
InkStream: Instantaneous GNN Inference on
Dynamic Graphs via Incremental Update

Dan Wu
School of Computing

National University of Singapore
Singapore

danwu20@comp.nus.edu.sg

Zhaoying Li B
School of Computing

National University of Singapore
Singapore

zhaoying@comp.nus.edu.sg

Tulika Mitra
School of Computing

National University of Singapore
Singapore

tulika@comp.nus.edu.sg

Abstract—Graph Neural Network (GNN) on dynamic graphs
that evolve with time necessitates constant updates. Current
approaches aim to mitigate computational costs by limiting
updates to the affected areas, essentially the k-hop neighborhood
surrounding modified edges/vertices in k-layer GNNs. However,
we identified that these strategies often involve unnecessary
computation: (1) Within the k-hop neighborhood, a substantial
number of nodes remain unaffected by changes in edges/vertices
when GNN employs max or min as its aggregation function;
(2) For certain model architectures, the node embeddings can
be incrementally updated with minimal memory access and
computation. In response to these observations, we developed
InkStream, an innovative and general method for real-time GNN
inference by avoiding unnecessary updates, significantly reducing
inference time and energy cost. InkStream supports all common
GNN aggregation functions while imposing minimal constraints
on model architecture. It is grounded in the principle of minimal-
istic propagation and data retrieval, employing an event-based
system to manage both the inter-layer propagation of effects
and the intra-layer incremental updates of node embeddings.
Additionally, InkStream offers remarkable extensibility and ease
of configuration, making it adaptable to evolving GNN model
structures. Our evaluation across three GNN models on six graph
datasets reveals that InkStream significantly accelerates inference
time from hours to mere milliseconds. The code is available at
https://github.com/WuDan0399/InkStream.

Index Terms—Graph Neural Networks, Dynamic Graphs

I. INTRODUCTION

Graph Neural Networks (GNNs) have become essential in
high-performance computing (HPC) due to their significant
computational and memory requirements when processing
large-scale graph-structured data. Most existing GNN archi-
tectures are designed for static graphs; however, many real-
world applications, such as social networks, financial systems,
and communication networks, involve dynamic graphs where
nodes and edges evolve continuously over time [1]–[3]. This
dynamic nature necessitates frequent updates to nodes’ la-
tent embeddings [4]–[6], leading to a substantial increase in
computational demands and highlighting the challenges GNNs
pose as an HPC workload.

Dynamic graphs exhibit unique characteristics in the GNN
inference task: most of the nodes have their latent embeddings

This research is partially supported by the National Research Foundation,
Singapore, under its Competitive Research Programme Award NRF-CRP23-
2019-0003. The corresponding author is Zhaoying Li.

Fig. 1: (a) Ratio of the theoretically affected area to full graph.
(b) Ratio of real affected nodes to the theoretically affected
area. ∆G: number of changed edges.

unchanged in two consecutive timestamps. The reason is two-
fold: (1) There is only a small amount of edges changed in
the large-scale graphs [7]–[9]; (2) GNNs are usually shallow
(k layers, k≤5) to prevent over-smoothing problem [10], and
one changed node can only affect its k-hop neighborhood,
which is limited compared to the full graph. This k-hop
neighborhood is named as the affected area. Therefore, it is
redundant to recompute for all nodes in the graph, as practiced
in efficient GNN inference works [11]–[13]. Suppose there are
∆G requests for edge changing, either insertion or removal,
between two timestamps. Figure 1a shows the size of the
affected area compared with the whole graph for the Cora
dataset in terms of the number of nodes. It can be seen that
the affected area can be tiny (less than 1%), compared with the
whole graph, when k is small. A straightforward way to take
advantage of this insight is to only compute for the nodes in
the k-hop neighborhood [1], [14]. Unfortunately, it still takes
seconds to insert 100 edges into the Cora dataset. We propose
InkStream, a general method for GNN inference on dynamic
graphs, which further reduces the inference time from seconds
to milliseconds based on two novel findings.

Before delving into these findings, we briefly introduce the
general message-passing framework adopted by most GNN
models. In a multi-layer GNN model, one layer generates
a hidden state for each graph node: an intermediate node
embedding vector. One GNN layer can be expressed by
two primary execution phases: Combination and Aggregation
(Figure 3). The combination phase acts like neural networks,
where each node transforms its embedding with a shared
multi-layer perceptron. In the aggregation phase, each node

Layer 1 Layer 2 Layer 3

Theoretically: 6Affected

Real: 4Affected no change detected
stop propagation

(b) Inter-Layer: Pruned Propagation (c) Intra-Layer: Minimal Memory Access

A
B

C

D

Affected Nodes

Resilient Nodes

Unaffected Nodes

[Classic Method]
Fetch all and recompute

[Proposed Method]
Fetch affected and incremental compute

Previous Timestamp Result

(a) Input Graph

E

F G
H

J
D

B
A C

add D→E

!="! #"

##

#$

= .delete().add()#""!% #"
%"!

Details in Sec. 2.5

Latest Timestamp Result

Aggregation
ofthe

Layer

! Aggregation Function

newly inserted edge

Fig. 2: Two-level savings in InkStream. A for aggregation function. m and α are node embedding before and after aggregation.
Superscript − denotes the result in the previous timestamp.

(a)

A

B

C

Message

 Neighbourhood

shared
weight

max

target
node

ReLU

Combination Aggregation

(b)

layer
hidden state

layer
hidden state

Fig. 3: (a) Neighborhood message passing of a GNN layer.
(b) Computing abstraction of message-passing mechanism.

receives its neighboring nodes’ embeddings and then reduces
them into a single vector with a selected aggregation function,
such as a mean, sum, max, and min function [15].

First, we found that the size of the affected area can be
further reduced for GNNs with certain aggregation functions.
When equipped with the max or min as aggregation function,
the aggregation phase of a GNN layer is selective, i.e., a node
u is not significant enough to contribute to a neighbor v if it is
not selected as max or min for all channels in an embedding
vector. In this case, removing the edge between node u and
node v will not affect the embedding of v. Similarly, adding
an edge with an insignificant neighbor will also not affect
a node’s embedding. This leads to a reduced affected area.
We call it real affected area, against the theoretical affected
area of the full k-hop neighborhood. Figure 1b shows the
ratio of real affected nodes versus the theoretically affected
area. On average, only 3% nodes in k-hop neighborhood are
influenced in Cora, Yelp, and (ogbn-)papers100M datasets
with 100 changed edges. In other cases of mean and sum,
there is no such reduction in the affected area as they do not
exhibit selective characteristics.

Second, the embedding of a node can be incrementally
updated; however, the method of incremental updating differs
across aggregation functions. As one node’s neighborhood
often shows minimal changes in a short time, a node can incre-
mentally evolve its embedding by first neutralizing the impact
for a changed neighbor’s old embedding and then adding the
impact of the new embedding, bypassing the computation

involving unchanged neighbors. However, the approach differs
for accumulative (mean, sum) and monotonic (max, min)
aggregation functions. As monotonic functions are selective,
a significant neighbor can dominate a node’s embedding and
make it oblivious of the rest of the neighbors. Deleting this
neighbor, the node can experience irrecoverable data loss; so
fetching the whole neighborhood and recomputing is neces-
sary. Meanwhile, for accumulative aggregation functions, a
node’s embedding evolves by adding up the changes in all
neighbors’ embeddings, and hence the costly recomputation
will not happen.

