
Modeling Control Speculation for Timing Analysis ∗

Xianfeng Li, Tulika Mitra† and Abhik Roychoudhury
School of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543.

Abstract. The schedulability analysis of real-time embedded systems requires
Worst Case Execution Time (WCET) analysis for the individual tasks. Bounding
WCET involves not only language-level program path analysis, but also modeling the
performance impact of complex micro-architectural features present in modern pro-
cessors. In this paper, we statically analyze the execution time of embedded software
on processors with speculative execution. The speculation of conditional branch out-
comes (branch prediction) significantly improves a program’s execution time. Thus,
accurate modeling of control speculation is important for calculating tight WCET
estimates. We present a parameterized framework to model the different branch
prediction schemes. We further consider the complex interaction between speculative
execution and instruction cache performance, that is, the fact that speculatively
executed blocks can generate additional cache hits/misses. We extend our modeling
to capture this effect of branch prediction on cache performance. Starting with the
control flow graph of a program, our technique uses integer linear programming to
estimate the program’s WCET. The accuracy of our method is demonstrated by
tight estimates obtained on realistic benchmarks.

Keywords.
Schedulability Analysis, Worst Case Execution Time, Micro-architectural modeling,
branch prediction, instruction cache

1. INTRODUCTION

A real-time embedded system contains at least one processor running
application-specific programs that communicate with the external envi-
ronment in a timely fashion. There are hard deadlines on the execution
time of such software. Moreover, many embedded systems are safety
critical (e.g., automobiles and power plant applications), and the de-
signers of such systems must ensure that all the real-time constraints are
satisfied. This requires us to estimate the Worst Case Execution Time
(WCET) of the software on the particular processor. One possibility of
computing the WCET is to actually run the program and measure its
performance on the processor in question. However, this approach is
infeasible for most programs due to the large number of program paths
corresponding to the different inputs. Consequently, WCET analysis,

∗ Preliminary version of parts of this paper have previously been published as
[21] and [14].

† Contact Author. E-mail: tulika@comp.nus.edu.sg

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 28/08/2004; 12:55; p.1

2

which statically analyzes a piece of code to produce an upper bound on
the execution time, has received much attention over the last decade
[24, 26, 17, 9, 18, 16, 25, 5]. The estimated WCET produced by static
analysis should be safe (i.e., an overestimation of the actual WCET)
but tight (as close to the actual WCET as possible).

WCET analysis comprises two parts: (a) program path analysis to
eliminate some of the infeasible paths, and (b) micro-architectural mod-
eling of different processor features such as pipeline, caches, branch
prediction, etc. to estimate the execution time of a given path. Micro-
architectural modeling is essential for timing analysis because hardware
features (such as cache and pipeline) can alter an instruction’s execu-
tion time (e.g., an instruction that misses in the cache takes much longer
to execute). The effects of cache and pipeline on a program’s WCET
have been studied extensively in the past decade [30, 1, 17, 9, 16, 25, 27].

Apart from cache and pipeline, current embedded processors also use
aggressive control speculation to improve performance. The presence of
branch instructions forms control dependency between different parts of
the code. This dependency causes pipeline stalls, which can be avoided
by speculating the control flow subsequent to a branch instruction.
Control flow speculation is done through branch prediction of the out-
come of a branch instruction [12]. If the prediction is correct, then
the execution proceeds without any interruption. If the prediction is
incorrect, the speculatively executed instructions are undone, incurring
a branch misprediction penalty. We provide a background on branch
prediction schemes in the next section. Apart from misprediction penal-
ties, branch prediction also exerts indirect effects on the performance
of other micro-architectural features, such as instruction cache. As the
processor caches instructions along the mispredicted path, the instruc-
tion cache content is modified by the time the branch is resolved. This
prefetching of instructions can have both constructive and destructive
effects on cache performance and hence on WCET.

Clearly, we cannot assume perfect branch prediction for the purposes
of WCET analysis. This assumption may result in an incorrect WCET
(i.e., lower than the actual value), particularly, when a hard-to-predict
conditional statement (if-then-else) is present inside a loop body and
contributes substantially to a program’s WCET. Alternatively, certain
works assume that all branches in a program are mispredicted. This
pessimism results in the significant overestimation of the WCET as
branch prediction accuracy is quite high for loop control branches.

In this paper, we propose an Integer Linear Programming (ILP)
based framework to estimate WCET by taking into account speculative
execution as well as its interaction with the instruction cache. The ILP
formulation obtains highly accurate WCET estimates since it combines

main.tex; 28/08/2004; 12:55; p.2

3

program path analysis and micro-architectural modeling into a single
framework [15, 16]. Our modeling of branch prediction is generic and
parameterizable w.r.t. the currently used branch prediction schemes.
Effects of branch misprediction on cache performance are integrated
into our framework by extending previous work on instruction cache
modeling [16]. Based on the branch prediction scheme and cache orga-
nization, our modeling derives linear constraints from the control flow
graph of a program. These constraints are fed to an ILP solver for com-
puting an upper bound on the program’s execution time. We provide
experimental results on the accuracy of our modeling for moderate to
large-sized embedded benchmarks.

Micro-architectural modeling for WCET analysis is typically achieved
through either Abstract Interpretation (AI) [9] or Integer Linear Pro-
gramming (ILP) [16]. To model a micro-architectural feature, AI based
schemes develop a static categorization of the program instructions.
For example, to model instruction cache, AI based schemes categorize
program instructions as always hit, always miss etc., which is clearly
conservative. ILP based works seek to remove this inaccuracy by de-
veloping constraints to bound the worst case execution time. Thus,
for instruction cache modeling, an ILP based approach will develop
linear constraints to bound the maximum number of misses for each
instruction.

Our modeling of branch prediction is based on Integer Linear Pro-
gramming. Modeling several micro-architectural features is easy in the
abstract interpretation based approach, since this is achieved by consid-
ering the effect of each feature separately (in other words, effects of the
interaction between different features is overestimated). However, the
resultant modeling is less accurate. In the ILP based approach, model-
ing several interacting micro-architectural features is non-trivial since
we have to modify the constraints modeling the individual features.
In this paper, we develop an ILP based modeling of two interacting
micro-architectural features: branch prediction and instruction cache.

Contributions The contributions of this paper can be summarized as
follows.

− We model various branch prediction schemes for WCET analysis
including widely used schemes such as gshare [20, 29]. Modeling
branch prediction for timing analysis is a largely unexplored topic.
Existing works such as [5] only model simple branch predictors in
a manner similar to instruction cache modeling. We discuss the
difficulties of modeling more complex branch predictors used in
modern processors. We also present a parameterized framework
which models various existing branch prediction schemes.

main.tex; 28/08/2004; 12:55; p.3

4

Branch pred. schemes

Static Dynamic

Local Global

GAg gshare gselect

Figure 1. Categorization of Branch Prediction Schemes

− We study the interaction of branch prediction with instruction
cache behavior, and integrate our modeling of branch prediction
with existing modeling of instruction cache [16]. To the best of our
knowledge, ours is the only work on ILP based WCET analysis that
models several micro-architectural features and their interaction.

− We present experimental results to demonstrate the accuracy of
our modeling and its impact on WCET estimation. We also dis-
cuss evidence of the scalability of our estimation technique w.r.t.
(a) different branch prediction schemes, (b) cache organizations,
and (c) different values of branch misprediction and cache miss
penalties.

Paper Organization The remainder of this paper is organized as fol-
lows. The next section provides a brief overview of the existing branch
prediction schemes in modern processors. Section 3 discusses related
work on WCET analysis. Section 4 presents our modeling of branch
prediction; an example is discussed at the end of the section. In Section
5, we examine the combined effects of branch prediction and instruction
cache on WCET and integrate them into our modeling. In Section 6,
we present the experimental results on the accuracy, retargetability and
scalability of our analysis technique. We conclude in Section 7.

2. BACKGROUND ON BRANCH PREDICTION

Branch prediction schemes can be broadly categorized as static and
dynamic (see Figure 1; the most popular category in each level is

main.tex; 28/08/2004; 12:55; p.4

5

BHR

PHT

m

predictionoutcome

(a) GAg

BHR

PHT

m

predictionoutcome

(b) gshare

PC

PHT

n

predictionoutcome

(c) local

PC

XORn

Figure 2. Illustration of Branch Prediction Schemes. The branch prediction table is
shown as PHT, denoting Pattern History Table.

11 10 01 00

Predicted Taken Predicted Not Taken

Not Taken Not Taken Not TakenNot Taken

TakenTaken Taken Taken

Figure 3. Two-bit Saturating Counter Predictor

underlined). In the static scheme, a branch is predicted in the same
direction every time it is executed. Either the compiler can attach
a prediction bit to every branch through analysis, or the hardware
can perform the prediction using simple heuristics, such as backward
branches are predicted taken and forward branches are predicted non-
taken. However, static schemes are much less accurate than dynamic
schemes.

