PR’ : Power Efficient and Low Latency
Baseband Processing for LTE Femtocells

Nishant Budhdev, Mun Choon Chan, Tulika Mitra
School of Computing, National University of Singapore
{nishant, chanmc, tulika}@comp.nus.edu.sg

Abstract—In order to provide greater network capacity, the
use of small base stations such as Femtocells has increased to
allow higher spectrum reuse. In these Femtocells, base station
designers have started to explore the use of general purpose
multi-core architectures to provide greater flexibility.

Multi-core architectures allow power-performance trade-off
possibilities through techniques such as Dynamic Voltage Fre-
quency Scaling (DVFS) and Power Gating. In this work, we
propose a power management framework based on reinforcement
learning called PR®, which uses both DVFS and Power Gating.
Our approach is unique as it introduces a feedback from
the network scheduler and baseband processor to the Power
Governor, so that information about both the network and
computation workloads are included in the decision making.

Evaluation on a hardware platform (Odroid XU3) running
PHY LTE uplink baseband processing benchmark, shows that
PR® performs well in terms of both power and latency. It is
able to save upto 50% power while maintaining low processing
latency. PR® is also adaptive, making it effective over a wide
range of traffic loads.

I. INTRODUCTION

Future generations of cellular networks will be driven by
the need to support Internet access with shorter latency and
larger data usage. The next generation of cellular networks,
the 5' Generation (5G), will also be expected to provide
support for new use cases such as Internet-of-Thing (IoT)
services. To support these requirements, cellular networks have
embraced heterogeneity. Heterogeneous networks (HetNet) are
composed of a combination of different base station types
which can support multiple access technologies.

Early generations of cellular networks were primarily com-
posed of Macro and Microcell base stations, which cover
a large area, and are owned and maintained by the service
providers. However recent years have seen an increase in
the deployment of Femtocell base stations which have sub-
stantially shorter range. By 2012, Femtocells had already
outnumbered traditional base station installations [1]. As of
2016, it is estimated that nearly 18 million Femtocells have
been deployed [2]. This number is estimated to double by 2021
to 37 million. Today, over 90% of these Femtocells are in-
stalled in residential areas, and the initial hardware cost along
with operating costs are borne by customers. This is a major
limitation as each network protocol update requires customers
to buy new hardware for accessing new and updated features.
As a result, even though Femtocells promise higher network
capacity and better service quality to customers, reducing

the fixed and operating costs for Femtocells is necessary to
accelerate the rate of adoption.

One way to improve flexibility and reduce hardware cost,
is to use general purpose processors for baseband processing.
Traditionally baseband processing on base stations is per-
formed by an ASIC or DSP [3]. Using ASICs is expensive
as the non-recurring engineering (NRE) costs, for a dedicated
ASIC design, are exorbitant. On the other hand, DSP’s require
complex programming, making integration into Femtocells
tedious. In contrast, today’s general purpose processors, like
the x86 family or the multi-core ARM Cortex-A series,
can meet the processing demands while providing ease of
programming. Furthermore, general-purpose processors are
cheap and provide flexibility for future modifications. This
flexibility also allows manufacturers to utilize off-the-shelf
components to design Femtocells with different capabilities.
Multiple recent works show that baseband processing can be
performed using GPU [4] or general-purpose processors [S][6].

The major operating cost associated with Femtocells arises
from its power consumption. Femtocells can consume up to
11W [7], of which 40% is attributed to the baseband processor.
Furthermore, general-purpose processors today provide tech-
niques, such as DVFS and Power Gating, for achieving dif-
ferent power-performance trade-off. The power-performance
trade-off on these multi-core general-purpose processors is
regulated by the Power Governor. Existing Power Governors
use only processor utilization to determine the optimal trade-
off. This is a major drawback for baseband processing as these
governors do not take into account network statistics and as a
result are unable to adapt to traffic load variations.

The main contribution of this paper is a new Power
Governor algorithm based on Reinforcement Learning called
PR3. PR? takes into account: the expected network load
provided by the LTE network scheduler, the current system
state (e.g., queue length) and past performance information
(e.g., recent average latency and power consumption). PR3
combines these attributes to determine the appropriate action
to save power while maintaining network QoS constraints such
as latency and loss. In short, the three types of attributes:
Proactive, Reactive and Retrospective respectively, along with
Reinforcement Learning form PR? .

We evaluate PR3 on a real multi-core platform (Odroid
XU3 board) running the PHY benchmark [8], an open-source
LTE uplink baseband processing implementation. We show

that PR? produces good performance across a wide range of
network traffic load for Femtocells. At low network load, PR3
achieves average subframe processing latency well below 1ms
while reducing the power consumption by 50% as compared to
existing Power Governor algorithms. At higher network load,
PR? achieves lower average subframe latency while reducing
the power consumption by 20%.

The paper is organized as follows: we present the back-
ground in Section II, the framework is described in Section III
and the proposed algorithm in Section IV. Evaluation results
are presented in Section V. Finally, we present related work
in Section VI and the conclusion in Section VII.

II. BACKGROUND
A. Overview of LTE and Femtocells

In LTE, the bandwidth is divided into multiple subcarriers
of 15kHz each. As there can be tens of thousands of sub-
carriers on large base stations, subcarriers are grouped into a
Physical Resource Block (PRB) to reduce resource allocation
complexity. PRBs are allocated to users every subframe for
transmission. For LTE, each subframe is 1ms. Data transmitted
within each subframe depends on the modulation scheme,
the coding rate, and the number of PRBs allocated. Higher
layer modulation schemes or better coding rates transmit larger
amounts of data. For example, 64QAM transmits up to 3 times
more data than QPSK within a subframe.

LTE base stations perform the following functions:

1. Network Scheduling: All communication between the
base station and mobile devices is scheduled by the
network scheduler. It allocates PRBs to users, based on
Channel Quality (CQI), past throughput, etc.