Fully exploiting the aforementioned two findings, we pro-
pose a generic method called InkStream with the design
principle: ”Propagate only when necessary. Fetch only the
necessary.” First, in a GNN model, a changed embedding
of one node at a layer will affect its immediate neighbors’
embeddings in the next layer, thus forming a propagation
tree. In cases of GNNs with monotonic aggregation function
and thus reduced affected area, we prune the propagation tree
to avoid unnecessary computation. Suppose there is an edge
inserted from node D to E, as shown in Figure 2a. Across
the layers, InkStream mitigates unnecessary computation by
identifying resilient nodes (green node in the Figure 2b) in
the propagation tree and pruning the corresponding subtrees
rooted at these nodes (Figure 2b). A node is resilient if it
could have been affected but is found to be uninfluenced after
updating. We design an event-based approach to control the
propagation. An event is created and sent along the edges when
a node changes its embedding. Second, inside each layer,
during the aggregation phase, InkStream reuses data from
the previous timestamp, incrementally applying the effects of
changed neighbors. As shown in Figure 2c, InkStream deletes
the impact of changed neighbors’ old information and adds the
impact for new information, thus incrementally evolving to the
latest node embedding. By only accessing prior results and
affected neighbors’ information without fetching the whole
neighborhood, InkStream drastically minimizes memory ac-
cess and execution time.

InkStream is an acceleration technique ensuring arithmetic

equivalence to classic methods of GNN inference. Particularly,
when applied with monotonic aggregation functions, bit-level
identical results to classic methods is ensured, thanks to the
selective nature of these functions which replicate the outcome
once the same choice is made. Moreover, InkStream has good
extensibility by providing interfaces to allow the users to easily
configure for their own models. On three benchmark GNN
models: GCN [16], GraphSAGE [17], and GIN [18], users
only need to provide less than 10 lines of additional code.
In a nutshell, InkStream is a highly extensible method that
minimizes the computation and memory access at the inter-
layer level and intra-layer level while bringing no accuracy
loss. Its efficient design makes it an ideal solution for HPC
environments handling real-time, large-scale dynamic graphs.

Our contributions can be summarized as follows:
1) New Findings: We found the gap between the theoreti-

cally affected area and the real affected area for GNN inference
on dynamic graphs with a monotonic aggregator. We also
found that a node embedding can evolve incrementally from
an old result in the previous timestamp.

2) Minimal Overhead: InkStream requires minimal data
access and computation by pruning the effect propagation tree
and reusing the previous results.

3) Generality: Our method can be applied to a wide range
of GNNs through simple configuration, and four mainstream
aggregation functions are supported.

4) No Accuracy Loss: InkStream accelerates GNN in-
ference by optimizing the redundant computation without
changing the model structure, ensuring an arithmetic level
equivalence to the class methods.

5) Large Performance Improvement: Evaluated on three
GNN models and six datasets, our experiment shows that
our method can reduce the inference time from hours to
milliseconds.

II. INKSTREAM

InkStream takes the result of an initial full graph inference
as input and incrementally updates with a batch of edge
removal or insertion requests. During the full graph inference,
we save the embedding before and after aggregation for the
whole node set in all layers. As the hidden state dimension is
usually carefully designed and small (16-256), much smaller
than the feature length (100-8710 in our experiments), the
memory cost is acceptable and worth the speedup. For clarity,
we first introduce the notations used in this paper and the
expressiveness of InkStream. Later, we present the overall
workflow and each component of the workflow in detail.
Notations. Table I lists the notations used in the paper for
streaming graphs and GNNs. A graph is denoted as G(V ,E),
with vertex set V and edge set E. Between two timestamps, a
set of edges ∆G is modified, either inserted or removed. The
direct neighborhood of a vertex u is N(u). In the message-
passing mechanism, there is a combination phase and aggre-
gation phase, with flexible ordering. The operations in each
phase can also be customized for different tasks. We abstract
the computation in combination phase into a function T (), and

TABLE I: Notations

Notations Descriptions
G(V ,E) graph G with vertices V and edges E
∆G modified edges between two timestamps
N (u) direct neighborhood of vertex u

A() aggregation function
T () combination function
act() activation function
hl,u hidden state of vertex u in layer l
ml,u message sent from vertex u in layer l
αl,u embedding of u after aggregation in layer l
□ data in current timestamp
□− data in previous timestamp

the aggregation function A(). At the end of each layer, there
is an element-wise activation function act(). In a multi-layer
GNN model, we name the embedding of node u before being
fed into layer l as hl,u, which is the input of layer l. Inside
the layer l, we name the input and output of the aggregation
phase as the message ml and the aggregated neighborhood αl

respectively, where αl,u = A(ml,v : v ∈ N(u)). When
aggregation phase is first executed in a layer, ml = hl,
otherwise, ml = T (hl). To distinguish results in previous and
current timestamps, a superscript − is used.
Expressiveness. InkStream can describe any GNNs built on
the message-passing framework as long as:
(1) One node’s message in a layer only depends on its
message and aggregated neighborhood in the previous layer:
ml+1,u = act(T (αl,u,ml,u)). In this case, a changed edge’s
impact only propagates along the edges or to the node itself
in the next layer. Thus, the changed edge will not influence a
significant portion of the graph. An exception to this principle
occurs with normalization layers in GNNs, which compute
mean and variance across a set of vertices. In dynamic graphs,
any modification to the vertex set requires an update to these
statistics. To address this challenge, we propose an approxi-
mation method for the graph normalization layer, detailed in
section II-E.
(2) The aggregation process is partially or fully reversible,
so the old node embedding can be reversed by canceling a
neighbor’s old impact. We define fully (partially) reversible as
“a node embedding can always (in certain conditions) be re-
versed by canceling a neighbor’s old impact.” Mathematically,
we say a function g is reversible, if there exists a function f ,
such that y∗ = f(y, x), where y = g(A), x ∈ A, y∗ = g(A∗)
with A∗ = A/{x}. For now, our implementation supports four
commonly-used aggregation functions (max, min, mean, and
sum) while irreversible aggregation functions like std are not
compatible with our method. Aggregation with weighted sum
can also be supported once only graph topology information
is used for the weights, like LightGCN [13].

A. InkStream Workflow

InkStream uses events for controlling the update area in a
graph as well as applying incremental updates. An event is a
message carrying the operation, target node, and an embedding

Algorithm 1 InkStream Workflow

Input: GNN model, graph in previous timestamp G−, modified
edges ∆G, messages m− and aggregated neighborhood α− in
previous timestamp.

Output: Updated node representation, updated messages m and
aggregated neighborhood α.

1: for each layer l in GNN do
2: Create events for ∆G in layer l, push to event queue.
3: Group and reduce events targeting same vertex. ▷ Sec. II-B1
4: for each node u in event queue do
5: Get reduced event(s) heading to u in event queue.
6: if aggregation A in layer l is monotonic then
7: Check eligibility of incremental update. ▷ Sec. II-C1
8: if eligible then
9: Incremental update αu,l. ▷ Sec. II-C1

10: else
11: Recalculate αu,l = A(ml,v), v ∈ N(u).
12: end if
13: if event propagation not pruned: αu,l ̸= α−

u,l then
14: ml+1,u = act(T (αl,u,ml,u))
15: Propagate events to N(u), N−(u). ▷ Sec. II-B2
16: end if
17: end if
18: if aggregation A is accumulative then
19: Incremental update αu,l. ▷ Sec. II-C2
20: Propagate events to N(u), N−(u). ▷ Sec. II-B2
21: end if
22: end for
23: end for

vector. It tells whether to add or cancel the impact of the
vector on the target node’s embedding. Following this, in the
subsequent layers, every real affected node propagates events
to its neighbors, which will be processed in the next layer.

Algorithm 1 shows the overall workflow for InkStream.
At the start of each layer, events for each changed edge
are generated and added to an event queue (line 2). Events
targeting the same node and with the same operation are then
grouped and reduced to a single event (line 3). For layers
using monotonic aggregation functions, InkStream checks if
the target node can be incrementally updated (line 7). If it
can, the update is applied; otherwise, the node’s embedding
is recalculated using all neighbors’ information (line 11). If a
node’s embedding remains unchanged after all events heading
to it are processed, the propagation will stop; otherwise, new
events are created and propagated to the next layer (lines
14-15). For layers with accumulative aggregation functions
(lines 18-21), node embeddings are always affected, and
event propagation will not be pruned. With a fully reversible
aggregation process, incremental updates can be safely applied
to affected nodes with the help of events.