Dynamic schemes predict a branch depending on the execution his-
tory. The first dynamic technique proposed is called local branch predic-
tion (illustrated in Figure 2(c)), where each branch is predicted based
on its last few outcomes. It is called ”local” because the prediction
of a branch is only dependent on its own history. This scheme uses a
2n-entry branch prediction table to store past branch outcomes, which
is indexed by the n lower order bits of the branch address. Obviously,
two or more branches with the same lower order address bits will map
to the same table entry and they will affect each other’s predictions
(constructively or destructively). This is known as the aliasing effect.
In the simplest case, each prediction table entry is one-bit and stores
the last outcome of the branch mapped to that entry.

main.tex; 28/08/2004; 12:55; p.5

6

Throughout this paper, for simplicity of disposition, we only discuss
our modeling for the one-bit scheme. When a branch is encountered, the
corresponding table entry is looked up and used as the prediction; when
a branch is resolved, the corresponding table entry is updated with
the outcome. In practice, two-bit saturating counters are often used
for prediction, as show in Figure 3; furthermore, the two-bit counter
can be extended to n-bit scheme straightforwardly. We are aware that
subsequent to our work, Bate and Reutemann [2] have developed tech-
niques to extend the state-of-the art for modeling an n-bit saturating
counter (in each row of the prediction table).

The local prediction scheme cannot exploit the fact that a branch
outcome may be dependent on the outcomes of other recent branches.
The global branch prediction schemes can take advantage of this sit-
uation [29]. Global schemes use a single shift register called branch
history register (BHR) to record the outcomes of the n most recent
branches. As in local schemes, there is a branch prediction table in
which predictions are stored. The various global schemes differ from
each other (and from local schemes) in the way the prediction table is
looked up when a branch is encountered. Among the global schemes,
three are quite popular and have been widely implemented [20]. In the
GAg scheme (refer to Figure 2(a)), the BHR is simply used as an index
to look up the prediction table. In the popular gshare scheme (refer to
Figure 2(b)), the BHR is XOR-ed with the last n bits of the branch
address (the PC register in Figure 2(b)) for prediction table look-up.
Usually, gshare results in a more uniform distribution of table indices
compared to GAg. Finally, in the gselect (GAp) scheme (not illustrated
in Figure 2 but straightforward to derive from the gshare scheme), the
BHR is concatenated with the last few bits of the branch address to
look up the table. Our technique presented in section 4.3 can model
each of these schemes simply with an adjustment of the parameters of
the analyzer.

Note that even with accurate branch prediction, the processor needs
the target of a taken branch instruction. Current processors employ a
small branch target buffer to cache this information. We have not mod-
eled this buffer in our analysis technique; its effect can be easily modeled
via techniques similar to instruction cache analysis [16]. Furthermore,
the effect of the branch target buffer on a program’s WCET is small
compared to the total branch misprediction penalty. This is because
the target address is available at the beginning of the pipeline whereas
the branch outcome is available near the end of the pipeline.

main.tex; 28/08/2004; 12:55; p.6

7

3. RELATED WORK ON WCET ANALYSIS

Research on WCET analysis was initiated more than a decade ago.
Early research activities can be traced back to Shaw and Park’s tim-
ing schema [22, 26]. They analyzed the program source code and did
not consider hardware speed-up features such as caching or pipelining.
Their analysis of program source code is compositional; thus, to esti-
mate the worst case execution time of a loop, the method first finds
out the worst case execution time of any loop iteration. Needless to
say that ignoring hardware modeling results in loose bounds. Puschner
and Koza [24] studied the conditions for decidability of WCET analysis:
availability of loop bounds, absence of dynamic function calls, etc.

As far as research on micro-architectural modeling is concerned,
most existing work focuses on modeling instruction cache and pipeline,
either individually or combined. Zhang et al. [30] modeled a simple
pipeline structure which has only two stages. Schneider and Ferdi-
nand [25] used abstract interpretation to examine a more sophisticated
pipeline of the SuperSPARC I processor.

Modeling of instruction cache behavior for WCET analysis has re-
ceived considerable attention [9, 16, 28]. The difficulty in analyzing
cache behavior is its global nature (as compared to the timing effects
of a pipeline). One instruction may cause another (spatially or tem-
porally) remote instruction to miss/hit in the cache. Arnold et al. [1]
modeled caching by first doing simulation on cache behavior and then
categorizing cache accesses as always hit, always miss, first hit or first
miss. After the category information is obtained, the execution time of
each instruction (or basic block) of the program is determined. Theiling
et al. [27] used abstract interpretation to perform analysis on cache
behavior. Their approach shares the two-phase strategy of Arnold et
al. [1]. The difference is that they used abstract interpretation (instead
of cache simulation) to obtain the categorization of instructions.

The combined effects of caching and pipelining on timing analy-
sis have been studied extensively in the last decade. Lim et al. [17]
extended the timing schema approach while Healy et al. [10] incorpo-
rated pipeline modeling into their previous work of cache modeling [1].
They first categorized cache behaviors of instructions, and used the
cache information to analyze the performance of the pipeline. Thus,
instruction timing is fixed so that path analysis can be performed as
the last step. Lundqvist and Stenström [19] performed WCET analysis
based on symbolic execution, which can actually be deemed as a hybrid
of simulation and static analysis.

Li et al. [15, 16] proposed another integrated method in the con-
text of modeling instruction cache behavior for WCET analysis. They

main.tex; 28/08/2004; 12:55; p.7

8

used an integer linear programming (ILP) formulation and did the
path enumeration implicitly with linear constraints derived from the
control flow graph (CFG) of the program. The cache behavior is also
modeled by linear constraints from another set of graphs called cache
conflict graphs (CCG). The two sets of constraints are integrated and
submitted to an ILP solver. One advantage of this approach is that
it solves the following dilemma: we cannot decide the worst case path
without knowing individual instructions’ execution time; on the other
hand, an instruction’s execution time might be unknown until its exe-
cution context/path is determined. By modeling the problem in terms
of constraints and then letting an ILP solver explore the possible paths
and corresponding instruction timing simultaneously, this dilemma can
be solved. However, in the separated approach [27], as the execution
paths for instructions are unknown, many instructions which can be
either hits or misses in the cache are conservatively categorized as cache
misses, resulting in overestimation.

Papers investigating branch prediction effects have emerged in recent
years. Engblom [8] performed a purely empirical study; his work shows
the importance of modeling branch prediction for timing analysis. How-
ever, the work offers no formal analysis technique. Colin and Puaut [5]
presented their work on modeling a local branch prediction scheme.
Their work is basically a separated approach (as are the works on
abstract interpretation based micro-architectural modeling). Branch
instructions are first classified into four classes, a strategy similar to
some of the modeling methods for caching [9]. Note that they considered
a scheme where the prediction for a particular branch instruction is
either absent or present in a specific row of a prediction table. This
assumption does not hold for popular global prediction schemes like
gshare [20, 29]. In these schemes, a branch instruction’s prediction may
reside in different rows of the prediction table at different points in
execution.

The impact of branch prediction on instruction cache contents is
often called the wrong-path cache effect. The wrong-path cache effect
involves prefetching instructions due to misprediction. Note that in-
struction prefetching has previously been modeled for WCET analysis
[4, 13]. However, wrong-path prefetch modeling is much more involved
as the prefetching is controlled by branch mispredictions (which by
themselves are difficult to capture).

main.tex; 28/08/2004; 12:55; p.8

9

4. MODELING BRANCH PREDICTION

In this section, we discuss the modeling of branch prediction schemes
for WCET analysis. Section 4.1 shows the core of our modeling using
Integer Linear Programming and Section 4.2 illustrates our modeling
with an example program. In Section 4.3, we demonstrate the flexibility
of our modeling technique by capturing the effects of various existing
branch prediction schemes.

4.1. Core Modeling

Issues in modeling branch prediction We proceed to examine the dif-
ficulties in modeling branch prediction for worst case execution time
analysis. So far, micro-architectural features such as pipelining and
instruction caching have been modeled for WCET analysis. In the
presence of these features, the execution time of an instruction may
depend on the past execution trace. For pipelining, these dependencies
are typically local. That is, the execution time of an instruction may
depend only on the past few instructions which are still in the pipeline.
To model instruction caching and branch prediction, global analysis
is required. This is because the effect of an instruction’s execution
on caches and branch predictors could affect the execution of remote
instructions. However, there are two significant differences between the
global analysis of the instruction caching and of branch prediction.

Both instruction caching and branch prediction maintain global data
structures that record information about the past execution trace,
namely the cache and the branch prediction table. For instruction
caching, a given instruction can reside only in one row of the cache:
if it is present, it is a cache hit; otherwise, it is a cache miss1. Local
branch prediction is quite similar – outcomes of a given branch instruc-
tion are stored only in one fixed entry of the prediction table where
predictions are made. However, for global branch prediction schemes,
a given branch instruction may use different entries of the prediction
table at different points of execution. Given a branch instruction I,
a global branch prediction scheme uses the history HI (which is the
outcome of the last few branches before arriving at I) to decide the
prediction table entry. Because it is possible to arrive at I with various
histories, the prediction for I can use different entries of the prediction
table at different points of execution.

The other difference between instruction caching and branch pre-
diction modeling is obvious. In the case of instruction caching, if two

1 To be precise, in associative caches, an address can be present in only one cache
set.

main.tex; 28/08/2004; 12:55; p.9

10

instructions I and I ′ are competing for the same cache entry, then
the flow of control either from I to I ′ or from I ′ to I will always
cause a cache miss. However, for branch prediction, even if two branch
instructions I and I ′ map to the same entry in the prediction table,
the flow of control between them does not imply correct or incorrect
prediction. Their competition for the same entry may have constructive
or destructive effect in terms of branch prediction, depending on the
outcome of the branches I and I ′.