2. Baseband Processing: The baseband converts analog sig-
nals into computer readable digital bits and vice versa.

3. RF Processing: The RF performs static processing on all
analog signals received or transmitted.

4. Power Amplification: It is used to amplify signals for
downlink communication.

Base stations are responsible for upto 60% of the power
consumed by cellular networks [9]. This costs network opera-
tors over $10 billion per year in operating costs [10]. Base
stations can be divided into different types based on their
coverage and peak network load. Micro and Macrocell base
stations, which cover areas ranging from 0.21 to 2.6 km?2,
are owned and maintained by the service provider. The peak
network speed supported lies in the range of 300-600 Mbps.
These base stations can consume up to 1320W [7], of which
13-37% 1is attributed to the baseband processor.

On the other hand, Femtocells cover a much smaller area
ranging from 250 to 1400 m?. They are typically installed
in residential areas and can support upto 64 active LTE con-
nections at a given time [11][12]. Depending on the Femtocell
architecture, the peak network load supported lies in the range
of 50-70 Mbps. Femtocells consume up to 11W [7], of which
40% 1is due to baseband processing. Although Femtocells
have significantly lower power consumption as compared to
Macrocells, the number of Femtocells continues to increase

4 Cores —o—

600MHz 1Core ---x:--

4k % 600MHz

Latency (ms)

0 0.5 1 15 2 25 3 35
Power (W)

Fig. 1.
cores.

Power vs Latency plot at different frequencies for 1 and 4 active

at a rapid speed, soon making Femtocells the major power
consuming component in a cellular network.

B. Baseband Processor

Historically, baseband processing has been implemented
on base stations using ASICs or DSPs. These specialized
implementations make hardware development expensive, time
consuming and inflexible for introduction of new features. As
each generation of cellular networks has seen multiple protocol
changes, service providers are typically forced to use new
hardware to support each change.

Alternatively, general-purpose processors provide easy mi-
gration to new and updated standards. Recent general-purpose
multi-core architectures[13][14] show that Multicore System-
on-a-chip (MCSoC) designs can be used for baseband pro-
cessing, as they are capable of billion-operations-per second
level throughput [15]. General purpose MCSoC reduce design
costs while providing greater flexibility at the base station
to introduce new functionality. Additionally, with the recent
introduction of Network Function Virtualization (NFV), phys-
ical layer functions can be implemented on a general purpose
MCSoC to reduce costs and improve flexibility.

C. Reducing Consumption on Multi-Core Proessors

According to Desset et al. [16], power consumption of the
baseband processor on Femtocells makes up 43% and 32% on
the uplink and downlink respectively. Hence, it is important
to manage power consumed by baseband processing to reduce
operating costs.

Power consumption for general-purpose processors can be
stated as:

P=cV2f4+VI

where c is the internal capacitance, V' is the supply voltage,
f is the operating frequency and [is the current flow through
the processor. The first half of the equation, consisting of
capacitance, voltage and frequency, constitutes the dynamic
power. This is the power consumed by the processor while in
operation. Dynamic power can be reduced by either decreasing
the voltage and/or the frequency at runtime. This is known as
Dynamic Voltage Frequency Scaling (DVFS). This decrease
in voltage and frequency also corresponds to lower processing
throughput. However, using DVFS causes the processor to be

unavailable for a short duration every time the frequency and
voltage are changed. The second half of the equation known
as static power; is the power consumed when the processor is
idle. Static power can be reduced by putting the processor to
sleep. This technique is called Power Gating [17]. Various
architectures provide different sleep states with increasing
power savings and wake-up latency. We present information
on DVFS and Power Gating on baseband processors below.

1) DVFS: Figure 1 shows latency as a function of power
consumed at different frequencies for baseband processing
(using PHY benchmark [8]). Each point in the plot refers to a
unique frequency level, starting from 600MHz to 2000MHz
with intervals of 300MHz. We see that increasing the fre-
quency, has reduced gains for baseband latency at higher
frequencies. Conversely, at lower frequencies, power reduction
is negligible as latency increases exponentially.

Furthermore, while power at 600 MHz using 4 cores is
higher than at 900 MHz with 1 core, the baseband latency
is also higher in the former case (circled in Figure 1). Con-
sequently, selecting an optimal operating frequency on multi-
core baseband processors is non-trivial.

2) Power Gating: Wake-up latency for Power Gating varies
across different architectures ranging from 1-100us for x86
architecture, to as high as 2800us for ARM Cortex-Al5
[18][19]. In the case of ARM, the cost involved is equivalent
to the duration for nearly 3 LTE subframes. While it is
desirable to use x86 architecture due to the low wake-up
latency, x86 processors often consume significantly high power
as compared to ARM processors. Hence for Femtocells, with
total power consumption of only 11W, ARM processors are
more suitable for baseband processing.

Sjalander et al. [8] use Power Gating to reduce power
consumption of the baseband processor by estimating per
subframe workload. The work has two major drawbacks: it is
architecture specific and does not perform well under realistic
network load. Additionally, the high cost for wake-up on ARM
platforms, makes it sub-optimal to use Power Gating on a per
subframe basis.

D. Limitations of Existing Power Governors

Power Governor is a software library which can monitor
and regulate power at fine granularity [20]. Linux provides
four Power Governors(Table I), on general purpose platforms,
to reduce dynamic power consumption using DVFS. Per-
formance and Powersave are static governors wherein the
frequency remains fixed the entire time. In contrast to these
static options, Ondemand and Conservative power governors
calculate the running frequency every sampling period. The
operating frequency for these governors is based on the CPU
utilization during the previous interval. The ability of dynamic
governors to revise the operating frequency at runtime, allows
them to save power for dynamic workloads while maintaining
required performance levels. From Figure 1 we can conclude
that the Powersave is not a realistic option for baseband
processing, as it will have a significant impact on the network

TABLE I
Li1ST OF LINUX GOVERNORS. RANGE IS FOR ODROID XU-3. [21]
Range
Policy Description (MHz)

Performance | This policy sets the operating frequency to | 2000
the maximum.

