
1

Task Scheduling on Adaptive Multi-Core
Mihai Pricopi, Tulika Mitra

School of Computing
National University of Singapore
{mihai,tulika}@comp.nus.edu.sg

Abstract—Multi-cores have become ubiquitous both in the
general-purpose computing and the embedded domain. The
current technology trends show that the number of on-chip cores
is rapidly increasing, while their complexity is decreasing due
to power and thermal constraints. Increasing number of simple
cores enable parallel applications benefit from abundant thread-
level parallelism (TLP), while sequential fragments suffer from
poor exploitation of instruction-level parallelism (ILP). Recent
research has proposed adaptive multi-core architectures that
are capable of coalescing simple physical cores to create more
complex virtual cores so as to accelerate sequential code. Such
adaptive architectures can seamlessly exploit both ILP and TLP.

The goal of this paper is to quantitatively characterize the per-
formance potential of adaptive multi-core architectures. Previous
research have primarily focused on only sequential workload
on adaptive multi-cores. We address a more realistic scenario
where parallel and sequential applications co-exist on an adaptive
multi-core platform. Scheduling tasks on adaptive architectures
reveals challenging resource allocation problems for the existing
schedulers. We construct offline and online schedulers that
intelligently reconfigure and allocate the cores to the applications
so as to minimize the overall makespan under the constraints of
a realistic adaptive multi-core architecture. Experimental results
reveal that adaptive multi-core architectures can substantially
decrease the makespan compared to both static symmetric and
asymmetric multi-core architectures.

Index Terms—Scheduling, adaptive multi-cores, dynamic het-
erogeneous multi-core, ILP, TLP, malleable and moldable tasks.

I. INTRODUCTION

Computing systems have made the irreversible transition
towards multi-core architectures due to power and thermal lim-
its. Current generation processor architectures in both general-
purpose computing and embedded domain are symmetric
multi-cores consisting of a number of simple and identical
cores (see Figure 1). Such symmetric multi-core solutions are
perfect match for easily parallelizable applications that can
exploit significant thread-level parallelism (TLP). Indeed the
current trend is to multiply the number of cores on chip to
offer more TLP, while reducing the complexity of the cores
to avoid power and thermal issues.

But most applications still comprise of a significant fraction
of sequential workload. Amdahl’s Law [18] states that such ap-
plications will suffer from limited instruction-level parallelism
(ILP) exploitable in the simple cores. Single ISA (instruction-
set architecture) but performance asymmetric multi-cores [21],
comprising of both simple and complex cores, have recently
been proposed as a promising alternative. The processors in
an asymmetric multi-core architecture share the same ISA

but their micro-architectures (pipeline and caches) are very
different. Indeed, ARM has recently announced big.LITTLE
processing [15] for mobile platforms where high-performance,
triple-issue, out-of-order Cortex A-15 cores are integrated with
energy-efficient in-order Cortex A-7 cores in the same chip.

C0 C2 C3

C4 C5 C6 C7

C1 C0 C1

C2 C3

Symmetric simple Symmetric complex

Asymmetric Adaptive

C1 C2

C3 C4

C0

C0 C2 C3

C4 C5 C6 C7

C1

Fig. 1: Example of multi-core configurations.

Even though asymmetric multi-cores are positioned to ac-
commodate software diversity (mix of ILP and TLP workload)
better than symmetric multi-cores, they are not the ideal
solution. As the mix of simple and complex cores has to
be freezed at design time, an asymmetric multi-core lacks
the flexibility to adjust itself to dynamic workload. The next
logical step forward to support diverse and dynamic workload
is to design a multi-core that can, at runtime, tailor itself
according to the applications [19], [28], [29], [35] and thus
create asymmetric configurations dynamically. Such adaptive
architectures are physically fabricated as a set of simple,
identical cores. At runtime, two or more such simple cores
can be coalesced together to create a more complex virtual
core (see Adaptive configuration in Figure 1 with two virtual
cores). Similarly, the simple cores participating in a complex
virtual core can be disjoined at any point of time. A canonical
example is to form coalition of two 2-way out-of-order (ooo)
cores to create a single 4-way ooo core. Thus we can create
asymmetric multi-cores through simple reconfiguration.

Adaptive multi-cores appear well poised to support di-
verse and dynamic workload consisting of a mix of ILP
and TLP. As adaptive multi-core is a nascent area, existing
research primarily focuses on developing appropriate micro-
architectural techniques to form coalition of simple cores. The
performance evaluation of the adaptive multi-core in these

2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500

C
o
r
e
s

Cycles (x 1MIL)

gobmk
quantum

fft

blackscholes
bodytrack

(a) Symmetric multi-core

0

1

2

3

4

5

 654 0 100 200 300 400 500 600

C
o

re
s

Cycles (x 1MIL)

gobmk
quantum8

fft8

blackscholes
bodytrack

(b) Asymmetric multi-core

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

gobmk
quantum

fft

blackscholes
bodytrack

(c) Adaptive multi-core

Fig. 2: Illustrative example showing the schedule of a mix of sequential and parallel applications on different architectures.

works [19], [28], [29], [35] only looks at how well a virtual
complex core formed with simple physical cores can exploit
ILP in a sequential application or TLP in parallel applications,
independently. In reality, such adaptive architectures need to
support both sequential and parallel applications executing
concurrently. Existing literature is thus missing a realistic
evaluation of the performance potential of adaptive multi-
cores.