For ease of description, we model the GAg global branch prediction
scheme as an example. This scheme has been described in Section 2.
However, our modeling is generic and not restricted to GAg (as will be
shown in Section 4.3). In fact, the default scheme in our experiments
is the more popular gshare scheme.

Control Flow Graph (CFG) The starting point of our analysis is the
control flow graph of the program. The vertices of this graph are the
basic blocks, and an edge i → j denotes the flow of control from basic
block Bi to basic block Bj . We assume that the CFG has a unique start
node and a unique end node, such that all program paths originate at
the start node, and terminate at the end node. Each edge i → j of the
CFG has a label, denoted label(i → j).

label(i → j) = U if i → j implies unconditional flow
1 if i → j implies branch at i is taken
0 if i → j implies branch at i is non-taken

For any block Bi, if its last instruction is a conditional branch, then it
has two outgoing edges labeled 0 and 1. Otherwise, Bi has one outgoing
edge with label U .

For programs with procedures and functions (recursive or other-
wise), we create a separate copy of the CFG of a procedure P for every
distinct call site of P in the program. Each call of P transfers control
to its corresponding copy.

Flow constraints and loop bounds Let vi denote the number of times
Bi is executed, and let ei→j denote the number of times control flows
through the edge i → j. As inflow equals outflow for each basic block
(except the start and end nodes), we have the following equations:

vi =
∑
j

ej→i =
∑
j

ei→j

main.tex; 28/08/2004; 12:55; p.10

11

Furthermore, as the start and end blocks are executed exactly once, we
get:

vstart = vend = 1 =
∑

i

estart→i =
∑

i

ei→end

Upper bounds on vi are provided through the maximum number of
iterations for loops and maximum depth of invocations for recursive
procedures. These bounds can be user provided, or can be computed
offline for certain programs [11].

Defining WCET Let costi be the execution time of Bi, assuming
perfect branch prediction and no cache misses. Given the program,
costi is a fixed constant for each i. Then, the total execution time of
the program is:

Time =
N∑

i=1

(costi ∗ vi + bmp ∗ bmi)

where N is the number of basic blocks in the program, bmp is a constant
denoting the penalty for a single branch misprediction, and bmi is the
number of times the branch in Bi is mispredicted. If Bi does not contain
a branch, then bmi = 0. To find the worst case execution time, we need
to maximize the above objective function. For this purpose, we need to
derive constraints on bmi.

Introducing History Patterns To predict the direction of the branch
in Bi, first, the index into the prediction table is computed. In the case
of GAg, this index is the outcome of the last k branches before Bi is
executed and recorded in the Branch History Register (BHR) with k
bits. Thus, if k = 2 and the last two branches are taken (1) followed by
not taken (0), then the index will be 10. We define annotated execution
counts and misprediction counts vπ

i and bmπ
i , corresponding to the

execution of Bi with BHR = π when Bi is reached. Similarly, eπ
i→j

denotes the number of times the edge ei→j is passed with BHR = π
at the beginning of basic block Bi. Thus,

bmπ
i ≤ vπ

i ; ei→j =
∑

π eπ
i→j ; bmi =

∑
π bmπ

i ; vi =
∑

π vπ
i .

For each Bi and history π, we find out whether it is possible to reach
Bi with history π. This information can be obtained via a terminating
least fixed point analysis on the control flow graph. Clearly, if it is not
possible to reach Bi with π, then eπ

i→j = vπ
i = bmπ

i = 0.

Control flow among history patterns To provide an upper bound on
bmπ

i , we first define constraints on vπ
i (since bmπ

i ≤ vπ
i). This is done

by modeling the change in history along the control flow graph.

main.tex; 28/08/2004; 12:55; p.11

12

DEFINITION 1.
Let π be a history pattern with k bits (the width of the Branch History

Register) at Bi. It is composed of the sequence of outcomes of the most
recent k branches with the latest outcome at the rightmost bit. The
change in history pattern along i → j is given by:

Γ(π, i → j) = π if label(i → j) = U

left(π, 0) if label(i → j) = 0
left(π, 1) if label(i → j) = 1

where left(π, 0) (left(π, 1)) shifts pattern π to the left by one bit
(the old leftmost bit is therefore discarded) and puts 0 (1) as the
rightmost bit.

Now, Bi can execute with history π only if there exists Bj executing
with history π′ such that Γ(π′, j → i) = π. Note that for any such
incoming edge j → i, there can be two history patterns π′ such that
Γ(π′, j → i) = π. For example, if label(j → i) = 1, then Γ(011, j →
i) = Γ(111, j → i) = 111. Therefore, from the inflows of Bi’s execution
with history π we get:

vπ
i =

∑
j

∑
π′

π = Γ(π′,j→i)

eπ′
j→i

Similarly, from the outflows of Bi’s execution with history π, we get:

vπ
i =

∑
j

eπ
i→j

Repetition of a history pattern Let us assume a misprediction of the
branch in Bi with history π. This means that certain blocks (perhaps
Bi itself) were executed with history π such that the outcomes of these
branches created a prediction different from the current outcome of Bi.
Thus, to model mispredictions, we need to capture repeated occurrences
of a history π during the program’s execution. For this purpose, we
define pπ

i j .

DEFINITION 2. Let Bi and Bj be two basic blocks with branch in-
structions and π be a history pattern. Then pπ

i j is the number of times
a path is taken from Bi to Bj s.t.

− π never occurs at a node with a branch instruction between Bi

and Bj.

main.tex; 28/08/2004; 12:55; p.12

13

− If Bi 6= start block, then π occurs at Bi

− If Bj 6= end block, then π occurs at Bj

Intuitively, pπ
i j denotes the number of times control flows from Bi

to Bj s.t. the πth row of the prediction table is only used for branch
prediction at Bi and Bj , and is never accessed in between. In these
scenarios, the outcome of Bi may cause a misprediction at Bj . Fur-
thermore, pπ

start i (pπ
i end) models the number of times the π th row

of the prediction table is looked up for the first (last) time at Bi.
When the πth row is used for branch prediction at Bi, either the

πth row is used for the first time (denoted by pπ
start i) or the πth row

was used for branch prediction last time in some block Bj 6= Bstart.
Similarly, for every use of the πth row of the prediction table at Bi,
either it is the last use (denoted by pπ

i end) or it will be used the next
time in Bj 6= Bend. Since vπ

i denotes the number of times Bi uses the
πth row of the prediction table, we have:

vπ
i =

∑
j

pπ
j i =

∑
j

pπ
i j

Also, there can be at most one first use, and at most one last use of the
π th row of the prediction table during program execution. Therefore,
we get: ∑

i

pπ
start i ≤ 1 and

∑
i

pπ
i end ≤ 1

Introducing branch outcomes To model mispredictions, we not only
need to model the repetition of history patterns, but also branch out-
comes. A misprediction occurs on differing branch outcomes for the
same history pattern. Therefore, we partition the paths contributing
to the count pπ

i j based on the branch outcome at Bi: pπ,1
i j and pπ,0

i j ,
which denote the execution count of those paths that begin with the
outgoing edge of Bi labeled 1 (i.e., outcome 1) and 0, respectively. By
definition:

pπ
i j = pπ,1

i j + pπ,0
i j∑

j pπ,1
i j = eπ

i→k and
∑

j pπ,0
i j = eπ

i→l

where label(i → k) = 1 and label(i → l) = 0. In other words, i → l
and i → k are the outgoing edges of basic block Bi with labels 0 and
1, respectively.

Modeling mispredictions For simplicity of exposition, let us assume
that each row of the prediction table contains a one-bit prediction: 0

main.tex; 28/08/2004; 12:55; p.13

14

denotes a prediction that the branch will not be taken, and 1 denotes
a prediction that the branch will be taken. However, our technique for
estimating mispredictions is generic. It can be extended if the prediction
table maintains more than one bit per entry. In particular, a recent
work [2] has modeled a n-bit saturating counter (in each row of the
prediction table).

Recall that bmπ
i denotes the number of mispredictions of the branch

in Bi when it is executed with history pattern π. There can be two
scenarios in which Bi is mispredicted with history π:

− Case 1: Branch of Bi is taken
The number of such outcomes is ≤

∑
j pπ,1

i j , since this denotes the
total outflow from Bi when it is executed with history π and the
branch at Bi is taken. Also, since a branch at Bi is mispredicted,
the prediction in row π of the prediction table must be 0 (not
taken). This is possible only if another block Bj is executed with
history π and outcome 0 and history π never appears between
Bj and Bi. The total number of such inflows into Bi is at most∑

j pπ,0
j i.

− Case 2: Branch of Bi is not taken
The number of such outcomes is ≤

∑
j pπ,0

i j . The total number of
inflows into Bi s.t. its branch can be mispredicted with history
pattern π is at most

∑
j pπ,1

j i.

From the above, we derive the following bound on bmπ
i :

bmπ
i ≤ min(

∑
j

pπ,1
i j ,

∑
j

pπ,0
j i)

+ min(
∑
j

pπ,0
i j ,

∑
j

pπ,1
j i)

This constraint can be straightforwardly rewritten into linear in-
equalities by introducing new variables.