Powersave This policy sets the operating frequency to | 200
the minimum.

Ondemand The operating system monitors CPU utiliza- | 200 -
tion for a fixed interval of time. At the end | 2000
of the interval the operating frequency is set
to optimize CPU utilization.

Conservative | Similar to Ondemand in terms of calculation | 200 -
of optimal frequency. However, the frequency | 2000
is increased/decreased by a fixed step size ev-
ery interval. The default step size is 100MHz.

Quality of Service (QoS). Hence we omit Powersave from our
evaluations.

All management policies in Table I work in isolation. For
example, these Power Governors have no feedback regarding
subframe baseband processing latency and do no take into
account the cost associated in changing the system state.
Additionally, they do not take into account network load,
queue length, subframes dropped, etc., and are therefore
unable to adapt to traffic load variations in cellular networks.
This absence of feedback has an adverse impact on baseband
processing latency and power consumption. On the other hand,
maintaining high operating frequency to lower average and
maximum baseband processing latency can also cause the
processor to overheat and shutdown. This affects the network
QoS as all incoming subframes will be dropped while the
processor is switched off and cooling down.

Power Governors for baseband processors are further lim-
ited by the fact that the workload varies significantly every
millisecond. This implies that Power Governors should be
simple and require minimal overhead. Furthermore even when
limited future information is known, if the time taken by the
Power Governor is large the information becomes stale and
can in turn have an adverse impact on subframe latency and
power consumption. It is important to note that the Power
Governor is a complimentary component that does not require
any modification to the LTE stack.

The key novelty of PR3 is, it takes into account both
the network traffic and the baseband processing load by
introducing a feedback from the network scheduler and the
baseband processor to the Power Governor to improve power-
latency trade-off. Consequently PR? is able to reduce both the
subframe latency and baseband power consumption.

III. FRAMEWORK OVERVIEW

The proposed framework is applicable to both uplink and
downlink baseband processing. However, for brevity, we will
present the framework only for one direction (uplink) as
the algorithm can be easily extended to the other direction
(downlink). The uplink direction is chosen because we use
LTE baseband processing benchmark (PHY) from Sjalander
et al. [8] in our evaluation and the benchmark performs only
uplink baseband processing.

1User m 5Users O
2Users m 10 Users &

1f00RB®m 20RB O
50RB = 10RB O

0.9 - —
$0.8 r

507
S
>0.6
3
J0.5 -

T4 -
503
02t
01t

Power Power

Latency

Latency

(a) Number of users (b) Number of PRBs

64QAM =
16QAM =

QPSK =@ 4 Layers =

3 Layers =

2Layers &
1Llayer &
1

09 - B
80.8 r

307 q
<

>0.6 - B

B
005 - g

Toat ,
Soal —
Zo2} g
01} ,
0

Power

Power Latency Latency

(c) Modulation scheme (d) Number of layers

Fig. 2. Normalized Power and Baseband processing Latency trends for different scenarios. All the experiments are run at the highest system frequency. In
all cases 100 PRBs are transmitted per subframe, except for Figure(b) which shows the variation in number of PRBs.

The LTE base station front-end receiver (uplink) consists
of multiple components. Operations such as radio receiver,
receive filter and Fast Fourier Transfrom (FFT) are performed
statically on all received data. These constitute the RF com-
ponent in Figure 3. Once the FFT has been computed, the
data is stored in a small buffer before baseband processing is
performed by the Baseband Processor.

The proposed framework introduces a feedback, from the
network scheduler and the baseband processor to the Power
Governor, with information about the network and baseband
processing workload. The Network Scheduler provides the
expected network load for a short horizon to the Power
Governor. This early information gives the Power Governor
additional time to adapt the system configuration, namely the
processor frequency and the number of active cores, to be
able to meet the expected workload. The expected workload
is characterized by 4 parameters: (1) number of users allocated
within a subframe, (2) number of PRBs allocated to each user,
(3) modulation scheme assigned to each user, and (4) number
of transmission layers for each user.

Figure 2 shows the impact of these parameters on power
and latency. As each user is processed in parallel, Figure 2(a)
shows that the baseband processing is faster when multiple
users transmit within a subframe. On the other hand, increasing
the number of PRBs allocated to a user increases both power
consumption and baseband processing latency (see Figure
2(b)). Figure 2(c) shows that although 64QAM can transmit up
to 3 times more data than QPSK, the difference between them
in terms of power consumption or baseband latency is quite
small. Finally decreasing the number of layers for transmission
produces larger reduction in baseband latency as compared to
the reduction in power consumption (see Figure 2(d)).

A. Power Governor Algorithm Overview

We use this framework and propose PR3, a Power Governor
algorithm, that uses DVFS in conjunction with Power Gating
to reduce power consumption and maintain network QoS.
PR? uses three types of attributes to find the optimal system
configuration. The three attributes are proactive, reactive and
retrospective. Figure 3 shows how these attributes are taken
into account in the framework.

o Proactive: Network load estimates received from the
network scheduler fall under the category of proactive

attributes. These attributes leverage the fact that the LTE
base station is responsible for scheduling network traffic.
The horizon of the expected network load is based on
the time taken to transmit the schedule, the subframe size,
time the mobile terminal needs to process the control data
received from the base station, interpret the schedule and
process the information to send. This lookahead period
(on the scale of a few milliseconds) provides enough
slack time to tune the system parameters to provide the
desired performance w.r.t. both power consumption and
baseband processing latency. This is a unique feature over
existing Power Governors that do not use this knowledge.