B. Inter-Layer: Event-based Computing Model

We proposed the event-based computing model to manage
the inter-layer propagation. An event is a message carrying the
operation, target node, and embedding vector. The embedding
vector is heavy and shared among multiple events (e.g., a node
tells all its neighbors to add an impact of its new embedding).
Therefore, we separate the lightweight event metadata and

A
C

BD

max =

E

[14, 16, 8, 1] [13, 13, 3, 2]

[11, 16, 12, 3][12, 11, 14, 12]

 [14, 16, 12, 3] [, , 12, 3]

Recompute

Delete ① [14, 16, 12, 3] [, , 12, 3]
Add ② [12, 11, 14, 12]

(a)

(b)

(c)

Delete ①

 [14, 16, 12, 3]
Add ③

[15, 18, 14, 3]
Delete ①

 [14, 16, 12, 3] Add ②
Delete ①

①

②

A
C

BD

F

[14, 16, 8, 1] [13, 13, 3, 2]

[11, 16, 12, 3][15, 18, 14, 0]

①

③

(d)

(e)

(f)

Costly Recompute

Wrong Result

Efficient & Correct
Inevolvable, recompute

Evolvable, inc. update

Add ② [13, 16, 14, 12]

[13, 16, 14, 12]

Fig. 4: Illustrative example for the necessity of grouping
for max aggregation function. (a-b) Example graphs with
different newly inserted edges. (c) Derivation of α−

l,A. (d-e)
Processing events sequentially can be costly or with wrong
result. (f) Analyzing all events to determine when efficient
incremental updates can be applied ensures correctness while
saving computation.

heavy node embeddings into two lists to reduce memory
consumption. For simplicity, in the paper, we assume that a
vector is directly associated with an event, without delving
into the underlying data structure.

There are four types of operations: Add and Del for
monotonic aggregation functions, Update for accumulative
functions, and User for other non-native user-defined ag-
gregation functions. For example, {Del, 5, [10, 1, 0, 2]}
means to cancel the contribution of vector [10, 1, 0, 2] to the
old aggregated neighborhood of vertex 5, α−

5,l, in the current
layer with a monotonic aggregation function. For layers with
accumulative aggregation functions, to eliminate the influence
of an old node embedding of a neighbor, we create an event
with operation Update, carrying a message of the negative
of the previous node embedding, and vice versa.

With the help of our event-based computing model, we can
easily manage the computation for the affected area. If one
node’s embedding remains the same after finishing the impact
addition and cancellation in the events heading to it, it will not
further propagate events to save computation afterward. The
event-based computing model has two primary components:
1) Grouping: group and reduce events heading to the same
target node. 2) Propagation: propagate the effect to neighbors.

1) Event Grouping:
Necessity of event grouping. If one node u has multiple
neighbors changed in the former layer, it will receive several
events, non-continuously stored in the event list. It is inefficient
to iterate the event list sequentially and process each event
separately, as the old aggregated neighborhood needs to be
fetched each time. Instead, we group the events heading to
the same node and process all of them at the same time. More
importantly, for layers with monotonic aggregation functions,
event grouping also improves the evolvability of nodes. For
example, as shown in Figure 4a-c, vertex A is connected
with B, C, and D in the last timestamp, with an aggregated
neighborhood [14, 16, 12, 3]. This node receives two events to
update its aggregated neighborhood, one for impact deletion
for a dominating neighbor’s message [14, 16, 8, 1] and the

other for addition. After the deletion, the first half of the
embedding is found affected and needs to be reset with a
default value ∞. If the two events are processed independently
(Figure 4d), since there are two irrecoverable channels after
deletion, we must fetch all neighbors’ information and recom-
pute in a classic method to get the correct result. For another
option, if the incremental update is directly applied without
knowing other events (Figure 4e), a wrong result could be
derived. However, if all events are processed together, we can
leverage them and decide whether the incremental update can
be applied while ensuring a correct result (Figure 4f). After
grouping by target node, the events with the same operation
are reduced into one event to reduce data movement in the
following process.
Process of event grouping. To conduct the event grouping,
we iterate through the event list and group the events by first
the target node and then the operation. Next, when monotonic
aggregation functions are applied, we reduce all grouped
events in the same group with the aggregation function. In
the case of accumulative functions, the events are reduced by
summing up.

2) Event Propagation:
When one node has its embedding or connectivity changed

in a layer, a set of events will be created for each neighbor,
carrying the message whose impact will be canceled or added.
Then, these events will be pushed to the event queue for
the next layer. In this section, we introduce how these two
conditions are handled in our event-based computing model.
Propagate for changed edges. At the beginning of processing
one layer l, we create events for destinations of changed
edges. The events will later be consumed when processing
the current layer l. Take the monotonic aggregation function
as an example. Suppose the edge (u, v) is removed. To cancel
impact of the old message m−

l,u, an event is created, containing
the operation Del, target node v, and the old message m−

l,u.
For an inserted edge (s, t), the new message ml,s — remains
unaffected or updated when processing the former layer — is
used to create an event with an Add operation. In the case
of accumulative aggregation functions, the message −m−

l,u

(m−
l,u) will be used in events with Update operation for edge

removal (insertion).
Propagate for affected nodes. At the end of processing
the layer l, InkStream creates events for the neighbors of
those affected nodes in the next layer l+1. These events will
later be consumed in the processing of the next layer. The
procedure differs from the handling of changed edges, as it
necessitates first canceling the effect of the previous message
before incorporating the new one. For an affected node u
whose aggregated neighborhood changed from α−

l,u to αl,u,
InkStream first calculates its message in the next layer accord-
ing to the model configuration, e.g., ml+1,u = act(T (αl,u)).
Then InkStream creates events to cancel the impact of m−

l+1,u

and add the impact of ml+1,u.
Duplicated events exist if one node is the destination of a

changed edge and the source node is affected in the former
layer. To avoid this situation, InkStream skips the propagation

06 2 5 9 06 2 5 9 06 2 5 9

No Reset Covered Reset Exposed Reset

04 2 5 3

14 5 9 3

06 2 5 9

missing

04 2 5 9

14 5 9 9

No Deletion Deletion No Effect

37 9 8 10

04 2 4 3

14 5 4 3

36 9 5 10

14 5 9 10

36 9 8 9

04 2 5

 = min

Fig. 5: Events’ Effect: Three Conditions.

of an affected node once it is the source node of a changed
edge.

C. Intra-layer: Incremental Update

Inside each layer, after event grouping, InkStream takes the
grouped events of a target node and updates its node embed-
ding. The update approach differs for monotonic aggregation
functions and accumulative aggregation functions.

1) Approaches for Monotonic Aggregation Functions:
In the case of monotonic aggregation functions, InkStream first
checks whether incremental update can be applied and then
updates the node embedding either with incremental update
or recomputation in a classic way.
Applicable conditions. The effect of events on the old
aggregated neighborhood can fall into three categories, and
incremental updates can be applied in two of them. For
clarity, we define the notations first. After event grouping
without reduction, target node u has a set of messages to be
deleted [m−

1 ,m
−
2 , . . . ,m

−
p] and a set of messages to be added

[m1,m2, . . . ,mq]. For target node’s old result, α−
l,u, if there is

any channel where the old result equals to the message to be
deleted, ∃ i ∈ [0, n], j ∈ [1, p], s.t. α−

l,u[i] = m−
j [i], where n

is the dimension of α−
l,u, then α−

l,u need to be reset at channel i.
Since the aggregation function is monotonic and the messages
to be deleted are a subset of the whole neighborhood informa-
tion α−

l,u encapsulates, a reset channel can only appear in the
message whose value at that index is the maximum (minimum)
among all messages to be deleted. Therefore, without loss
of correctness, these messages are reduced before checking:
m−

A = A(m−
1 ,m

−
2 , . . . ,m

−
p), mA = A(m1,m2, . . . ,mq).