Putting it all together We have derived linear inequalities on vi (ex-
ecution count of Bi) and bmi (misprediction count of Bi). We now
maximize the objective function (denoting the execution time of the
program), subject to these constraints using an (integer) linear pro-
gramming solver. This gives an upper bound of the program’s WCET.

main.tex; 28/08/2004; 12:55; p.14

15

Bstart

B1

B2

Bend

(100)
v1

00 = 1; m1
00 = 0

v1
01 = 99; m1

01 = 1

(1)

(100)
v2

00 = 1; m2
00 = 1

v2
10 = 99; m2

10 = 2

U

0 1

01

(1)

Figure 4. Example of the Control Flow Graph

4.2. An Example

In this part, we illustrate our WCET estimation technique with a simple
example. Consider the control flow graph in Figure 4. The start and end
blocks are called Bstart and Bend respectively. All edges of the graph are
labeled. Recall that the label U denotes unconditional control flow and
the label 1 (0) denotes control flow by taking (not taking) a conditional
branch. We assume that a two-bit history pattern is maintained i.e.,
the prediction table has four rows for the four possible history patterns:
00, 01, 10, 11. Also, each row of the prediction table contains one bit
to store the last outcome for that pattern: 0 for not taken and 1 for
taken.

Flow constraints and loop bounds The start and end nodes execute
only once. Hence

vstart = vend = 1 = estart→1 = e2→end + e1→end

From the inflows and outflows of blocks 1 and 2, we get:

v1 = estart→1 + e2→1 = e1→2 + e1→end

v2 = e1→2 = e2→end + e2→1

Furthermore, the edge 2 → 1 is a loop, and its bound must be given.
In our method, this bound is either computed off-line or provided by
the user. Let us consider a loop bound of 100. Then,

e2→1 < 100

Defining WCET Let us assume a branch misprediction penalty of
three clock cycles. The WCET of the program is obtained by maximiz-

main.tex; 28/08/2004; 12:55; p.15

16

ing:
Time = 2vstart + 2v1 + 4v2 + 2vend + 3bm1 + 3bm2

assuming coststart = cost1 = 2, cost2 = 4 and costend = 2. Recall that
costi is the execution time of block i (assuming perfect prediction); bmi

is the number of mispredictions of block i. There are no mispredictions
for executions of start and end blocks, since they do not have branches.

Introducing History Patterns We find out the possible history pat-
terns π for each basic block Bi via static analysis of the control flow
graph. The initial history at the beginning of program execution is
assumed to be 00. In our example, the possible history patterns for the
different basic blocks are as follows:

Bstart: {00}
B1: {00, 01}
B2: {00, 10}
Bend: {00, 01, 11}

We now introduce the variables vπ
i and bmπ

i : the execution count
and misprediction count of block i with history π.

vstart = v00
start = 1 bmstart = 0

v1 = v00
1 + v01

1 bm1 = bm00
1 + bm01

1

v2 = v00
2 + v10

2 bm2 = bm00
2 + bm10

2

vend = v00
end + v01

end + v11
end = 1 bmend = 0

bm00
1 ≤ v00

1 bm01
1 ≤ v01

1

bm00
2 ≤ v00

2 bm10
2 ≤ v10

2

We also define variables of the form eπ
i→j as follows (by using the set

of patterns possible at each basic block):

estart→1 = e00
start→1

e1→2 = e00
1→2 + e01

1→2 e1→end = e00
1→end + e01

1→end

e2→1 = e00
2→1 + e10

2→1 e2→end = e00
2→end + e10

2→end

Control flow among history patterns We now derive the constraints
on vπ

i based on the flow of the pattern π. Let us consider the inflows
and outflows of block 1 with history 01. From the inflows we get:

v01
1 = e00

2→1 + e10
2→1

main.tex; 28/08/2004; 12:55; p.16

17

Note that the inflow from block start to block 1 is automatically dis-
regarded in this constraint since it cannot produce a history 01 when
we arrive at block 1. Also, for the inflows from block 2 the history
at block 2 can be either 00 or 10. Both of these patterns produce
history 01 at block 1 when control flows via the edge 2 → 1 i.e.,
Γ(00, 2 → 1) = Γ(10, 2 → 1) = 01 from Definition 1.

From the outflows of the executions of block 1 with history 01 we
have:

v01
1 = e01

1→2 + e01
1→end

Constraints for inflows/outflows of block 1 with history 00, block 2 with
history 00, and block 2 with history 10 are derived similarly.

Repetition of history pattern To model the repetition of a history
pattern along a program path, variables pπ

i j are introduced (refer
to Definition 2). We now present the constraints for the pattern 01.
Corresponding to the first and last occurrence of the history pattern
01, we get:

p01
start 1 ≤ 1 and p01

1 end ≤ 1

Corresponding to the repetition of the pattern 01, the constraints
are as follows:

Exec. with Inflow from last Outflow to next
pattern 01 occurrence of 01 occurrence of 01

v01
1 = p01

1 1 + p01
start 1 = p01

1 1 + p01
1 end

Similarly, we provide constraints for the other patterns.

Introducing branch outcomes For each pπ
i j , we define the variables

pπ,0
i j and pπ,1

i j via the equation pπ
i j = pπ,0

i j + pπ,1
i j . More importantly,

we relate pπ
i j variables to eπ

i→j variables via pπ,0
i j and pπ,1

i j . For example
we have p10,1

2 2 + p10,1
2 end = e10

2→1 in Figure 4. In our simple example, we
only derive trivial constraints in this category. In general, a sum of pπ,1

i j

(or pπ,0
i j) variables equals an eπ

i→j variable.

Modeling mispredictions Let us now derive the constraints for bm01
1 ,

the number of mispredictions of block 1 with history 01. For this, we
consider two cases corresponding to the outcome of the branch at block
1.

main.tex; 28/08/2004; 12:55; p.17

18

− Case 1: The branch at block 1 is taken, and the last branch using
the 01 row of the predictor table is not taken.

The number of times the branch at block 1 is taken is p01,1
1 end.

Recall that this is the number of times the control flows as follows:
(a) block 1 is executed with history 01, (b) the branch at block 1
is taken i.e., an edge labeled 1 is then executed, and (c) control
then flows to the end block without history 01 ever occurring.

The number of times the last branch (before arriving at block 1)
using the 01 row of the predictor table is not taken is p01,0

start 1 +
p01,0
1 1. Note that the other block (block 2) is not considered since

block 2 cannot be reached with pattern 01.

Thus, this case happens bm01,1
1 times where

bm01,1
1 ≤ min(p01,1

1 end, p01,0
start 1 + p01,0

1 1)

− Case 2: The branch at block 1 is not taken, and the last branch
using the 01 row of the predictor table is taken. This happens
bm01,0

1 times where:

bm01,0
1 ≤ min(p01,0

1 1 + p01,0
1 end, 0) = 0

Note that 0 appears in above formula as in this particular example,
no earlier branch using the 01 row of the predictor table with
outcome taken can reach block 1.

Since the two cases are mutually exclusive and bm01
1 counts both of

the above cases, we have:

bm01
1 = bm01,1

1 + bm01,0
1

Other misprediction constraints are:

bm00
1 ≤ min(p00,1

1 end , p00,0
start 1) + min(p00,0

1 2 , 0)

bm00
2 ≤ min(p00,1

2 end , p00,0
1 2) + min(p00,0

2 end , 0)

bm10
2 ≤ min(p10,1

2 2 + p10,1
2 end , p10,0

start 2) + min(p10,0
2 end , p10,1

2 2)

They correspond to the constraints on bmπ
i shown in the last sub-

section. Maximizing the objective function w.r.t. all these constraints
gives the program’s WCET.

The execution counts of basic blocks as well as their misprediction
counts computed by the ILP solver are given in Figure 4.

main.tex; 28/08/2004; 12:55; p.18

19

4.3. Modeling various prediction schemes

We now discuss how our modeling can be used to capture the effects
of various local and global branch prediction schemes. Our modeling
of branch prediction is independent of the definition of the prediction
table index, so far called the history pattern π. All our constraints only
assume the following: (a) the presence of a global prediction table, (b)
the index π into this prediction table, and (c) every time the π th row is
looked up for branch prediction, it is updated subsequent to the branch
outcome. These constraints continue to hold even if π does not denote
the history pattern (as in the GAg scheme).

In fact, the different branch prediction schemes differ from each other
primarily in how they index into the prediction table. Thus, to predict
a branch I, the index computed is a function of: (a) the past execution
trace (history) and (b) the address of the branch instruction I. In the
GAg scheme, the index computed depends solely on the history and
not the branch instruction address. Other global prediction schemes
(gshare, gselect) use both the history and the branch address, while
local schemes use only the branch address.

To model the effect of other branch prediction schemes, we only
alter the meaning of π, and show how π is updated with the control
flow (the Γ function of Definition 1). This of course affects the possible
prediction table indices that can be looked up at a basic block Bi. No
change is made to the linear constraints (parameterized w.r.t. possible
prediction table indices at each basic block) described in the previous
subsection. These constraints then bound a program’s WCET (under
the new branch prediction scheme).

Other global schemes We now discuss two other global prediction
schemes: gshare and gselect [20, 29]. In gshare, the index π used for
a branch instruction I is defined as

π = historym ⊕ addressn(I)

where m,n are constants, n ≥ m, ⊕ is XOR, addressn(I) denotes the
lower order n bits of I’s address, and historym denotes the most recent
m branch outcomes (which are XOR-ed with higher-order m bits of
addressn(I)). The updating of π due to control flow is modeled by the
function:

Γgshare(π, i → j) = Γ(historym, i → j)⊕ addressn(j)

where i → j is an edge in the control flow graph, addressn(j) is the
least significant n bits of the branch instruction in basic block j, and
Γ is the function on the history patterns described in Definition 1.

main.tex; 28/08/2004; 12:55; p.19

20

The modeling of the gselect prediction scheme is similar. Here, the
index π into the prediction table is defined as:

π = historym • addressn(j)

where m and n are some constants and • denotes concatenation. The
updating of π due to control flow is given by function Γgselect

Γgselect(π, i → j) = Γ(historym, i → j) • addressn(j)

Again, i → j is an edge in the control flow graph and Γ is the function
described in Definition 1.