« Reactive: Reactive attributes refers to information about
current network state. PR® uses the current buffer queue
as a reactive attribute. This allows it to rectify situations
when it reaches sub-optimal states based on proactive
attributes, reducing the likelihood of going into overload
or dropping subframes due to buffer overflow. Other
attributes such as temperature can also be monitored
actively to provide a policy which ensures the operating
temperature remains below a threshold.

o Retrospective: Retrospective attributes refers to the
feedback inputs to PR3. The feedback provided by the
recent average baseband processing latency ensures that
if the system consistently misses the targeted baseband
processing latency, then the feedback will force PR? to
increase the processing capacity. Another retrospective
attribute considered by PR3 is the power consumed by the
baseband processor. Sub-optimal actions, which increase
power consumption significantly, can be identified and
avoided in the future.

Existing Power Governors are retrospective in nature and look
only at the processor utilization. PR3 utilizes information
on the expected load (proactive), current load (reactive) and
past performance (retrospective). The ability to look at these
attributes in an integrated manner is useful because it allows
PR? to determine how to exploit DVFS and Power Gating
which have very different overheads and non-trivial trade-offs.

B. Design Considerations and Objectives

The framework takes the following constraints into account:

« No subframe should be dropped due to buffer overflow.

—) Data Flow
= > Control Flow
=P PR’ Flow
Network — jrm—pp Power
Scheduler ——p- | Governor
I A |
Control | |
I
Dat I
ata | r P
N2 N2
Backhaul Baseband ¢
e Processor | RF

Buffer

Fig. 3. Proposed Power Governor framework for PR3.

o Frequency of switching system states should not affect
Network QoS.

o Computationally inexpensive power management algo-
rithm to reduce overhead.

The two objectives are:

1. Ensure the average subframe processing latency is less
than or equal to the sub-frame duration (1ms).
2. Minimize power consumption.

The objectives are to met in the above given order. The first
objective is important, as any governor which tries to reduce
power consumption should not impact the network throughput
and latency significantly. The second objective ensures power
efficiency when latency requirements are met.

IV. POWER GOVERNOR ALGORITHM

Reinforcement Learning (RL) [22] based algorithms are
used to find the optimal solution to sequential decision prob-
lems. The algorithms use an agent which performs actions
with the objective to increase reward or reduce cost. The
agent interacts with the environment at discrete intervals.
At each such time step ¢, the agent receives an observation
which includes the reward/cost based on the state s of the
environment. The agent then selects an action a to perform
based on the received information. The probability of selecting
an action a under state s is called a policy 7 (s, a).

The long-term reward after time ¢, is defined as R; =
oo Terk. Here, v is called the discount factor which
determines the importance of future rewards. Therefore, if
v is 1, the future reward is as important as the immediate
reward, whereas if y is 0, the agent does not care about future
rewards, i.e., greedy approach. The expected R;, starting from
state s, taking action a and following policy 7 : Q™ (s,a) =
E{R:|s; = s,a; = a} is given as Q7 (s,a). The optimal @
value is defined as Q*(s,a) = max Q7 (s,a).

Q*(s,a) = BE{r +v-maxQ*(s',a’)|s; = s,a; = a}

= Z‘Pgs/ [Rgs’ + v H}LZ?,X Q*(S/, a/)]

This equation is known as the Bellman optimality equation
[23]. Here P, refers to the transition probability, which is
defined as the probability of the environment to reach state
s’, by taking action a at state s. The reward associated with
this transition is referred as RY,, in the equation. However, it

is often impossible to calculate the value of P2, and R,
making it difficult to find the optimal solution. This could be
because of the environmental setup or when the state space is
enormous making it impractical to calculate these values.
Q-learning [24] solves this issue by converging to the Bell-
man optimal solution incrementally without requiring prior
knowledge of either PZ, or R%,. The following equation

describes the underlying principle of Q-learning:
Q(s,a) = Q(s,a) + 0 - {r +~-max[Q(s",a")] — Q(s,a)}

In Q-learning, the expected reward for the state action pair
(s,a) is, 7 + 7 - max[Q(s’, a)]. Q-learning then updates the
Q values incremer(lltally, with the state action pairs updated
sequentially by using the difference {r + - max[Q(s’,a’)] —
Q(s,a)}. Repeating this procedure, Q-learnir;lg converges to
the Bellman optimal solution.

The environment in the case of PR? consists of the base
station. The state s of the environment, corresponds to the
network state. Whereas action a, refers to a possible system
configuration for the baseband processor. The objective of
PR3’s agent is to minimize the cost function. We discuss each
of these aspects in detail below.

The network state is defined as the combination of N;
(expected network load) and @); (queue length at the baseband
processor). Expected network load consists of four parameters
which determine the subframe load, as discussed in Section 3.
With this configuration, the total number of unique network
states is more than 10'8. We reduce this state space through
clustering. Based on the results from Figure 2, the network
load is clustered into 101 discrete states. Since Queue length
has a small number of discrete values, we do not modify
it. Therefore N; € {0,1,2,...,100} is the network load as
determined by the LTE network scheduler (0% to 100%), and
Q: € {0,1,2..,10} is the number of subframes in the queue.

The action space is the union of F; and C}, which refers
to the operating frequency and number of active cores re-
spectively. Fy € {2,3,4,...,20} corresponds to the range of
frequencies 200MHz to 2000MHz on the platform used in the
evaluation. Since our platform has 4 cores, C; € {1,2,3,4}
corresponds to the number of active cores. At each interval
PR? selects an optimal action from this action space. For PR3,
each time step is equivalent to 10 subframes (i.e., 10ms in
LTE). This is done to reduce the overhead of PR? as well as
provide fine grain control to adapt to varying network load.

