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