Local prediction schemes In local schemes, the index π into the predic-
tion table for predicting the outcome of instruction I is π = addressn(I).
Here, n is a constant and addressn(I) denotes the least significant n
bits of the address of branch instruction I.

Updating of the index π due to control flow is given by Γlocal(π, i →
j) = addressn(j). Here, i → j is an edge in the control flow graph and
addressn(j) is the least significant n bits of the last instruction in basic
block j. If block j contains a branch instruction I, it must be the last
instruction of j. Thus, the least significant n bits of the address of I are
used to index into the prediction table (as demanded by local schemes).
If j does not contain any branch instruction, then the index computed
is never used to lookup the prediction table. Clearly, since each block j
always uses the same index π into the prediction table, index π is used
at basic block j if and only if π denotes the least significant n bits of
the address of the branch instruction of block j (if any).

5. INTEGRATED MODELING OF CACHE AND
BRANCH PREDICTION

In processors with both cache and control speculation mechanism, we
need to take their interaction into account. This interaction is in fact
unidirectional: speculative execution can alter the behavior of instruc-
tion caching. Consider a branch that is mispredicted. The processor
will fetch and execute instructions along the wrong path till the branch
is resolved. We have modeled processors with both instruction caching
and branch prediction elsewhere [14]. We present this combined model-
ing in this section. First we review the modeling of instruction caching
for WCET analysis, as formulated originally by Li et al. [16].

main.tex; 28/08/2004; 12:55; p.20

21

5.1. Pure Instruction Cache Modeling

We recapitulate the earlier instruction cache modeling [16]. A basic
block Bi is partitioned into ni l-blocks2 denoted as Bi.1, Bi.2, . . . , Bi.ni .
Let cmi.j be the total cache misses for l-block Bi.j and cmp be the
constant denoting the cache miss penalty. Then, the total execution
time is:

Time =
N∑

i=1

(costi × vi + bmp× bmi +
ni∑

j=1

cmp× cmi.j) (1)

For simplicity of exposition, let us assume a direct mapped cache; the
modeling can be easily extended to set-associative caches. For each
cache line c, we construct a Cache Conflict Graph (CCG) Gc [16]. The
nodes of Gc are the l-blocks mapped to c. An edge Bi.j Bu.v exists in
Gc iff there exists a path in the CFG s.t. control flows from Bi.j to Bu.v

without going through any other l-block mapped to c. In other words,
there is an edge between l-blocks Bi.j to Bu.v if Bi.j can be present in
the cache when control reaches Bu.v.

Let ri.j u.v be the execution count of the edge between l-blocks Bi.j

and Bu.v in a CCG. Now, the execution count of l-block Bi.j equals the
execution count of basic block Bi. Also, at each node of the CCG, the
inflow equals the outflow and both equal the execution count of the
node. Therefore,

vi =
∑
u.v

ri.j u.v =
∑
u.v

ru.v i.j (2)

The cache miss count cmi.j equals the inflow from conflicting l-blocks
in the CCG (whether two l-blocks are conflicting or non-conflicting is
statically determined by portions of their instruction addresses, which
are used as tags in cache lines). Thus, we have:

cmi.j =
∑
u.v

Bu.v conflicts Bi.j

ru.v i.j (3)

5.2. Effects of Speculative Execution on Caching

WCET analysis as described in the previous section does not take
into account the effect of branch misprediction on instruction cache
performance. When a branch is predicted, instructions are fetched and

2 A line-block, or l-block, is a sequence of instructions in a basic block that belongs
to the same instruction cache line.

main.tex; 28/08/2004; 12:55; p.21

22

executed from the predicted path. If all the branches are predicted
correctly, then the analysis described in previous section will give accu-
rate results. Now, consider a branch that is mispredicted. The processor
will fetch and execute instructions along the mispredicted path till the
branch is resolved. There can be two scenarios during mispredicted
path execution: (1) there is no cache miss, and (2) there is at least
one cache miss. In the first scenario, the misprediction has no effect on
the instruction cache. However, in the second scenario, the instruction
cache content is modified when the processor resumes execution from
the correct path. Various studies have concluded that depending on the
application, this wrong-path prefetching can have a constructive or a
destructive effect on the instruction cache’s performance [6, 23]. Our
goal here is to model this wrong-path cache effect for WCET analysis.

We make two standard assumptions. First, we assume that the pro-
cessor allows only one unresolved branch at any point of time during
execution. Thus, if another branch is encountered during speculative
execution, the processor simply waits till the previous branch is re-
solved. We also assume that the instruction cache is blocking (i.e., it
can support only one pending cache miss). This is indeed the case in
almost all commercial processors.

We introduce some notations for the subsequent parts. We use [Bi.j]
to denote the cache line to which l-block Bi.j maps. The shorthand
Bi.j

∼= Bu.v is used to denote that l-blocks Bi.j and Bu.v map to the
same cache line. Thus Bi.j

∼= Bu.v iff [Bi.j] = [Bu.v].
The effects of speculation on instruction cache performance can be

categorized as follows:

1. An l-block Bi.j misses during normal execution since it is dis-
placed by another l-block Bu.v

∼= Bi.j during speculative execution
(destructive effect).

2. An l-block Bi.j hits during normal execution, since it is pre-fetched
during speculative execution (constructive effect).

3. A pending cache miss of Bi.j during speculative execution along
the wrong path causes the processor to stall when the branch is
resolved. How long the stall lasts depends on the portion of cache
miss penalty which is masked by the branch misprediction penalty.
If the speculative fetching is completely masked by branch penalty,
then there is no delay incurred.

The last situation cannot be simply deemed constructive or destruc-
tive, although a delay often happens in that case. The cost of the delay
may be offset later by a cache hit to the l-block.

main.tex; 28/08/2004; 12:55; p.22

23

5.3. Changes to Cache Conflict Graph

As the interaction between speculative execution and cache is unidi-
rectional (caching does not influence branch prediction), the branch
prediction modeling in Section 4.1 stays unchanged. Moreover, both the
constructive and destructive effects of speculative execution on cache
are modeled by changing the Cache Conflict Graph (CCG).

Additional nodes in Cache Conflict Graph We add all the l-blocks
fetched along the mispredicted path to their respective cache conflict
graphs. Given a conditional branch b, its actual outcome X (not taken
or taken, denoted as 0 and 1, respectively) and misprediction penalty
bmp (a constant number of clock cycles), we can identify the set of l-
blocks accessed along the mispredicted path, called Spec(b,X). Clearly,
the cost of executing the blocks in Spec(b, X) cannot exceed bmp. If
one or more blocks cause cache misses, then not all the l-blocks in
Spec(b, X) can execute. Those l-blocks executed along the mispredicted
path are called ml-blocks and are annotated with the corresponding
basic block containing the branch instruction and the actual outcome.
For example, if Bi.j ∈ Spec(b, X), then the corresponding ml-block is
denoted by Bb,X

i.j . Note that it is possible to have multiple ml-blocks
corresponding to an l-block. For an l-block Bi.j , all its ml-blocks are
added to the CCG of the cache line it maps to.

Additional edges in Cache Conflict Graph We now need to add addi-
tional edges in the cache conflict graphs. Given a CCG, we add edges
between ml-blocks and the normal l-blocks; we also add edges between
ml-blocks. For an ml-block Bb,X

i.j , we add edges to/from all the other
l-blocks Bu.v in the CCG of cache line [Bi.j] and their corresponding
ml-blocks as follows:

1. Bu.v Bb,X
i.j if there exists a path from Bu.v to Bi.j through branch

b that does not contain any other l-block mapped to [Bi.j]. This
models the flow from the last normal use of the cache line to the
ml-block.

2. Bb,X
i.j Bb,X

u.v if Bu.v is the next use of the cache line [Bi.j] in
Spec(b, X) after Bi.j . This models the flow from the ml-block to
the next possible use of the cache line along the mispredicted path.

3. Bb,X
i.j Bu.v if there exists a path from branch b with outcome X

to Bu.v that does not contain any other l-block mapped to [Bi.j].

4. In addition, in case 3, if the path to Bu.v goes through branch b′

and Bu.v ∈ Spec(b′, Y) (b′ can be the same as or different from b),

main.tex; 28/08/2004; 12:55; p.23

24

b

b’

b

X~ X

X

Y

Case 2

Case 3

Case 4

Case 1
~ X

���������
���������
���������

���������
���������
���������

���������
���������
���������
��������� ���������

������������������
���������

���������
���������
���������

���������
���������
���������

Figure 5. Additional edges in the Cache Conflict Graph due to Speculative Execu-
tion. The l-blocks are shown as rectangular boxes, and the ml-blocks among them
are shaded.

then we also add Bb,X
i.j Bb′,Y

u.v . The edges in cases 3 and 4 model
the flow from the ml-block to the next possible use of the cache line
after the branch is resolved.