For our model, we use a cost function instead of a reward
function. The cost function is defined as:

Ri(st, ar) = Pt + e +dg
B Pmar(lt/L)+cf+df

Iy < L

L<l, (D

Here, p; is the power consumption of the baseband proces-
sor at time ¢. ¢; corresponds to the cost for action a;. If the next
optimal system state is the same as the current system state
then the cost is 0. Additionally, cost for switching frequencies
is lower than that of increasing/decreasing the number of active
cores because of the large overhead involved in the latter. The

cost for such actions are derived empirically for the given
hardware. d; corresponds to the number of subframes dropped
in the interval (¢ — 1,t]. Pya, corresponds to the maximum
power consumption of the hardware. [; refers to the average
baseband processing latency for all subframe in (¢t — 1,¢]. L
is the desired baseband processing latency for the system.

When the average processing latency is lower than the
threshold L, the cost function only includes the power con-
sumption. On the other hand, when average baseband pro-
cessing latency exceeds the desired latency, we multiply the
constant P to the ratio [;/L to ensure that the cost function
increases significantly, discouraging the agent from moving
into such states.

The linear nature of the cost function ensures the overhead
for calculation is minimal. Moreover, using a piece-wise
function helps model two distinct behaviors into our algorithm
based on the latency threshold. Each behavior corresponds to
a unique objective mentioned in Section III.

To accelerate the convergence of Q-learning, we use infor-
mation from Figure 1 to reduce the action space. The action
space is reduced to 33 states (200-1200MHz for 1 core, 900-
1200MHz for 2 and 3 cores, 900-2000MHz for 4 cores).
Furthermore, to reduce the number of states for exploration,
we use the batch update method. For any action ag and a1, we
define a; > ag if action a; has equal number of active cores
and higher frequency than in ag. From Figure 1, we observe
that, if the baseband processor exceeds the latency constraints
at state action pair (s,a;), it will also exceed at (s,ag),
Vag < ap. Therefore, we do not explore such redundant states
thereby reducing the amount of time required for training.

A. Training

PR3 is calibrated to have a greedy behavior. This implies
that we do not need to keep track of the transition probability
between different states as the most optimal action is based
only on the cost associated with the current state and action.
This gives us the freedom to use any trace during learning
while keeping the final optimal policy independent of the
traces used during the training phase.

Moreover, since it is impossible to cover all traces due
to the large state space, we train on randomly generated
subframe workloads. Each randomly generated workload is
executed for 500ms during which the power consumption
and subframe processing latency are measured. After 500ms
another subframe is generated randomly and is executed for the
next 500ms. We do this until we have explored each network
load bucket (101 in total) once. For our training phase we use
less than 450 unique subframes. Finally, during evaluation, we
switch-off learning. Hence, the results are based entirely on
offline learning of random subframes.

B. Flexibility of PR3

Network Load Flexibility: Network load varies among
different base stations, and each base station also sees temporal
variation throughout the day. Using online-learning PR? can

find a policy that is optimal locally to a base station by learning
over its unique workload.

System Architecture Flexibility: Given the wide variety
of multi-core architectures available today, it is difficult and
expensive to obtain an optimal policy for each architecture
heuristically. By using power consumed by the baseband
processor as an input, PR? can adapt to different multi-core
architectures effortlessly. Different architectures often have
different constraints for DVFS and Power Gating. PR?® handles
this by modifying the action cost ¢; within the cost function.
Consequently, we can also modify the set of possible actions
based on the system capabilities by restricting the action space.

V. EVALUATION
A. Experimental Setup

1) Hardware Platform: All experiments are performed on
Odroid XU3 from Hardkernel [25]. The SoC implements ARM
big. LITTLE technology with a cluster of four ARM Cortex-A7
cores (LITTLE cores) and a cluster of four ARM Cortex-A15
cores (big cores). We run our experiments exclusively on the
A1S5 cluster as the A7 cluster does not provide the required
performance for 1ms subframes. Each cluster provides DVFS
capability. However, cores within a cluster operate at the same
frequency. The A1S5 cores can be clocked between 200MHz
and 2000MHz with increments of 100MHz. The maximum
transition latency for switching between frequency levels is
100us. The input voltage for each frequency level is controlled
by the hardware. We evaluate PR® against existing Power
Governors: Conservative, Ondemand and Performance.

A brief description of the baseline Power Governors is given
in Table I. Information regarding power consumption, core
temperature and running frequency is obtained by sampling
the sensors on the board at the rate of 10Hz. The ambient
temperature during evaluation is 27°C.

2) PHY Benchmark: To simulate the uplink baseband pro-
cessing, we run the PHY benchmark [8] provided by Sjalander
et al., on the Odroid board. PHY is an open source implemen-
tation of LTE uplink baseband processing.

To meet the processing requirements, the benchmark im-
plements parallelization and pipelining. The base station pro-
cesses each user in parallel as the processing is independent
for each user. Furthermore, each user’s processing is par-
allelized. Matched filter, IFFT, windowing and FFT kernels
within Channel Estimation can be parallelized on the basis
of number of layers and number of antennas. Therefore, the
maximum amount of parallelization for Channel Estimation is
16 (4 layers x 4 antennas). Similarly, Data Demodulation and
Decoding, Antenna Combining and FFT can be processed in
parallel by up to 24 tasks (6 symbols x 4 layers).

The benchmark is instrumented to obtain queue length,
dropped subframes and per subframe processing latency. The
subframe processing latency is calculated as the time between,
the subframe is added to the buffer (after RF processing) to the
time the subframe completes processing. To obtain the number
of dropped subframes, we monitor the queue length at all
times. The default PHY benchmark settings drop subframes,
when the queue length exceeds 10 subframes. All incoming
subframes are dropped until the queue length drops below 10.

ns-3 cal
estimate

Subframe 1
Workload

Network

Scheduler PHY

1
1
| Baseband
1

L Processing

User
Trace

Fig. 4. Generating Subframe Workload from Network Traces.