There are three conditions of how events affect the old re-
sult: no reset, covered reset, and exposed reset. An illustrative
example is shown in Figure 5. 1) No Reset. When there is no
channel that needs to be reset, ∀ i ∈ [0, n], α−

l,u[i] ̸= m−
A[i],

incremental update can be applied. Especially there are two
cases in this condition: there is no message to be deleted;
or the deletion has no influence on the old result α−

l,u.
2) Covered Reset. When the channels that need to be reset are
covered by the message to be added, incremental updates can
also be applied. Suppose there is a set of channels that need to
be reset, D. We say D is covered by the new message mA, if
for any channel i in D, the message to be added is ”better” than
the message to be deleted, ∀i ∈ D, A(m−

A[i],mA[i]) = mA[i].
Despite the fact that part of the old result is affected and
needs to be reset, the correctness of incremental updates can
be ensured due to the transitivity of monotonic functions. The

key insight is the fact that messages from unaffected neighbors
are dominated by the deleted value. Therefore, if the reduced
new message dominates the deleted value, it must dominate
the others. 3) Exposed Reset. When channels need to be reset
and are not fully covered by the new message, recompute is
necessary to ensure a correct result.
Update and propagate. Once incremental update can be
applied to a node u, it will be updated with the reduced
addition messages: αl,u = A(α−

l,u,mA). Specifically, in no
reset condition, there is also a chance that the new message has
no impact on the old result, such that αl,u = α−

l,u. Therefore,
InkStream compares αl,u against α−

l,u to check whether the
node has been affected. If the node is resilient to the changes, it
will not propagate events to its neighbors. In other cases, where
node 1) has been updated without a reset, 2) has covered reset,
or 3) is recomputed, inter-layer propagation will be initiated.

When incremental update is not applicable, all messages
from neighbors in the current timestamp are fetched and
aggregated to recompute the node: αl,u = A(ml,v : v ∈ Nu).
Note that no additional computation is required to get ml,v .
As ml,v is calculated from αl−1,v , then ml,v ̸= m−

l,v if and
only if αl−1,v ̸= α−

l−1,v . There are only three types of nodes
in a layer: unaffected, resilient, and affected. If v is unaffected
or resilient in layer l-1, then αl−1,v = α−

l−1,v , ml,v = m−
l,v . If

v is affected in layer l-1, αl−1,v and ml,v will be computed
and updated when processing layer l-1.

2) Approaches for Accumulative Aggregation Functions:
Consider the sum function to exemplify how a node’s new
aggregated neighborhood is derived from its previous result.
The calculation is simplified as follows:

αl,u = α−
l,u +

∑
∆ml,v∗ +

∑
−m−

l,v+ +
∑

ml,v′

where α−
l,u represents the old aggregated result, ∆ml,v∗ =

ml,v∗ − m−
l,v∗ denotes the change in messages from nodes

in both the old and new neighborhoods (v∗ ∈ Nu ∩N−
u),∑

−m−
l,v+ accounts for messages from deleted edges (v+ ∈

N−u−Nu), and
∑

ml,v′ represents messages from newly
inserted edges (v′ ∈ Nu −N−

u). In InkStream, the impact
canceling and adding for accumulative aggregation functions
share the same event operation Update, but different symbols
(+/-) for the message. Therefore, to incrementally update the
old aggregated neighborhood α−

l,u to the new one αl,u, we
can simply add it with the sum of all the messages carried
by events heading to the same node. That is, αl,u = α−

l,u +
sum(msg). In another case of aggregation function mean,
α−
l,u =

d−
u

du
(α−

l,u + sum(msg)).

D. Flexible User-Defined Functions

To support models with more complex operations, we allow
users to define their own event propagation, grouping and
apply functions apart from the management of native events
in InkStream. Specifically, InkStream provides three interfaces
for customization: user propagate, user grouping
and user apply functions. user propagate allows

users to create and propagate customized events, exe-
cuted together with InkStream’s built-in propagation func-
tion. user grouping defines the grouping and processing
of customized events during the events grouping process.
user apply contains the logic to apply the effect of cus-
tomized events to the tensor at a phase level. The management
of user-defined events is isolated from the native functions.
Figure 6 shows the operations in a GraphSAGE [17] layer and
its corresponding InkStream implementation. The computation
regarding neighborhood aggregation W1A({hl−1,v : v ∈ Nu})
is managed by native InkStream events, while the additional
logics W2hl−1,u is expressed with user-defined events. With
a few lines of additional code, InkStream can be customized
to support varied model structures.

def user_apply(events, base_value, intm, layer, node):
 if "user" not in events.keys() :
 # use saved intermediate result,
 right_side = intm[layer]['before'][node]
 else: # use updated
 right_side = events['user']
 return base_value + convs[layer].lin_r(right_side)

def user_grouping(messages):
 return messages

def user_propagate(node, value, event_queue):
 event_queue.push_user_event("user", node, value)

user defined functions in InkStream

CONV
CONV

...

managed by
native events

managed by
user-defined events

Fig. 6: Equations, illustration and InkStream implementation
for GraphSAGE. ReLU is hidden in the figure for clarity.

E. Support for other operators

Graph Normalization. Graph normalization (GraphNorm)
layer [19] presents a challenge for real-time inference in
dynamic graphs. GraphNorm computes mean and variance
across all vertices, which are affected by any modifications
to the vertex set. To address this, we design an approximation
of GraphNorm, which maintains the model’s accuracy while
allowing efficient updates. We propose using the mean µ and
variance σ2 values computed during the model’s training phase
as approximations for these statistics during inference. Note
that the training happens periodically to evolve the model
with the graph, and the approximated statistics are only used
between two training phases. This method is particularly effec-
tive for GraphNorm in scenarios with limited vertex removal
or insertion, where the feature matrix remains relatively stable.
Sampling. Graph sampling is an important technique in GNN
for memory efficiency, model scalability, training/inference
speed, and so on. With minimal memory access and
millisecond-level inference time, no sampling is used in
InkStream by default. However, graph sampling strategies can
be seamlessly supported, once the sampled graph structure
is known before the inference, like random neighbor sam-
pler [17], and random walk-based sampler [20]. To support
such sampling, one needs to cache the structure of the sampled
neighborhood from the last timestamp and compare it with
the one in the current timestamp. The differences in the two
sampled neighborhoods can be represented as a list of edge
removal and insertion.

F. Updating Vertices
Vertex operations, including deletion, insertion, and update,

are also handled by events in InkStream. To illustrate the pro-
cess, we’ll focus on the example of updating vertex features,
which demonstrates the core principles applicable to all vertex
operations.

For a vertex u with a new feature x, the update process
begins by computing the new message m1,u for the first
layer. If aggregation precedes transformation in the GNN
architecture, m1,u is simply set to xu. Otherwise, m1,u is
computed as T (xu). Next, InkStream propagates the effect
of this update by applying effect of new message m1,u and
removing effect of saved old message m−

1,u to the node’s
neighbors. This propagation will then proceed layer by layer
and update all the affected nodes.

III. EXPERIMENT EVALUATION

A. Experiment Setup
Benchmark Datasets. Table II lists the six benchmark graph
datasets used in our experiment. The ogbn-products and ogbn-
papers100M are referred to as Products and Papers100M in
figures. To simulate graph dynamics, we assign random edge
creation and deletion times following the work in T-GCN [3].
We use the latest n edges from each dataset to capture a
graph’s snapshot, excluding overly dated interactions that may
introduce noise [1]. n is set as 15M for ogbn-products, 500M
for ogbn-papers100M, and 5M for the rest of the datasets. This
approach also avoids memory overloads when accessing the
whole k-hop neighborhoods of high-degree nodes.
Benchmark GNN models. We choose 2-layer GCN [16], 2-
layer GraphSAGE [17], and 5-layer GIN [18] as the bench-
mark models, following the structure in the original papers.
Hidden state dimension is 64 for GIN and 256 for the rest.
Baseline Methods and Implementation. We
compare InkStream against the following baselines:
PyG (+SAGE sampler): the official implementation from
PyTorch Geometric library [21] with neighbor sampler [17]
(10 neighbors each layer); Graphiler [22]: a state-of-art
compiler stack for GNN acceleration; k-hop: first calculates
the affected area, then inferences for vertices in the affected
area with neighbor loader. We design k-hop following the
core idea of DyGNN [1] that updates only for the affected
area. Since DyGNN deploys a customized model architecture
mainly targeting model accuracy with no other optimization
for efficiency, it cannot be directly used as a baseline.