Figure 5 illustrates these cases. The shaded rectangles are the ml-
blocks and the unshaded ones are the normal l-blocks. The third and
fourth type of edges require some explanation. If there are multiple l-
blocks along the speculative path that map to a particular cache block,
then we conservatively add outgoing edges from all of them to the first
use of the cache block in the correct path (or another speculative path).
This is because any one of these l-blocks can be in the cache when the
branch is resolved; exactly which one will be in the cache when the
branch is resolved depends on the exact values of bmp, cmp and the
execution time of the individual basic blocks.

Figure 6 illustrates the modifications to the CCG with an example.
The control flow graph is shown in Figure 6(a). Let us assume that
l-blocks B0.1, B1.2 and B3.1 belong to the same cache block. Then, the
original CCG for that cache block is shown in Figure 6(b). A dummy
start node and an end node are added to each CCG to make the initial
and terminal flow equations correct.

The modifications to the CCG due to wrong-path prefetching is
shown in Figure 6(c). We add two ml-block B2,1

3.1 and B3,0
1.2 corresponding

to the mispredictions at node B2 and node B3, respectively. Note that
we do not add any node corresponding to a 0 outcome at branch B2

and a 1 outcome at branch B3. This is because with a 0 outcome at
branch B2, the mispredicted path fetches basic block B2 which does
not contain any l-block that maps to the cache line, and similarly for
B3 with outcome 1. Among the additional edges, B1.2 B2,1

3.1 and

main.tex; 28/08/2004; 12:55; p.24

25

0

1

2

3

4

S

E

S

1.2 3.1

0.1 0.1

1.2 3.1

E

1 0

1 0

(a) (b) (c)

U

U

3.1(2,1)

1.2(3,0)

Figure 6. Changes to Cache Conflict Graph (Shaded nodes are ml-blocks)

B3.1 B3,0
1.2 belong to the first type. The edges B2,1

3.1 B3.1 and
B2,1

3.1 B2,1
3.1 belong to the third and fourth type respectively.

Figure 6 shows the modeling of the constructive effect of wrong path
prefetching. In the original CCG, there is an edge B1.2 B3.1 and that
is the only path between the two nodes. Therefore, every time control
reaches from B1.2 to B3.1, it is a cache miss. In the modified CCG
in Figure 6(c), there is another path from B1.2 to B3.1 via the ml-
block B2,1

3.1 . First, there is no cache miss along B2,1
3.1 B3.1 as they are

physically the same l-block. Second, the cache miss along B1.2 B2,1
3.1

is partially masked by the branch misprediction delay. Thus, this kind
of prefetching is constructive to the execution.

Additional constraints on ml-blocks The execution count of a normal
l-block is equal to the execution count of the basic block it belongs
to. However, for an ml-block Bb,X

i.j , this count is dependent on the
number of mispredictions at branch b where the actual outcome is X
(X is 0 or 1). To derive this execution count, note that the number
of ml-blocks missed due to a single misprediction is

⌈
bmp
cmp

⌉
where bmp

(cmp) denotes branch misprediction penalty (cache miss penalty). In
accordance with most modern processors, we assume bmp < cmp and
therefore

⌈
bmp
cmp

⌉
= 1. This assumption is, however, not required, and

our modeling can be easily extended. Given bmp < cmp, a single mis-
prediction can result in at most one cache miss along the mispredicted

main.tex; 28/08/2004; 12:55; p.25

26

path. Let Spec(b, X) = 〈Bu1.v1 , . . . , Buk.vk
〉. Therefore, the execution

count of the ml-block Bb,X
ui.vi

is:

bmb(X)−
i−1∑
l=1

cmb,X
ul.vl

where bmb(X) is the number of mispredictions at branch b with out-
come X (obtained from the modeling of branch prediction) and cmb,X

ul.vl

is the number of cache misses for the ml-block Bb,X
ul.vl

. Constraints on
cmb,X

ul.vl
are obtained from the CCG as shown in Equation 3 (refer to

page 21). Constraints on bmb(X) are obtained from our modeling of
branch prediction described in Section 4.1.

Objective function The objective function is:

Time =
N∑

i=1

(costi × vi + bmp× bmi +
ni∑

j=1

cmp× cmi.j)

+
∑

Cond. branch b
X∈0,1

mp delay(b, X) (4)

The three subterms of the first term are the ideal execution time,
the branch penalty and the cache penalty, respectively. The last term,
mp delay(b, X) is the delay that the processor has waited for pending
cache misses (arising during mispredictions) after mispredictions have
been resolved. As the assumption bmp < cmp holds, the criteria for such
a delay to happen are: (a) a cache miss happens during a misprediction,
and (b) this cache miss is not completely masked by the misprediction
(still pending when the branch is resolved). Recall that Spec(b, X) =
〈Bu1.v1 , . . . , Buk.vk

〉. We define:

mp delay(b, X) =
k∑

i=1

(cmb,X
ui.vi

× delayb,X
ui.vi

)

delayb,X
ui.vi

= cmp− (bmp−
i−1∑
l=1

costul.vl
)

where costul.vl
is the ideal execution time of the l-block Bul.vl

. Also,
delayb,X

ui.vi
is the delay introduced due to the cache miss of Bui.vi along

the mispredicted path of branch b (where the actual outcome is X).
This delay is not a constant, as part of the cache miss penalty cmp
can be masked, depending on the location of the cache miss in the
mispredicted path.

main.tex; 28/08/2004; 12:55; p.26

27

Table I. Description of Benchmark Programs.

Program Description

matsum Summation of two 100× 100 matrices

matmul Multiplication of two 10× 10 matrices

isort Insertion sort of 100-element array

bsearch Binary search of 100 element array

fdct Fast Discrete Cosine Transform

fft 1024-point Fast Fourier Transform

dhry Dhrystone benchmark

des Data Encryption Standard

whet Whetstone benchmark

fir FIR filter with Gaussian number generation

6. IMPLEMENTATION AND EXPERIMENTS

We select 10 different benchmarks for our experiments (refer to Table I).
They have been used by other research groups for WCET analysis
[9, 16]. The benchmarks can be divided into two groups according to
size: the first four programs are smaller compared to the remaining
six benchmarks. We can also categorize the 10 benchmarks according
to their branch instructions. Thus, matsum, matmult, fft and fdct
are loop intensive programs; isort, bsearch, dhry, des, whet and
fir contain a number of conditional branches arising from if-then-else
statements within nested loops.

6.1. Methodology

Since we want to examine the effects of instruction caching and branch
prediction, we exclude the impact of other factors, such as data caching
and data dependence among instructions. In our experiments, we as-
sume a perfect processor pipeline with no stalls due to data dependen-
cies. This allows each instruction to take a fixed number of clock cycles
to execute. The only timing overhead is introduced by instruction cache
misses and branch mispredictions of conditional branches.

We need to know the actual WCET of the benchmarks so as to
evaluate the accuracy of our estimated WCET. To do this, we use the
SimpleScalar architectural simulation toolset [3]. SimpleScalar instruc-
tion set architecture (ISA) is a superset of MIPS ISA – a popular
embedded processor. Given a benchmark program, we attempt to iden-

main.tex; 28/08/2004; 12:55; p.27

28

tify the program input that will generate the WCET. Once this input
is found, the worst case profile can be computed via SimpleScalar simu-
lation. Among the benchmarks, matsum, matmult, fft, fdct, dhry and
whet have only one possible input. Since the other programs have many
possible inputs, determining their worst-case inputs can be tedious.
In these programs, we use human guidance to select a set of inputs
(which are suspected to increase execution time via cache misses and
mispredictions). We call the maximum execution time we obtain from
non-exhaustive simulation the observed WCET. Thus observed WCET
≤ actual WCET ≤ estimated WCET. Since the actual WCET of a
benchmark is in general not available, we measure the accuracy of
our estimation technique by comparing estimated WCET with observed
WCET.

We write a prototype analyzer that accepts assembly language code
annotated with loop bounds and recursion depths. Our analyzer is pa-
rameterized w.r.t. the cache configuration, the cache miss penalty, the
predictor table size, the choice of prediction schemes and the mispre-
diction penalty. The analyzer first disassembles the code, identifies the
procedures/basic blocks and constructs the procedural calling graph/
control flow graph (CFG) of each procedure. The executions of each ba-
sic block are differentiated w.r.t. the calling context. From the graphs,
our analyzer automatically generates the objective function and the
linear constraints. These constraints, together with the functional con-
straints provided by the user or data flow analysis, are then submitted
to an Integer Linear Programming (ILP) solver. In our experiments,
we use CPLEX [7], a commercial ILP solver.

Parameters used in Experiments The default parameters in our ex-
periments are as follows: (1) branch prediction scheme is gshare; (2)
the two-bit branch history is XOR-ed with the 4 least significant bits
of the branch address; (3) the branch misprediction penalty and cache
miss penalty are five and 10 clock cycles, respectively; (4) with regard
to the direct-mapped instruction cache, we have two settings for the
two groups partitioned by their sizes. An eight-line cache with 16 bytes
per line is used for the benchmarks with smaller sizes; for the other
benchmarks, we use a 16-line cache with 32 bytes per line. Experiments
on the impact of changing the parameters are reported later in the
section.

6.2. Results for Branch Prediction Modeling

To measure the importance of modeling branch prediction, we first
check its impact on execution time. If branch prediction is not modeled,

main.tex; 28/08/2004; 12:55; p.28

29

Table II. Modeling gshare Branch Prediction
Scheme for WCET Analysis.