The benchmark takes subframe allocation as an input. The
allocation contains the number of users allocated within the
subframe, number of PRBs allocated, number of transmission
layers and modulation scheme for each user. We modify the
benchmark to use custom network allocation as input. More
information on generation of these input traces is given below.

B. Experimental Parameters

1) Configuration and Policies: The basic assumption made
in all our experiments is that the system does not drop any
subframe under maximum load when operating at the highest
frequency and maximum number of active cores. The results of
the Performance Governor validate that the hardware resources
are sufficient to support LTE bandwidth. Consequently our
system consisting of four Cortex-Al5 cores, can support an
inter-subframe arrival time of Ims.

2) Network Traces: To generate traces for evaluation, we
use ns-3 to generate Channel Quality Indicator (CQI) estimates
for a large number of users. Each user is assigned a random
position and velocity. We use 3 values for velocity: 0, 5 and
15 km per hour. To simulate fading behavior due to distance,
we use the Log Normal Propagation Loss Model from ns-
3. For simulating channel fading behavior independent of the
distance, we use the Rayleigh fading model. The two models
combine to produce a unique fading pattern for each user.

Contrarily, simulating realistic data usage traces is more
difficult as simple TCP/UDP connections do not capture the
complex interactions within the network. Consequently, we
use a mobile device to capture real network traces.

The trace for background data is generated by tracking
background network traffic on an Android phone running
WhatsApp, Google Hangouts, Skype, Gmail and other Google
native applications with no user interaction. We capture the
packet traces for over 16 hours and use it to emulate network
transmissions for a large number of users whose CQI estimates
we produced using ns-3. The data flow is shown in Figure 4.

For generating traces for foreground data, we combine
traffic from two sources. First, we upload multiple files and
photos of different sizes. The size of files vary from 60KB to
30MB and the size of photos uploaded varies from 450KB to
750KB. Next, to simulate genuine user interactions, we allow
random users to upload files of different sizes from 20KB to
1MB, at random intervals. These two workloads are combined
with the background traffic to obtain the final network traces.

For network scheduling, we use the Proportional Fair algo-
rithm [26] to combine the CQI and network traces described

TABLE II
SYSTEM AND NETWORK ATTRIBUTES FOR DIFFERENT TRACES. (NO
SUBFRAME DROP)

Trace Power Power (W) Latency(ms) Temp
(Load) Governor Ave. [Max | Ave. [90% [Max | (C)
Performance | 2.73 | 3.18 | 0.31 | 0.62 | 1.76 55.3

Low Conservative | 1.59 | 2.79 | 044 | 1.03 | 4.33 52.2
Ondemand 1.89 | 2.62 | 040 | 0.94 | 5.01 53.8

PR3 0.84 | 192 | 049 | 0.88 | 3.37 49.7

Performance | 2.97 | 428 | 058 | 145 | 3.01 65.4

Medium Conservative | 1.81 | 3.29 | 0.85 | 2.05 | 9.88 56.1
Ondemand 1.76 | 2.61 | 0.78 | 2.17 | 5.97 53.9

PR3 148 | 2.77 | 074 | 1.77 | 3.36 54.1

Performance | 3.17 | 473 | 091 | 2.33 | 5.23 65.3

High Conservative | 2.11 | 390 | 1.17 | 2.71 13.4 55.5
Ondemand 2.10 | 3.18 | 1.22 | 2.87 | 7.12 55.6

PR3 1.68 | 3.76 | 1.04 | 2.36 | 5.12 53.8

above to produce a per subframe network schedule. Propor-
tional Fair tracks average user throughput and current CQI to
determine the users for transmission within each subframe.
Furthermore, we use the CQI values to map each user to
the corresponding modulation schemes by using information
provided in the E-UTRA 3GPP release [27].

In the evaluation, we vary the number and types of active
users to obtain traces with different load. We divide our traces
into 3 broad categories. Low (load) traces have an average
throughput of less than 10Mbps. Medium (load) traces have
throughput between 10 to 20 Mbps. The medium trace in
Figure 5 and Table II has a throughput of 10.5Mbps. The
high (load) traces have throughput over 20Mbps. The peak
throughput for the Medium and High trace is over 70 Mbps.

C. Low Load

It has been observed that about 42% of the time (10hr per
day) [7][28] the base station operates in a low load condition.
We expect PR3 to achieve good results during low periods
because it can vary the system state to take advantage of these
low load periods to provide sufficiently low latency (< 1ms)
with minimal power consumption. To obtain low load traces,
we use a trace consisting of background data from mobile
devices combined with a few active users. The average traffic
load is 2.48Mbps. Detailed results are given in Table II.

In general, for Performance, Conservative and Ondemand
Power Governors, when the average power consumption is
high, the subframe latency decreases. For example, Perfor-
mance consumes the most power (2.73W) but has the lowest
latency (0.31ms); while Conservative consumes 1.59W but has
a higher average latency of 0.44ms. Interestingly, even though
the Ondemand Governor has lower average latency (0.40ms),
it has a higher maximum latency compared to the Conservative
Governor, showing that it is unable to keep up in some cases
when there is a sudden surge in traffic.

We observe that the PR? consumes much less power com-
pared to all other baselines. On average, PR3 saves 47%,
55% and 67% over Conservative, Ondemand and Performance
respectively. The average latency of PR? is 0.49ms, well
below Ims. In fact, because of PR3’s adaptability, the 90t

PR® — Conservative —
Ondemand ---- Performance

R® — Conservative —
Ondemand ----

> — Conservative —

Performance Ondemand ---- Performance

Poh\A)/er (LW)#. o
—

Poger (LW)% .
T

Pox)ver &W)k o

S)
3
a
3
a

o
=3
T
o
=3
T

)
o
T

Throughput(Mbp:
&
T
Throughput(Mbps)

=)

=3

s)
N
a

o
S

N
o

Throughput(Mbp:

(a) Low

(b) Medium

o

Fig. 5. Comparing power consumption of different Power Governors. The bottom half of graphs show the upload throughput for the corresponding traces.

percentile and maximum latency are 0.88ms and 3.37ms
respectively; which are lower than the corresponding values for
Conservative and Ondemand, while consuming lower power.