All baseline methods only take the latest snapshot of graph
structure as input without knowledge of previous timestamps.
Graphiler has an official implementation for GCN but lacks
support for the other two benchmark models. We implemented
the other two models following its original interface. We also
replaced the datasets with our graph snapshots and changed
model parameters for alignment. InkStream, PyG (+SAGE
sampler) and k-hop are implemented with PyTorch Geometric
library [21] without additional kernel level optimization.
InkStream Implementation. We showcase the performance
of InkStream with two variants: InkStream-m for GNN models

TABLE II: Datasets

Dataset ∥V ∥ ∥E∥ Feat. Len. Scale
PubMed (PM) [23] 20K 89K 500 Small

Cora (CA) [24] 20K 127K 8710 Small
Yelp (YP) [25] 717K 114M 300 Medium

Reddit (RD) [24] 233K 14M 602 Medium
ogbn-products (PD) [26] 2.45M 124M 100 Medium

ogbn-papers100M (PP) [26] 111M 1.62B 172 Large

TABLE III: System Configurations

CPU Units Intel Xeon 6230 Host Memory 264 GB
CPU Count 104 GPU Memory 48.3 GB
GPU Units NVIDIA A6000 CPU-Memory Bw. 6.0 GB/s
GPU Count 1 CPU-GPU Bw. 12.3 GB/s

with monotonic aggregation function max, and InkStream-a
for those with accumulative aggregation function mean.
Evaluation. As the location of changed edges between two
timestamps influences the affected area and the execution
time, for k-hop, InkStream-m and InkStream-a, we evaluate
the performance across a set of graph changing scenarios, and
report the average. For 2-layer GCN and GraphSAGE, there
are 100/100/10/10/1 saved scenarios for ∆G=1/10/100/1k/10k
separately. For 5-layer GIN, there are 10 graph-changing
scenarios for ∆G=1. By default, we set the number of changed
edges to 100 for GCN and GraphSAGE, 1 for GIN to
ensure the theoretical affected area is around 10% of the full
graph across all six datasets. The changed edges are evenly
distributed for edge insertion and deletion.
Platforms. We test the performance of InkStream on a CPU-
GPU platform. Table III lists the system configurations.

B. Performance

Table IV shows the comparison of execution time for
the five methods. Despite the use of sampling to enhance
efficiency, PyG (+SAGE sampler) still requires seconds to
hours to perform inference on the entire graph. Both k-
hop and InkStream, which focus on only the affected areas,
achieve speedups of up to several orders of magnitude (greater
than 1,000x). Consequently, we compare the speedup of
InkStream primarily against the k-hop baseline. Compared to
k-hop, InkStream demonstrates 2-282x speedup across various
benchmarks, effectively reducing inference time from hours to
seconds and from seconds to milliseconds. The variability in
speedup trends across different datasets and models is influ-
enced by a combination of factors, including graph density,
model depth, and model complexity.

Comparing across models, InkStream shows better speedup
on GCN than GraphSAGE and GIN in most cases. First, in
GCN, the effect of changed edge only propagates along the
graph edges, while in GraphSAGE and GIN, the effect also
propagates to the node itself in the next layer. Moreover, GCN
has simpler dense computation inside a layer than GraphSAGE
and GIN, making it more memory-bounded and also benefit
more from our memory-efficient solution.

Comparing across datasets, there is no constant trend due to
the interaction of graph size, graph density and model depth.

TABLE IV: Inference time (in ms) comparison. k-hop refers to the baseline of inference only for the k-hop neighborhood.
’OOM’ indicates Out of Memory instances.

PubMed Cora Yelp Reddit ogbn-products ogbn-papers100M
GCN (k=2, ∆G = 100)

PyG (+SAGE sampler) 6.9E+03 9.5E+03 8.6E+04 9.5E+04 2.1E+04 5.8E+08
k-hop 676 (1x) 3,064 (1x) 4,218 (1x) 3,564 (1x) 2,188 (1x) 27,602 (1x)
Graphiler [22] 1.34 (504x) 2.96 (1035x) 70.59 (60x) 346 (10x) 525 (4x) 12,546 (2x)
InkStream-m 128 (5x) 108 (28x) 144 (29x) 61 (59x) 203 (11x) 233 (118x)
InkStream-a 115 (6x) 120 (28x) 106 (40x) 77 (46x) 313 (7x) 426 (65x)

GraphSAGE (k=2, ∆G = 100)
PyG (+SAGE sampler) 5.0E+3 8.8E+03 1.3E+05 5.2E+04 5.1E+05 8.0E+08
k-hop 682 (1x) 3,183 (1x) 4,324 (1x) 3,605 (1x) 1,866 (1x) 30,518 (1x)
Graphiler [22] 1.67 (408x) 4.96 (641x) 83.35 (52x) 449 (8x) OOM OOM
InkStream-m 381 (2x) 410 (8x) 393 (11x) 384 (9x) 710 (3x) 1,617 (19x)
InkStream-a 371 (2x) 391 (8x) 306 (14x) 683 (5x) 796 (2x) 667 (46x)

GIN (k=5, ∆G = 1)
PyG (+SAGE sampler) 3.0E+03 3.6E+04 2.7E+06 2.0E+06 1.2E+06 8.5E+08
k-hop 3,425 (1x) 43,248 (1x) 22,833 (1x) 34,929 (1x) 738,118 (1x) 528,217 (1x)
Graphiler [22] 3.47 (987x) 5.22 (8285x) OOM OOM OOM OOM
InkStream-m 1,756 (2x) 1,694 (26x) 5,579 (4x) 1,502 (23x) 6,488 (114x) 10,305 (51x)
InkStream-a 1,726 (2x) 1,637 (26x) 3,812 (6x) 2,805 (12x) 2,619 (282x) 71,297 (7x)

For example, InkStream-a shows significant speedup on the
ogbn-products dataset with the GIN model (k=5) compared
to the GCN model (k=2). This is because, in the baseline k-
hop method, the entire 2k-hop neighborhood data is fetched
for computation when a vertex is updated, leading to ineffi-
ciencies, particularly in dense graphs. InkStream-a improves
upon this by restricting data fetching to the immediate k-hop
neighborhood, reducing redundant memory access. In contrast,
for the Yelp dataset, InkStream-a’s speedup on GIN is much
lower than that on GCN. This is because the Yelp dataset has
a much smaller graph size with a high graph density. Hence,
even with just one changed edge, the 5-hop neighborhood can
cover over 70% of the entire graph, reducing the benefits of
restricted data fetching.

The baseline Graphiler stands out due to its compiler-
level optimizations, including expert-engineered primitives,
GPU kernels, and data flow graph optimization techniques.
Graphiler compiles model architectures into a message passing
data flow graph abstraction, implementing operations with
GPU kernels. However, it overlooks necessary CPU-based pre-
processing techniques like graph sampling and minibatch data
loading, which are crucial for model scalability. Consequently,
Graphiler can only handle full-graph GNN inference on the
GPU, leading to out-of-memory issues for large graphs and
deep models. Moreover, it is designed for static graphs and
cannot exploit the redundancy in dynamic graph scenarios.
Therefore, in cases of medium and large-size datasets, where
the real affected area only takes a tiny portion of the whole
graph, InkStream outperforms Graphiler despite its highly
optimized code.