Program Obs. Est. Est./Obs.

matsum 101821 101821 1.00

matmul 15084 15184 1.00

isort 47120 47251 1.00

bsearch 133 144 1.08

fdct 2513 2513 1.00

fft 219192 229406 1.04

dhry 128420 131024 1.02

des 53047 58022 1.09

whet 537125 571615 1.06

fir 29412 33145 1.12

all program branches have to be pessimistically estimated to be mis-
predicted for purposes of WCET analysis. This pessimism results in a
60 to 70% overestimation for some of the benchmarks, even assuming a
meager three cycle branch misprediction penalty. In real-life processors,
the branch misprediction penalty varies from three to 19 clock cycles.
In fact, recent processors with deeper pipelines have substantial mis-
prediction penalties. Thus, the actual impact of not modeling branch
prediction will be higher on such platforms.

The results of branch prediction modeling are reported in Table II
and Table III. Table II shows the observed WCET (column Obs.)
obtained from SimpleScalar and the estimated WCET (column Est.)
obtained from our ILP based technique. We use the popular gshare
prediction scheme in these experiments. We also evaluate the accuracy
of our estimation technique by presenting the ratio Est./Obs. Ta-
ble III gives the detailed results for the three branch prediction schemes:
gshare, GAg and local. Note the WCETs are in clock cycles while mis-
predictions are in counts. Our estimates of WCET and mispredictions
are tight for all benchmarks as summarized by the Est./Obs. column
in Table II.

Difficulty in Exploiting Temporal Path Information One reason for
the overestimation of misprediction counts is the aggregate nature of
the ILP approach. The ILP approach only allows us to provide linear
constraints on basic block execution counts. However, path information
(even if provided by the user) cannot be exploited by the ILP solver.

main.tex; 28/08/2004; 12:55; p.29

30

Table III. Observed and estimated WCET and misprediction counts of
gshare, GAg and local schemes.

WCET

Pgm. gshare GAg local

Obs. Est. Obs. Est. Obs. Est.

matsum 101821 101821 101826 101826 101806 101806

matmul 15084 15184 15179 15179 15064 15064

isort 47120 47251 46185 47741 47135 47246

bsearch 133 144 123 148 113 133

fdct 2513 2513 2508 2508 2493 2493

fft 219192 229406 225932 249747 229552 229665

dhry 128420 131024 127425 129385 126405 127035

des 53047 58022 52942 58006 54207 57671

whet 537125 571615 571580 571610 571570 571580

fir 29412 33145 31177 34617 29622 33337

Mispredictions

Pgm. gshare GAg local

Obs. Est. Obs. Est. Obs. Est.

matsum 203 203 204 204 200 200

matmul 204 224 223 223 200 200

isort 391 400 204 596 394 399

bsearch 8 10 6 11 4 8

fdct 8 8 7 7 4 4

fft 3094 5140 4442 9205 5166 5193

dhry 2603 3170 2404 2800 2200 2406

des 574 1519 553 1509 806 1438

whet 3752 10650 10643 10649 10641 10643

fir 183 770 536 1074 225 820

For example, let us study a program segment of the whet benchmark
given in Figure 7. Figure 7(a) is a loop body with loop iteration counts
annotated. There are three if-then-else constructs embedded in the
loop body. By taking a closer look, we can figure out that the outcomes
of these branches are not dependent on the input data. The paths the
loop body can take in each iteration is given in Figure 7(b). We can
see there are only two paths and they alternate during the iterations.
However, this temporal information cannot be fed into the ILP solver.
Instead, the ILP solver uses the constraints in Figure 7(c) to implic-
itly consider any path satisfying these constraints. All such paths are

main.tex; 28/08/2004; 12:55; p.30

31

L0: j = 1;
L1: for (i = 1; i <= n4; i += 1) { /* 3450 */
L2: if (j == 1)
L3: j = 2;
L4: else
L5: j = 3;

L6: if (j > 2)
L7: j = 0;
L8: else
L9: j = 1;

L10: if (j < 1)
L11: j = 1;
L12: else
L13: j = 0;
L14: }
�

�

�

�

�

(a) Source Code Segment

Itr. Paths
(1) L2 L3 L6 L9 L10 L13
(2) L2 L5 L6 L7 L10 L11
(3) L2 L3 L6 L9 L10 L13
(4) L2 L5 L6 L7 L10 L11
 . .
 . .
 . .
(2n-1) L2 L3 L6 L9 L10 L13
(2n) L2 L5 L6 L7 L10 L11

(b) Paths in Loop

L3 = 1725 (1a)
L5 = 1725 (1b)

L7 = 1725 (2a)
L9 = 1725 (2b)

L11 = 1725 (3a)
L13 = 1725 (3b)

(c) Linear Constraints

Figure 7. A Fragment of the Whetstone Benchmark

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

matsum matmult bsearch fdct fft dhry whet

Pe
rc

en
ta

ge

change of cache misses

change of overheads

Figure 8. Change (in Percentage) of Cache Misses and Overall Penalties in
Combined Modeling to Those in Individual Modelings

considered in the ILP solver’s quest to maximize branch predictions
(leading to overestimation).

main.tex; 28/08/2004; 12:55; p.31

32

6.3. Results for Integrated Modeling of Cache and
Speculation

So far, we have presented the experimental results for our modeling of
branch prediction. We now discuss the integrated modeling of instruc-
tion caching and branch prediction. First, we illustrate the importance
of combined modeling of cache and speculation for WCET analysis
by comparing it against a naive technique which models both caching
and speculation but ignores the cache-speculation interaction. Figure
8 shows this comparison with benchmarks for which we can find the
actual WCET (and the corresponding cache miss and branch mispre-
diction overheads) through exhaustive simulation. This means that the
number of feasible execution paths in these programs is not very large.

The first group of bars indicate the percentage increase/decrease in
cache misses due to the effect of branch prediction on cache behav-
ior. For the benchmarks matmult, bsearch and fdct, there are more
cache misses in combined modeling than in naive modeling, indicating
that the destructive effects of speculation are more significant than
the constructive effects. For other programs, the constructive effects
outperform the destructive effects, thereby decreasing the number of
cache misses. The second group of bars shows the percentage change in
total timing overhead of cache misses and branch mispredictions due
to cache-speculation interaction. The timing overhead shows similar
behavior as cache misses. The results show that if naive modeling is
used (i.e., the effect of branch prediction on caching is not modeled), the
WCET can either be overestimated (as the downward bars indicate),
or, more seriously, be underestimated (as the upward bars indicate).

The comprehensive results for the combined modeling are presented
in Table IV. Note that the numbers for the WCET columns are in proces-
sor cycles while the Mispred. and Cache miss columns denote mispre-
diction and cache miss counts. As we can see from the ratio column,
most benchmarks have very tight estimated bounds. Some benchmarks
have lower estimated misprediction counts or cache misses than their
observed counterparts, such as dhry and fir. This is because the ILP
solver may trade fewer mispredictions for more cache misses (or vice
versa) to maximize the overall WCET.

Modern processors have deeper pipelines and an increasing gap be-
tween processor speed and memory latency. Deeper pipelining leads to
a larger misprediction penalty (in terms of clock cycles). The increasing
processor-memory speed gap results in a longer cache miss penalty. Due
to this trend of hardware advancement, we examine the accuracy of our
WCET analysis with more aggressive parameters by doubling the bmp
(from the default five clock cycles to 10 clock cycles) and the cmp (from

main.tex; 28/08/2004; 12:55; p.32

33

Table IV. Combined Modeling of Caching and Speculation: Observed and
Estimated WCET, Misprediction Count and Cache Misses

Pgm. WCET Mispred Cache miss

Obs. Est. Ratio Obs. Est. Obs. Est.

matsum 105504 105917 1.00 203 203 307 409

matmul 25155 25679 1.02 204 215 945 975

isort 48685 48836 1.00 391 400 107 109

bsearch 506 546 1.07 8 10 33 35

fdct 8798 8803 1.00 8 8 626 626

fft 219428 229651 1.04 3094 5139 21 25

dhry 218684 232523 1.06 2603 2514 8125 9639

des 87436 96437 1.10 574 1460 3255 3497

whet 545544 581557 1.06 3752 10580 765 986

fir 65223 67370 1.03 183 370 3506 3451

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

matsum matmult isort bsearch fdct fft dhry des whet fir

ra
tio

s

bmp=5, cmp=10 bmp=10, cmp=10

bmp=5, cmp=20 bmp=10, cmp=20

Figure 9. Est./Obs. WCET ratios under different misprediction penalties and
cache miss penalties

10 clock cycles to 20 clock cycles). From the chart in Figure 9 we can
see that for each benchmark, the Est/Obs WCET ratios change little
under different penalty settings. That is, the accuracy of our analysis
does not suffer from increasing penalties.