High baseband temperature can lead to processor shutdown.
This is a major issue in places with hotter climates or non-
air conditioned indoors. PR® mitigates this issue by having
lower operating temperature (49.7°C) as compared to other
governors. This difference becomes significant when compared
with the Performance Governor (55.3°C).

D. High Load

The average traffic rate for the high load trace is 20.84Mbps.
When the traffic load is mostly high, Power Governors have
less opportunities to save power. Instead, the main objective
is to maintain low latency in order to satisfy network QoS.

The result here are similar to the low load case, except that
with much higher load, the average latency for Performance,
Conservative and Ondemand Power Governors increases to
0.91ms, 1.17ms and 1.22ms respectively. The results for
maximum latencies are also much larger, reaching 13.4ms in
the case of Conservative Governor.

Again, PR? outperforms other governors in power savings.
The power savings are 20%, 20% and 46% over Conservative,
Ondemand and Performance respectively. Even the average
latency for PR? (1.04ms) is significantly lower than Conser-
vative (1.17ms) and Ondemand (1.22ms). Interestingly, the
maximum latency of the Performance Governor is higher than
PR3 even though it consumes 89% more power.

The power consumption and throughput, for the low,
medium and high load traces, for various Power Governors are
shown in Figure 5. The traffic load for medium and high traces
changes significantly over time. Compared to the Conservative
and Ondemand Governors, PR3 tracks changes in traffic load
much better. When traffic load is high, PR3 switches to a
high performance state quicker as compared to Ondemand or
Conservative, to maintain low latency. Furthermore when the
traffic load is low, it switches to a low power state to conserve
energy. These results clearly demonstrate the utility of PR? in
terms of its ability to quickly and effectively adapt to changes
in network load.

E. Effectiveness of Proactive and Reactive Attributes

In this section, we look at impact of Proactive and Reactive
attributes on the performance. The results for different variants
of PR? running on a low load trace with an average of 7.2Mbps

(c) High

TABLE III

SYSTEM AND NETWORK ATTRIBUTES FOR DIFFERENT HORIZONS.
. Power(W) Latency(ms)
Case | Horizon (subframes) Average [Max. Average [Max.
1 0 (No Proactive 1.015 2.775 0.80 29.70
and No Reactive)

1T 0 (No Proactive) 1.173 2.857 0.65 6.72
I 1 1.234 2.891 0.61 6.33
v 2 1.245 2.845 0.61 5.35
\Y% 5 (No Reactive) 1.179 2.894 0.63 4.58
VI 5 (PR3) 1.282 3.018 0.59 3.65
viI 10 1.288 3.092 0.59 3.37

TABLE IV

SYSTEM AND NETWORK ATTRIBUTES FOR OFFLINE AND ONLINE
LEARNING FOR A SIMULATED 24HOUR TRACE.

_— Power Consumption(W) Latency(ms)
Learning type Average | Max. Average [Max.
Offline (PR?) 1.534 3.986 0.81 4.66
Online 1.571 4.132 0.76 4.47

are given in Table III. Note that when the horizon is O subframe
(case I and II), the Proactive component is disabled. In these
cases the agent chooses an optimal action on the basis of the
current subframe only.

We consider the impact of removing either the Proactive
or Reactive component versus the default PR3 configuration
(case VI). Without Proactive (Case II), the average power
reduces from 1.282W to 1.173W, whereas without Reactive
(Case V), the average power is 1.179W. Hence, the impact
on average power consumption is small. The major impact
is on the maximum latency which increases from 3.65ms
to 6.72ms without Proactive (Case II), and 4.58ms without
Reactive in Case V. Hence, the impact of Proactive attributes,
which determines the ability to look ahead, is more significant
as compared to the reactive attributes.

Finally, Table III also shows that the horizon of 5 subframes
is sufficient. Even if the lookahead can be increased to 10
subframes (Case VII), the incremental improvement is small.
The most common transmission scheme for Uplink schedules
Sms in advance [27]. Other cases of transmission involve
scheduling subframes even earlier, providing even more in-
formation to PR? to select an optimal state.

F. Online vs. Offline Learning

In this section, we look at the effectiveness of offline
learning from randomly generated samples, used in our work,

versus the impact of incorporating online learning. To evaluate
the two, we generate a sample 24 hour trace based on the
average data traffic profile for a base station [7]. In the case
of online training, the Q value pairs are initialized with value
equal to the offline learning case. Over the duration of the
trace the online learning updates these Q values pairs thereby
revises its optimal policy over time.

The results in Table IV show that even when online learning
is enabled, the results remain almost the same. Online learning
increases the power consumption slightly (2.4%) while reduc-
ing the average latency by a small amount (6.7%).

VI. RELATED WORK

Peng et al. [29] discuss in brief different challenges facing
current Femtocell deployments. While they provide an exten-
sive list of network issues, they overlook the cost associated
with Femtocells. Others such as Lin et al. [30] propose
a distributed Network Management algorithm called RRS,
which improves fairness while reducing outage probability
for Femtocells. Works such as Sciancalepore et al. [31] have
used online Reinforcement Learning to predict traffic patterns.
These forecasts are in turn used to fulfill Service Level
Agreements (SLA) for 5G networks.