In this paper, we take the first step towards filling this
gap through a concrete performance limit study of adaptive
multi-cores in a scenario where both parallel and sequential
applications coexist in the system.

Conducting a limit study of adaptive architectures with
realistic workload is a challenging problem. As we are in-
terested in identifying the true performance potential of an
adaptive multi-core architecture, we have to employ an optimal
scheduler that can intelligently reconfigure and allocate the
cores to the applications so as to minimize the makespan.

A. Illustrative Example

We present an example that provides a visual illustration of
our scheduling problem. This example also concretely explains
the challenges involved in conducting the performance limit
study. For this example, we have chosen a set of five bench-
marks: three sequential applications (gobmk, quantum and
fft) from SPEC [1] and MiBench [17] benchmark suites that
can exploit ILP through complex ooo cores, and two parallel
applications (bodytrack and blackscholes) from PARSEC [3]
benchmark suite that can exploit TLP through multiple simple
cores. The experimental setup used to obtain the performance
of each individual benchmark on different number of cores
and configurations will be explained in Section VI.

We consider different multi-core architectures: (a) static
symmetric architecture with eight 2-way ooo cores, (b) static
asymmetric architecture with one 8-way ooo core and four
2-way ooo cores, (c) adaptive architecture with eight 2-way
ooo cores where the cores can be coalesced together to form
4-way, 6-way, or 8-way complex core. We assume the area of
a 8-way ooo core is roughly equivalent to that of four 2-way
ooo cores; hence all the architectures are area-equivalent to
the symmetric architecture with eight 2-way cores.

The Gantt charts presented in Figure 2 show the schedules
for different architectures along with the makespan (the time

when all applications complete execution). The lower the
makespan, the better is the performance of the system. For this
example, we obtain the optimal schedule using the technique
presented later in Section IV.

For the symmetric multi-core, the sequential applications
are restricted to using only one core, while the parallel appli-
cations can benefit from multiple cores. This severely restricts
the performance because the makespan of 500M cycles is
defined by the sequential application fft.

The asymmetric multi-core architecture provides opportu-
nity for the sequential applications to exploit ILP through one
8-way core. But the parallel applications are restricted to use
only four simple cores. The sequential applications fft and
quantum attempt to take advantage of the complex core to
reduce execution time and reduce the demand for the simple
cores. But this choice only leads to increased makespan.
This example clearly shows that a fixed asymmetric solution
may not always be the best replacement for the symmetric
architecture due to the lack of flexibility and availability of
the number of cores.

The adaptive multi-core architecture, on the other hand,
carefully selects the number of cores allocated to each ap-
plication. In this case, the sequential applications exploit ILP
through core coalition, while the parallel applications exploit
TLP by using multiple simple cores. In fact, the adaptive ar-
chitecture dynamically creates five different asymmetric multi-
core configurations during the makespan, in contrast to rigid
symmetric and asymmetric solutions.

The example illustrates the challenges in forming the sched-
ule for an adaptive architecture. For the optimal schedule in
Figure 2(c), we have to first determine the allocation of the
cores to the applications. This is a challenging task because
an application can be allocated varying number of cores over
time. For example, fft uses two cores for certain time interval
and one core for the remaining time. Moreover, an application
may be allowed to migrate from one core to another during
its execution even if it uses fixed number of cores throughout
execution. Finally, any realistic adaptive architecture imposes
additional scheduling and allocation constraints that need to
included in our decision process.

B. Contributions

We make the following concrete contributions in this paper.

3

• We perform a quantitative limit study of an ideal adaptive
multi-core architecture for a mix of real sequential and
parallel applications where the number of cores for both
parallel and sequential applications can be adapted at
runtime. We develop an optimal scheduler for the ideal
adaptive multi-core that, given a mix of sequential and
parallel tasks, can optimize the makespan via systematic
reconfiguration and allocation of the cores to the tasks.

• We then develop a scheduler for a realistic adaptive
architecture, namely Bahurupi [28], proposed recently.
Bahurupi imposes additional scheduling and allocation
constraints compared to the ideal adaptive architecture.
Interestingly, it turns out that Bahurupi performs close to
the optimal limit set by the ideal adaptive architecture
and outperforms any static symmetric or asymmetric
architecture across diverse workload.

• Finally, we design an online scheduler for adaptive multi-
core architectures like Bahurupi that can be easily inte-
grated in any contemporary operating system. The online
scheduler allocates the cores to the tasks as they arrive. In
this case also Bahurupi performs far better than both static
symmetric and asymmetric multi-cores by successfully
reconciling both ILP and TLP demands at runtime.