6.4. Scalability of our ILP based approach

The complexities of the programs and their solving times are given in
Table V. The complexity of a program is presented by its number of
basic blocks as well as its conditional branches. This is only an ap-

main.tex; 28/08/2004; 12:55; p.33

34

Table V. Program Complexity and Processing Time

Program Complexity Time (seconds)

Blocks Branches Formulation Solving

matsum 5 2 0.02 0.01

matmul 7 3 0.03 0.01

isort 7 4 0.04 0.03

bsearch 9 3 0.03 0.01

fdct 5 2 0.05 0.01

fft 16 11 0.15 0.09

dhry 98 33 4.06 0.67

des 57 21 1.79 1.48

whet 36 18 0.62 0.37

fir 69 13 2.14 0.57

(a) Scalability w.r.t. predictor table size

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1k

Number of predictor table entries

S
ol

vi
ng

 ti
m

e
(in

 s
ec

on
ds

)

(b) Scalability w.r.t. cache size

0

0.5

1

1.5

2

2.5

3

32 X 8 32 X 16 32 X 32 32 X 64 32 X 128 32 X 256

Cache size (cache line bytes X cache lines)

S
ol

vi
ng

 ti
m

e
(in

 s
ec

on
ds

)

fft

dhry

des

whet

Figure 10. Scalability with Increasing Branch Prediction Table Size and Cache Size

proximate measure of the complexity. The column Formulation gives
the times for automatically generating the ILP formulation; and the
Solving column gives the ILP solving times by CPLEX. Here, the
gshare scheme is used with the default parameters given in Section 6.1.
As we can see, the ILP formulation times and ILP solving times of all
benchmarks are within seconds.

We now consider the variation of ILP solution time for some bench-
marks with larger predictor table sizes (the gshare scheme) and cache
sizes. In Figure 10(a), the branch prediction table sizes vary from 16
to 1024 entries. Recall that in gshare, the branch instruction address
is XOR-ed with the global branch history bits. In practice, the gshare
scheme uses a smaller number of history bits than address bits, and
XORs the history bits with the selected portion of the address [20].
The number of history bits is normally not very large as the correla-

main.tex; 28/08/2004; 12:55; p.34

35

tion among remote branches is very weak in most cases. So, we use a
maximum of four history bits. Figure 10(a) shows that the ILP solving
times do not change substantially. The reason is that, with an increasing
number of history bits (from two to four bits), the number of possible
patterns per branch increases. But with a fixed history size (four bits)
and an increased prediction table size, the number of cases where two
or more branches have the same pattern starts to decrease. Since the
constraints for each individual pattern are independent of the other
patterns, the complexity of the ILP problem largely depends on how
many branches can execute with the same pattern. Thus, ILP solution
time does not increase significantly with the increase in size of the
branch prediction table.

Figure 10(b) shows the solving times when the instruction cache
size is varied. Again, we observe that the solving time does not change
substantially. One of the reasons is that the constraints for each cache
line is independent of the other cache lines. Thus, increasing the number
of cache lines does not change the structure of the ILP problem.

7. DISCUSSION

In this paper, we have presented a framework of WCET analysis which
models the effects of advanced speculative execution and its interac-
tion with caching. The integer linear programming technique is uni-
formly applied to program path analysis, branch prediction modeling
and cache modeling. This makes it convenient to integrate them. Our
experimental results indicate that our modeling is accurate. The de-
structive/constructive effects of branch prediction on cache behavior
are demonstrated, showing the need to capture their interaction. This
technique also scales up with regard to the increased size of the two
hardware features: branch prediction table with larger size or larger
instruction cache.

Acknowledgements

Preliminary versions of parts of this paper have been published else-
where [14, 21]. We would like to thank the anonymous referees of
DAC 2003 and ISSS 2002 for their comments. This work has been par-
tially supported by National University of Singapore research projects
R252-000-088-112 and R252-000-171-112.

main.tex; 28/08/2004; 12:55; p.35

36

References

1. Arnold, R., F. Mueller, D. Whalley, and M. Harmon: 1994, ‘Bounding worst-
case instruction cache performance’. In: IEEE Real-Time Systems Symposium
(RTSS).

2. Bate, I. and R. Reutemann: 2004, ‘Worst-Case Timing Analysis for Dynamic
Branch Predictors’. In: 30th EuroMicro Conference.

3. Burger, D., T. Austin, and S. Bennett: 1996, ‘Evaluating Future Microproces-
sors: The SimpleScalar Toolset’. Technical Report CS-TR96-1308, University
of Wisconsin - Madison.

4. Chen, K., S. Malik, and D. August: 2001, ‘Retargatable Static Software Timing
Analysis’. In: IEEE/ACM International Symp. on System Synthesis (ISSS).

5. Colin, A. and I. Puaut: 2000, ‘Worst case execution time analysis for a processor
with branch prediction’. Journal of Real time Systems 18(2/3), 249–274.

6. Combs, J., C. Combs, and J. Shen: 1999, ‘Mispredicted path cache effects’. In:
Euro-Par Conference.

7. CPLEX: 2002, ‘The ILOG CPLEX Optimizer v7.5’. Commercial software,
http://www.ilog.com.

8. Engblom, J.: 2003, ‘Analysis of the Execution Time Unpredictability caused by
Dynamic Branch Prediction’. In: IEEE Real-time/Embedded Technology and
Applications Symposium (RTAS).

9. Ferdinand, C., F. Martin, and R. Wilhelm: 1997, ‘Applying compiler techniques
to cache behavior prediction’. In: ACM International Workshop on Languages,
Compilers and Tools for Real-Time Systems.

10. Healy, C., R. Arnold, F. Mueller, D. Whalley, and M. Harmon: 1999, ‘Bounding
pipeline and instruction cache performance’. IEEE Transactions on Computers
48(1), 53–70.

11. Healy, C., M. Sjodin, V. Rustagi, D. Whalley, and R. Engelen: 2000, ‘Support-
ing Timing Analysis by Automatic Bounding of Loop Iterations’. Journal of
Real-Time Systems 18(2/3), 129–156.

12. Hennessy, J. and D. Patterson: 1996, Computer Architecture- A Quantitative
Approach. Morgan Kaufmann.

13. Lee, M., S. L. Min, and C. S. Kim: 1994, ‘A Worst Case Timing Analysis Tech-
nique for Instruction Prefetch Buffers’. Microprocessing and Microprogramming
pp. 681–684.

14. Li, X., T. Mitra, and A. Roychoudhury: 2003, ‘Accurate Timing Analysis
by Modeling Caches, Speculation and their Interaction’. In: ACM Design
Automation Conf. (DAC).

15. Li, Y.-T. S. and S. Malik: 1995, ‘Performance Analysis of Embedded Software
Using Implicit Path Enumeration’. In: Workshop on Languages, Compilers and
Tools for Real-Time Systems.

16. Li, Y.-T. S., S. Malik, and A. Wolfe: 1999, ‘Performance Estimation of Embed-
ded Software with Instruction Cache Modeling’. ACM Transactions on Design
Automation of Electronic Systems 4(3), 257–279.

17. Lim, S.-S., Y. Bae, G. Jang, B.-D. Rhee, S. Min, C. Park, H. Shin, K. Park,
and C. Kim: 1995, ‘An accurate worst-case timing analysis technique for RISC
processors’. IEEE Transactions on Software Engineering 21(7), 593–604.

18. Lundqvist, T. and P. Stenstrom: 1998, ‘Integrating path and timing analysis
using instruction-level simulation techniques’. In: International Workshop on
Languages, Compilers and Tools for Embedded Systems (LCTES).

main.tex; 28/08/2004; 12:55; p.36

37

19. Lundqvist, T. and P. Stenstrom: 1999, ‘An Integrated Path and Timing Anal-
ysis Method based on Cycle-Level Symbolic Execution’. Journal of Real-Time
Systems 17(2-3), 183–207.

20. McFarling, S.: 1993, ‘Combining Branch Predictors’. Technical report, DEC
Western Research Laboratory.

21. Mitra, T., A. Roychoudhury, and X. Li: 2002, ‘Timing Analysis of Embed-
ded Software for Speculative Processors’. In: ACM SIGDA International
Symposium on System Synthesis (ISSS).

22. Park, C. and A. Shaw: 1991, ‘Experiments with a program timing tool based on
source-level timing schema’. IEEE Transactions on Computers 24(5), 48–57.

23. Pierce, J. and T. Mudge: 1996, ‘Wrong-path instruction prefetching’. In: ACM
International Symp. on Microarchitectures(MICRO).

24. Puschner, P. and C. Koza: 1989, ‘Calculating the maximum execution time of
real-time programs’. Journal of Real-time Systems 1(2), 159–176.

25. Schneider, J. and C. Ferdinand: 1999, ‘Pipeline Behavior Prediction for Su-
perscalar Processors by Abstract Interpretation’. In: ACM International
Workshop on Languages, Compilers and Tools for Embedded System (LCTES).

26. Shaw, A.: 1989, ‘Reasoning about time in higher level language software’. IEEE
Transactions on Software Engineering 15(7), 875–889.

27. Theiling, H., C. Ferdinand, and R. Wilhelm: 2000, ‘Fast and precise WCET
prediction by separated cache and path analysis’. Journal of Real Time Systems
18(2/3), 157–179.

28. Wolf, F., J. Staschulat, and R. Ernst: 2002, ‘Associative caches in formal
software timing analysis’. In: ACM Design Automation Conference (DAC).

29. Yeh, T. and Y. Patt: 1992, ‘Alternative Implementations of two-level adaptive
branch prediction’. In: ACM International Symp. on Computer Architecture
(ISCA).

30. Zhang, N., A. Burns, and M. Nicholson: 1993, ‘Pipelined Processors and Worst
Case Execution Times’. Journal of Real-Time Systems 5(4), 319–343.

main.tex; 28/08/2004; 12:55; p.37

main.tex; 28/08/2004; 12:55; p.38