Table V shows the reduced memory access and computation
of InkStream, compared with k-hop, for GCN, ∆G=100. Both
InkStream-m and InkStream-a take advantage of efficient intra-
layer incremental updates and save 68%-97% of the memory
access than the classic method of k-hop. With monotonic

aggregation functions, 4% to 68% nodes in the theoretically
affected area are bypassed for computation in InkStream-m
thanks to inter-layer propagation. Note that a resilient node
can also be visited once its neighbor has been affected in the
former layer. So this value will be larger than those reported in
Figure 1b. Although InkStream-a cannot enjoy any saving on
inter-layer effect propagation, the efficient incremental update
can always be applied, making it still efficient.

C. Impact of Number of Changed Edges

Using GCN as a representative example, as it is a typical
message-passing model, we investigate the impact of the num-
ber of changed edges on InkStream’s performance. Figure 7
shows the speedup against the classic method of affected
area inference with the different number of changed edges
between two timestamps. When there is only one changed edge
(∆G=1), the inference time of InkStream(-a/-m) is only 1ms
to 51ms across all datasets, while k-hop takes 277ms to 3.8s.
When refreshing for every 10 changed edges, InkStream(-a/-
m) takes tens of milliseconds, while k-hop consumes 300ms to
20s. Regardless of the model, the speedup shows a decreasing
trend when the number of changed edges ∆G increases.
This is because InkStream monitors the changes in nodes to
avoid unnecessary computation and memory access. When
∆G increases, more nodes in the neighborhood of a node
can be changed, thus increasing the probability of the node
being affected. When the affected area is too large and a non-
trivial portion of the nodes changes, the savings brought by
redundant computation reduction will not be enough to offset
the overhead of monitoring the node changes. Result on dataset
ogbn-papers100M doesn’t fit this trend due to the randomness
introduced by the location of changed edges in a graph. This
randomness is reduced when ∆G is large.

PM CA YP RD PD PP
RNVV InkStream-m (%) 12 12 26 4 20 68
RMC InkStream-m (%) 68 69 70 69 88 97
RMC InkStream-a (%) 80 81 90 88 94 92

TABLE V: Comparison of InkStream-m and InkStream-a
towards k-hop across various datasets, evaluated for GCN,
∆G=100. RNVV: Reduction in the number of visited nodes.
RMC: Reduction in memory cost.

PubMed Cora Yelp Reddit Products Papers100M
0

20

40

60

80

100

Sp
ee

du
p

(v
.s.

 k
-h

op
) 86

112 168 327

62

42

12

32
48

79

36

66

5

26 29

58

10

118

1.3 6 7

53

6

29

0.6 2.5 2.5
14

3
12

(a) InkStream-m

PubMed Cora Yelp Reddit Products Papers100M
0

20

40

60

80

100

Sp
ee

du
p

(v
.s.

 k
-h

op
)

129 123 342 474 113

74

16

37

90
108

39

317

5

24
39

46

6

64

2.6
9 12

25

3
18

1.7 4 5
13

3
10

(b) InkStream-a

G=1 G=10 G=100 G=1000 G=10000

Fig. 7: The effect of the number of changed edges ∆G on
the speedup of InkStream-m and InkStream-a against k-hop,
evaluated for GCN.

D. Distribution of Pruning and Incremental Update Condi-
tions

If a node can be incrementally updated, we can bypass
accessing the whole neighborhood from memory and use the
newly generated events in the previous layer for computa-
tion. Figure 8 shows the distribution of different applicable
conditions for incremental update at the nodes, introduced in
section II-C1, as well as pruned propagation. In GCN and GIN,
over 70% of the nodes in the affected area are either pruned
for computation or can be incrementally updated, resulting
in a significant reduction of inference time. In GraphSAGE,
the exposed reset constitutes a non-negligible fraction because
the model suffers from sensitive node embedding due to self-
impact. Moreover, the shallow network provides less opportu-
nity for pruned propagation compared with the deeper model
of GIN.

E. Memory Cost

In this section, we analyze the additional memory cost
for saving intermediate results of a previous timestamp in
InkStream. To avoid over-smoothing, GNNs are usually shal-
low (k=2 for most cases), with a carefully tuned bandwidth
[15]. Compared with the input feature vector (8710 in Cora),
the intermediate result of node embedding is light (usually
set to 16/32/64/128/256). Moreover, in one layer, InkStream
only sets two checkpoints for saving the intermediate result:

0% 50% 100%

Papers100M
Products

Reddit
Yelp
Cora

PubMed

68%
20%

26%

26%
46%
84%
36%
73%

56%

36%

24%

22%

GCN, G=100

0% 50% 100%

46%

28%
42%

37% 42%

71%
52%

93%
68%

54%

GraphSAGE, G=100

0% 50% 100%

63%
97%

30%

71%
40%

23%

44%
30%

28%

26%
55%

32%

GIN, G=1

Pruned No Reset Covered Reset Exposed Reset

Fig. 8: Distribution of evolvable conditions for nodes in the
affected area, evaluated for InkStream-m.

TABLE VI: Effect of each component in InkStream-m (GCN,
∆G=100). 1: Intra-layer incremental update. 2: Inter-layer
pruned propagation.

Time (ms) k-hop InkStream-m (1) InkStream-m (1&2)
PubMed 676 (1×) 219 (3×) 128 (5×)

Cora 3,064 (1×) 261 (12×) 108 (28×)
Yelp 4,218 (1×) 217 (19×) 144 (29×)

Reddit 3,564 (1×) 100 (36×) 61 (59×)
Products 2,188 (1×) 475 (5×) 203 (11×)

Papers100M 27,602 (1×) 361 (76×) 233 (118×)

immediately before and after the aggregation phase. Therefore,
the saved intermediate results will not bring exploding memory
costs. In our experiments, the additional memory overhead is
0.12-10× the size of the dataset for GCN. However, this is
because we are using a relatively large hidden state dimension
(256), which is longer than the node feature (100 and 172)
for ogbn-products and ogbn-papers100M. When a hidden state
dimension of 32 is used, the additional memory cost is reduced
to only 0.015-1.28× the size of the dataset.

F. Ablation Study

Our ablation study on InkStream-m for the GCN model
reveals the impact of each component on inference time. The
study, summarized in Table VI, compares the performance
of the system with only the intra-layer incremental update
(component 1) against the full implementation incorporating
both intra-layer incremental updates and inter-layer pruned
propagation (components 1&2). When only component 1 is
enabled, InkStream-m accelerates by only fetching the changed
neighbors without visiting the whole neighborhood, similar
to InkStream-a, resulting in 3-36x speedup. When component
2 is enabled, the inference time is further reduced by 1.5-
2.4x, due to shrinking affected area. The combined approach
significantly enhances efficiency, underscoring the importance
of both components in achieving rapid GNN inference on
dynamic graphs.

G. Accuracy Analysis

In this section, we analyze the accuracy of the InkStream
method. For accumulative functions, incremental methods
have been studied in prior works [14], [27]–[29], and proved
to be effective with negligible impact on accuracy. For mono-
tonic functions, the InkStream method (section II-C1) is
equivalent to a well-established method of incremental update

in graph processing algorithms, e.g., single-source shortest
path (SSSP). In InkStream-m, for a layer l with a min
aggregator, the aggregated neighborhood of a vertex u is given
by

αl,u = min(ml,v : v ∈ N(u)).

Without loss of generality, when looking into a single channel,
we have a scalar calculation of

αl,u = min(ml,v : v ∈ N(u)).

This is equivalent to SSSP’s distance calculation:

du = min(dv + wu,v : v ∈ N(u)),

which reduces to

du = min(dv : v ∈ N(u))

when edge weights are zero. Incremental updates for SSSP
have been extensively studied in works [7], [8], [30], estab-
lishing its correctness.

H. Effect of GraphNorm Approximation

Normalization layers play a crucial role in improving the
training and inference stability of graph neural networks.
However, in the dynamic graph scenario, any change in the
vertex set will disturb the mean and variance in a batch
of vertices, causing other vertices to be scaled differently
as before. This disturbance requires other unrelated vertices
to be updated as well. Therefore, there is a need for an
approximation of the normalization layer that reduces this
disturbance while maintaining the model accuracy.