Mishra et al. [32] use a two-tier feedback based control theo-
retic approach for managing power consumption for different
islands with time varying workloads. Other approaches like
the one proposed by Xiaorui et. al. [33] use optimal control
theory to control power consumption and temperature through
DVFS. These approaches require significant overhead affecting
network QoS for the baseband processor.

To simulate LTE downlink baseband processing, the
WiBench [34] open source kernel suite can be used. The
benchmark provides signal processing kernels which can be
combined together to obtain LTE downlink processing setup.
However it can only process single-user subframes which
prohibits simulating realistic traces for LTE.

VII. CONCLUSION

In this paper, we first highlight the limitations of existing
Power Governors. As these governors only consider processor
utilization and do not take into account network load in the
decision making process, they are unable to adapt to traffic
load variations in the cellular networks. The main contribution
of our work is a Power Governor algorithm called PR? that
uses information from both the network scheduler and base-
band processor. By integrating this information, PR? adapts to
dynamic workloads. We evaluate the algorithm on the Odroid
XU3 board running the PHY benchmark. Evaluation shows
that PR3, is able to provide good performance across a wide
range of network traffic load. It reduces power consumed under
all scenarios and also provides faster baseband processing
under medium and high load. PR? also reduces the worst case
baseband latency over existing dynamic Power Governors.

VIII. ACKNOWLEDGEMENT

This work has been supported by National Research Foun-
dation, Prime Minister’s Office, Singapore under its Industry-

IHL Partnership Grant and Huawei International Pte. Ltd.
NRF2015-11P003.
REFERENCES

[11 L T. . Media, “Small-cell market status report,” 2012.

[2] Small Cell Forum, “Market Status Report,” 2017.

[3] P. Brauer, M. Lundqvist, and A. Millo, “Improving latency in a signal
processing system on the epiphany architecture,” in IEEE Conference
on Parallel, Distributed, and Network-Based Processing, 2016.

[4] Q. Zheng, Y. Chen, R. Dreslinski, C. Chakrabarti, A. Anastasopoulos,
S. Mahlke, and T. Mudge, “Architecting an Ite base station with graphics
processing units,” in IEEE Signal Processing Systems, 2013.

[5] M. Srinivasan, C. S. R. Murthy, and A. Balasubramanian, “Modular
performance analysis of multicore soc-based small cell Ite base station,”
in IEEE Conference on Very Large Scale Integration, 2015.

[6] O. Brini and M. Boukadoum, “Real-time cpu-gpu demodulator for the
Ite physical layer,” in Symposium on Circuits Systems, 2016.

[71 G. Auer, V. Giannini, I. Gédor, P. Skillermark, , M. Olsson, M. A. Imran,
D. Sabella, M. J. Gonzalez, C. Desset, and O. Blume, “Cellular energy
efficiency evaluation framework,” in /EEE VTC, 2011.

[8] M. Sjilander, S. A. McKee, P. Brauer, D. Engdal, and A. Vajda,
“An lte uplink receiver phy benchmark and subframe-based power
management,” in [EEE (ISPASS), 2012.

[9] Vodafone Group, “Vodafone Sustainability Report,” 2015.

[10] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dynamic energy-
efficient operation of cellular network infrastructure,” IEEE Communi-
cations Magazine, 2011.

[11] 2017, https://networks.nokia.com/products/ femtocells.

[12] “Cisco universal small cell 8718 and 8818 data sheet,” 2016.

[13] Http://www.tilera.com/.

[14] Http://www.kalrayinc.com/.

[15] T. Instruments, “Lte emerges as early leader in 4g technologies,” 2009.

[16] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp,
W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez et al., “Flexible power
modeling of Ite base stations,” in IEEE WCNC, 2012.

[17] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar, “Gated-
v dd: a circuit technique to reduce leakage in deep-submicron cache
memories,” in Symposium on Low power Electronics and Design, 2000.

[18] R. Schone, D. Molka, and M. Werner, “Wake-up latencies for processor
idle states on current x86 processors,” Springer Computer Science-
Research and Development, 2015.

[19] ARM, “Arm idle states binding description.”

[20] Intel, https://software.intel.com/en-us/articles/intel-power-governor.

[21] Https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[23] R. Bellman, Dynamic programming. Courier Corporation, 2013.

[24] C.J. Watkins and P. Dayan, “Q-learning,” Machine learning, 1992.

[25] “Odroid-xu3,,” http://www.hardkernel.com/main/products/prdt_-
info.php?g_code=g140448267127.

[26] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and
A. Viterbi, “CDMA/HDR: A bandwidth-efficient high-speed wireless
data service for nomadic users,” IEEE Communications Magazine, 2000.

[27] 3GPP, “TS 36.213 Rel. 9,” no. Release 9, 2010.

[28] Sandvine, “Global report phenomena,” 2016.

[29] C.Peng, Y. Li, Z. Li, J. Zhao, and J. Xu, “Understanding and diagnosing
real-world femtocell performance problems,” in IEEE INFOCOM, 2016.

[30] M. Lin, N. Bartolini, and T. La Porta, “Power adjustment and scheduling
in ofdma femtocell networks,” in IEEE INFOCOM, 2016.

[31] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” IEEE INFOCOM, 2017.

[32] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “Cpm in
cmps: Coordinated power management in chip-multiprocessors,” in ACM
High Performance Computing, Networking, Storage and Analysis, 2010.

[33] X. Wang, K. Ma, and Y. Wang, “Adaptive power control with online
model estimation for chip multiprocessors,” IEEE Transactions on
parallel and Distributed Systems, 2011.

[34] Q. Zheng, Y. Chen, R. Dreslinski, C. Chakrabarti, A. Anastasopoulos,
S. Mahlke, and T. Mudge, “Wibench: An open source kernel suite
for benchmarking wireless systems,” in IEEE Symposium on Workload
Characterization, 2013.