Given the extensive combinations of models and datasets
available, we focus on showcasing the impact of our proposed
approximated GraphNorm layer using the Cora and Reddit
datasets with a 2-layer GCN model. In the model, a Graph-
Norm layer comes after each GCNConv layer. Our experi-
mental setup involves initially training the model with a given
train set and caching the calculated mean and variance used in
the GraphNorm layer for the final inference. Subsequently, we
either remove or add a percentage of vertices from the train
set and evaluate the model accuracy on the test set.

As shown in Figure 9, the models using the GraphNorm
layer with accurate mean and variance, and those with the
approximate mean and variance, exhibit minimal accuracy dif-
ferences (<0.1%). This demonstrates the effectiveness of our
approximation method. Moreover, in the application scenario
of InkStream, the model is expected to be retrained frequently,
and changes in the graph are typically minor between the
two retraining phases (<1%). In such cases, the accuracy
drop caused by the approximated mean and variance in the
GraphNorm layer is negligible.

IV. RELATED WORKS

In this section, we discuss the existing literature related to
GNNs taking dynamic input graphs.

0.66

0.67

0.68

0.69

A
cc

ur
ac

y

Cora

Accurate Approx.

Cora

0% 1% 2% 3% 4% 5%
0.898

0.899

0.9

0.901

Vertices Inserted

A
cc

ur
ac

y

Reddit

0% 1% 2% 3% 4% 5%

Vertices Removed

Reddit

Fig. 9: Model accuracy for 2-layer GCN with accurate and
approximate GraphNorm on Cora and Reddit datasets.

A. Dynamic Graphs

Dynamic graphs add the temporal dimension to static
graphs. At time t, the graph is represented as G(Vt, Et, Xt)
for vertices, edges and features at time t. To maintain such in-
formation, there are two mainstream representations: discrete-
time dynamic graphs (D-TDG) and continuous-time dynamic
graphs (C-TDG) [32]–[34]. The D-TDG takes the dynamic
graph as a set of snapshots captured at discrete timestamps,
while C-TDG treats the dynamic graph as an initial graph with
a series of events, e.g., node insertion and edge removal.

Processing dynamic graphs typically involves either static
GNNs or temporal GNNs. Static GNNs are applied to in-
dividual snapshots of the graph and serve as the target of
InkStream. In contrast, temporal GNNs explicitly incorporate
time information to capture temporal dependencies.

B. Static Graph Neural Networks

Real-time inference of static GNN is critical for large-scale
graph systems and latency-sensitive applications, requiring
rapid adaptation to dynamic and evolving data. BRIGHT [31]
pioneered real-time GNN inference on fraud transaction de-
tection tasks by deploying two networks: Batch Net and
Real-time Net (RT Net). The 1-layer RT Net achieves rapid
inference by reusing previously computed node representations
from Batch Net. In object detection using event cameras,
SlideGCN [28] and AEGNN [14] focus on evolving graphs
constructed from point clouds. These methods incrementally
update the k-hop neighborhood of newly observed or outdated
points while leaving unaffected areas unchanged. This ap-
proach significantly improves efficiency in handling dynamic
point cloud data. Also equipped with incremental updates,
InstantGNN [29] targets linear systems with infinite-hop prop-
agation rather than traditional GNN architectures. Taking
advantage of the linear system, InstantGNN further saves
computation by deferring the update of vertices with small
changes in node representation. From a hardware perspective,
DeltaGNN [27] presents an accelerator implementation for
incremental approaches. On the compiler level, Graphiler [22]

TABLE VII: Qualitative comparison of InkStream to prior works of real-time inference. InkStream is adaptable to general
GNN architectures with minimal restrictions on model architecture and aggregation function; meanwhile, it enjoys minimal
computation brought by reduced update area and incremental update.

Method Scenario Graph Aggregation Networks Reduced Updated Area Inc. Update
BRIGHT-RTNet [31] Fraud Detection D-TDG Any 1-layer GConv No No
SlideGCN [28] Object Detection C-TDG Accumulative two proposed architectures No Yes
AEGNN [14] Object Detection C-TDG Accumulative GCN + Max Pooling No Yes
InstantGNN [29] General C-TDG Accumulative Linear System-based GNN Yes Yes
DeltaGNN [27] General C-TDG Accumulative General No Yes
Graphiler [22] General Static Any General No No
InkStream (Ours) General C-TDG Accumulative & Monotonic General Yes Yes

compiles GNNs with user-defined functions into the proposed
message passing data flow graph abstraction and applies
optimizations on it to get efficient execution plans. Benefiting
from the optimized execution plan with carefully engineered
primitives and GPU kernels, Graphiler successfully reduces
the inference time to a millisecond level.

While these methods have made significant contributions,
they often face limitations in terms of generalizability or
efficiency under dynamic graph scenarios. All existing incre-
mental approaches are specialized for certain tasks or model
structures, and restricted to using sum as the aggregation
function. The general approach of Graphiler, however, is
designed for static graphs and overlooks the redundancy in the
dynamic graphs. Table VII shows the qualitative comparison
of InkStream with prior works focusing on instant GNN
inference. This comparison highlights the unique features and
advantages of InkStream in the context of existing real-time
GNN inference methods.

C. Temporal Graph Neural Networks

Temporal Graph Neural Networks extend the capabilities
of static GNNs by incorporating time-dependent dynamics,
enabling effective modeling of evolving graph structures. In
the context of D-TDGs, the graph structure changes at fixed
time intervals. DynamicTriad [35] proposed a method that
captures both structural and temporal information by mod-
elling the triadic closure process. GCRN [36], DySAT [37] and
A3TGCN [38] stacks the RNN layer after the GNN layer, each
capturing one kind of information. EvolveGCN [2] introduced
an approach where the GNN parameters are evolved using
an RNN. EPNE [39] extended node embeddings to dynamic
graphs by incorporating temporal random walks and network
snapshots.

C-TDGs present a more challenging scenario, as they model
interactions that occur at arbitrary time points. JODIE [40]
proposed a coupled recurrent neural network architecture to
learn time-dependent node embeddings for bipartite graphs.
TGAT [41] leveraged self-attention mechanisms to aggregate
temporal neighbor information, while other approaches like
TGN [42] introduced memory modules to capture long-term
dependencies in dynamic graphs.

Recent advancements also focus on improving the effi-
ciency of temporal GNNs. DyGNN [1] enhances computa-
tional efficiency by restricting the update area around newly
inserted edges and nodes. APAN [43] introduces an efficient

attention mechanism that adaptively selects important histor-
ical interactions. TGL [44] unifies various temporal GNN
models and incorporates a learnable time encoding method.
DistTGL [45] improves convergence rate on distributed GPU
clusters through novel model architecture and training algo-
rithm. RTGA [46] accelerates temporal GNN inference by
reducing redundant computation and memory access through
temporal tree structures and temporal-aware data caching.
TGLight [47] accelerates runtime performance by providing
C-TDG-specific optimizations such as deduplication, memo-
rization, and precomputation.

These approaches have significantly advanced the field of
dynamic graph representation learning, enabling more accurate
modeling of time-evolving networks across various domains.
While temporal GNNs offer superior representation quality,
they incur substantially higher computational costs compared
to static GNNs, as they must process both temporal and struc-
tural information. This computational burden impacts their
scalability — for instance, the largest dataset processed by a
SOTA temporal GNN acceleration framework, TGLight [47],
is merely 1% of the size handled by InkStream. Furthermore,
temporal GNNs exhibit higher inference latency, demonstrated
by 2-14x longer inference times reported in TGLight [47]
on the Reddit dataset, even when using more powerful GPU
hardware. This performance gap highlights the need for meth-
ods specifically designed for real-time inference in dynamic
graphs, precisely where our proposed method, InkStream, aims
to contribute.

V. CONCLUSION

InkStream introduces a novel, efficient approach for real-
time GNN inference on dynamic graphs, specifically targeting
the HPC environment with large-scale graphs. By minimizing
computational overhead through selective propagation and
incremental embedding updates, InkStream significantly ac-
celerates processing times without sacrificing accuracy. Our
results demonstrate that InkStream reduces inference time
from hours to milliseconds across multiple GNN models and
datasets. Unlike previous works, which have strong restrictions
on model architecture and only one supported aggregation
function, InkStream is general enough to express most GNN
architectures and all common aggregation functions; it pro-
vides a scalable, versatile solution for real-time inference in
dynamic settings.

REFERENCES

[1] J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J.-R. Wen,
Y. Liu, Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming Graph
Neural Networks,” Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020.

[2] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 5363–
5370.

[3] C. Huan, S. L. Song, Y. Liu, H. Zhang, H. Liu, C. He, K. Chen, J. Jiang,
and Y. Wu, “T-gcn: A sampling based streaming graph neural network
system with hybrid architecture,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2022,
pp. 69–82.

[4] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-
Johnson, and T. S. Huang, “Streaming recommender systems,” in
Proceedings of the 26th international conference on world wide web,
2017, pp. 381–389.

[5] D. Yang, B. Qu, J. Yang, L. Wang, and P. Cudre-Mauroux, “Stream-
ing graph embeddings via incremental neighborhood sketching,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp.
5296–5310, 2022.

[6] P. Bielak, K. Tagowski, M. Falkiewicz, T. Kajdanowicz, and N. V.
Chawla, “Fildne: a framework for incremental learning of dynamic
networks embeddings,” Knowledge-Based Systems, vol. 236, p. 107453,
2022.

[7] V. Salapura, M. Zahran, F. Chong, L. Tang, J. Zhao, Y. Yang, Y. Zhang,
X. Liao, L. Gu, L. He, B. He, H. Jin, H. Liu, X. Jiang, and H. Yu,
“TDGraph: a topology-driven accelerator for high-performance stream-
ing graph processing,” Proceedings of the 49th Annual International
Symposium on Computer Architecture, pp. 116–129, 2022.

[8] S. Rahman, M. Afarin, N. Abu-Ghazaleh, and R. Gupta, “JetStream:
Graph Analytics on Streaming Data with Event-Driven Hardware Accel-
erator,” MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 1091–1105, 2021.

[9] M. Afarin, C. Gao, S. Rahman, N. Abu-Ghazaleh, and R. Gupta, “Com-
monGraph: Graph Analytics on Evolving Data,” ACM Transactions on
Storage, vol. 15, no. 4, pp. 1–40, 2019.

[10] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmooth-
ing in graph neural networks,” arXiv preprint arXiv:2303.10993, 2023.

[11] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[12] X. Gao, W. Zhang, J. Yu, Y. Shao, Q. Nguyen, B. Cui, and
H. Yin, “Accelerating scalable graph neural network inference
with node-adaptive propagation,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE). Los Alamitos, CA,
USA: IEEE Computer Society, may 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICDE60146.2024.00236

[13] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” in Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, 2020, pp. 639–
648.

[14] S. Schaefer, D. Gehrig, and D. Scaramuzza, “Aegnn: Asynchronous
event-based graph neural networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
12 371–12 381.

[15] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[17] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[18] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[19] T. Cai, S. Luo, K. Xu, D. He, T.-y. Liu, and L. Wang, “Graphnorm:
A principled approach to accelerating graph neural network training,”

in International Conference on Machine Learning. PMLR, 2021, pp.
1204–1215.

[20] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD inter-
national conference on knowledge discovery & data mining, 2018, pp.
974–983.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[22] Z. Xie, M. Wang, Z. Ye, Z. Zhang, and R. Fan, “Graphiler:
Optimizing graph neural networks with message passing data
flow graph,” in Proceedings of Machine Learning and Systems,
D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022, pp. 515–
528. [Online]. Available: https://proceedings.mlsys.org/paper/2022/file/
a87ff679a2f3e71d9181a67b7542122c-Paper.pdf

[23] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in International conference on ma-
chine learning. PMLR, 2016, pp. 40–48.

[24] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” arXiv preprint
arXiv:1707.03815, 2017.

[25] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[26] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[27] C. Yin, J. Jiang, Q. Wang, Z. Mao, and N. Jing, “Deltagnn: Accelerating
graph neural networks on dynamic graphs with delta updating,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2023.

[28] L. Yijin, Z. Han, Y. Bangbang, C. Zhaopeng, B. Hujun, and Z. Guofeng,
“Graph-based asynchronous event processing for rapid object recogni-
tion,” in International Conference on Computer Vision (ICCV), October
2021.

[29] Y. Zheng, H. Wang, Z. Wei, J. Liu, and S. Wang, “Instant graph neural
networks for dynamic graphs,” in Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining, 2022, pp. 2605–
2615.

[30] K. Vora, R. Gupta, and G. Xu, “Kickstarter: Fast and accurate computa-
tions on streaming graphs via trimmed approximations,” in Proceedings
of the twenty-second international conference on architectural support
for programming languages and operating systems, 2017, pp. 237–251.

[31] M. Lu, Z. Han, S. X. Rao, Z. Zhang, Y. Zhao, Y. Shan, R. Raghunathan,
C. Zhang, and J. Jiang, “Bright-graph neural networks in real-time fraud
detection,” in Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, 2022, pp. 3342–3351.

[32] Z. Feng, R. Wang, T. Wang, M. Song, S. Wu, and S. He, “A
comprehensive survey of dynamic graph neural networks: Models,
frameworks, benchmarks, experiments and challenges,” arXiv preprint
arXiv:2405.00476, 2024.

[33] L. Yang, C. Chatelain, and S. Adam, “Dynamic graph representation
learning with neural networks: A survey,” IEEE Access, vol. 12, pp.
43 460–43 484, 2024.

[34] A. Gravina and D. Bacciu, “Deep learning for dynamic graphs: models
and benchmarks,” IEEE Transactions on Neural Networks and Learning
Systems, 2024.

[35] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[36] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
Neural Information Processing: 25th International Conference, ICONIP
2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part
I 25. Springer, 2018, pp. 362–373.

[37] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in Proceedings of the 13th international conference on web search and
data mining, 2020, pp. 519–527.

[38] J. Bai, J. Zhu, Y. Song, L. Zhao, Z. Hou, R. Du, and H. Li, “A3t-gcn:
Attention temporal graph convolutional network for traffic forecasting,”
ISPRS International Journal of Geo-Information, vol. 10, no. 7, p. 485,
2021.

[39] J. Wang, Y. Jin, G. Song, and X. Ma, “Epne: Evolutionary pattern
preserving network embedding,” in ECAI 2020. IOS Press, 2020, pp.
1603–1610.

[40] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1269–1278. [Online]. Available:
https://doi.org/10.1145/3292500.3330895

[41] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “In-
ductive representation learning on temporal graphs,” arXiv preprint
arXiv:2002.07962, 2020.

[42] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
arXiv preprint arXiv:2006.10637, 2020.

[43] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui,
Y. Yang, B. Sun et al., “Apan: Asynchronous propagation attention
network for real-time temporal graph embedding,” in Proceedings of
the 2021 international conference on management of data, 2021, pp.
2628–2638.

[44] H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis,
“Tgl: A general framework for temporal gnn training on billion-scale
graphs,” arXiv preprint arXiv:2203.14883, 2022.

[45] H. Zhou, D. Zheng, X. Song, G. Karypis, and V. Prasanna, “Disttgl:
Distributed memory-based temporal graph neural network training,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2023, pp. 1–12.

[46] H. Yu, Y. Zhang, A. Tan, C. Lu, J. Zhao, X. Liao, H. Jin, and H. Liu,
“Rtga: A redundancy-free accelerator for high-performance temporal
graph neural network inference,” in Proceedings of the 61st ACM/IEEE
Design Automation Conference, 2024, pp. 1–6.

[47] Y. Wang and C. Mendis, “Tglite: A lightweight programming framework
for continuous-time temporal graph neural networks,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024, pp.
1183–1199.