The rest of the paper is organized as follows. Section II
presents related work. Section III presents a brief overview of
a realistic adaptive multi-core architecture, Bahurupi, used in
this study. Section IV designs an optimal scheduler to evaluate
the performance limit of an ideal adaptive architecture. This
optimal schedule is then suitably modified to satisfy the
constraints imposed by realistic Bahurupi architecture. An
online scheduler for adaptive multi-core is presented in Section
V. The results of the quantitative evaluation appears in Section
VI and finally Section VII concludes.

II. RELATED WORK

A number of adaptive multi-core architectures have been
proposed in the literature recently. Core Fusion [19] fuses
homogeneous cores using complex hardware mechanism. They
evaluate the performance by running serial tasks and parallel
tasks separately on the adaptive multi-core. Voltron [35] ex-
ploits different forms of parallelism by coupling cores that
together act as a VLIW processor. This architecture relies
on a very complex compiler that must detect all forms of
parallelism found in the sequential program. The evaluation is
performed with only sequential applications and configuring
the hardware to exploit different types of parallelism in the
application. Federation [29] shows an alternative solution
where two scalar cores are merged into a 2-way out-of-order
(ooo) core. Again they evaluate the performance by running
only sequential applications.

Bahurupi [28] is an adaptive architecture that offers a simple
yet elegant approach through a hardware-software cooperative
solution to form coalition of 2-way ooo cores that can behave
as 4-way or 8-way ooo cores. In contrast to the other proposed
adaptive multi-core architectures, Bahurupi can be easily im-
plemented on top of existing multi-core processors, using
existing ISA and limited amount of extra hardware that makes

it power and energy efficient. [28] evaluates performance
and energy advantages of this architecture using sequential
applications. In our study, we choose Bahurupi as the baseline
dynamic multi-core architecture on which we schedule both
sequential and parallel benchmarks.

An analytic study is presented in [18] where Amdahl’s law
is adapted to different types of multi-core architectures. The
study uses simplistic architecture and application models. In
case of an application comprising sequential fragments, the
results show that asymmetric multi-cores can offer potential
speedups higher than symmetric solutions, while adaptive
multi-cores are the best option, being able to offer speedups
even higher than the asymmetric architectures. In contrast,
our work uses a real dynamic architecture that runs a mix
of real sequential and parallel benchmarks, and quantitatively
shows the performance limits of such system taking into
consideration all hardware and software constraints.

Scheduling only sequential applications on flexible multi-
core architectures is studied in [16] where different algorithms
for static and dynamic scheduling are proposed. However, this
work is built on top of the TFlex adaptive architecture [20]
that requires a special ISA (EDGE) configured to support
distributed execution of sequential applications. The EDGE
ISA adds significant overhead by bookkeeping the source code
block structures and it relies on point-to-point communication
to interchange data among cores. Moreover, [16] proposes
an optimal static scheduling algorithm with a high time
complexity, O(n m2), where n is the number of applications
and m is the number of cores in the system.

In our work, we first model the applications as independent
preemptive malleable tasks. Scheduling malleable tasks has
recently received significant attention. Malleable tasks are
parallel tasks that may be processed simultaneously by a
number of cores, where the speedup of the task is dependent
on the number of allocated cores. Malleable tasks are allowed
to be preempted and change the number of cores during execu-
tion. Scheduling malleable tasks is a promising technique for
gaining computational speedup when solving large scheduling
problems on parallel and distributed computers [8], [34]. Real
applications for malleable tasks have been presented among
others in [2] for simulating molecular dynamics, in [12] for
Cholesky factorization, in [4] for operational oceanography
and in [5] for berth and quay allocation.

The malleable task model was first proposed in [31] and
later studied in [23], [32], [25] and [30]. Scheduling in-
dependent malleable tasks without preemption is proved to
be NP-hard [13] and related work on this topic focuses on
finding sub-optimal solutions. [31] presented a polynomial
λ-approximation algorithm for the malleable tasks problem
starting from any λ-approximation algorithm for the 2D bin-
packing problem. Following this work, [23] presented a two-
approximation algorithm and [25] developed a heuristic with
worst case performance guarantee of

√
3 that was later im-

proved to 3
2 in [26]. Scheduling malleable tasks on clusters of

multi-cores is proposed in [14] where allocation of tasks to
clusters is also considered.

Operating with malleable tasks presents significant chal-
lenges for online scheduling systems. In our work, we use

4

a variation of the malleable task model — the moldable task
model. Moldable tasks are parallel tasks that can be executed
using an arbitrary number of cores; but they cannot change
the core allocation during execution. The performance of a
moldable task is directly related to the number of allocated
cores. Suboptimal solutions for scheduling moldable tasks
have been studied in [6], [7] and [11].

To the best of our knowledge, no previous work charac-
terized the performance of an adaptive multi-core architecture
when both sequential and parallel applications coexist in the
system. Our work introduces the first performance limit study
of adaptive multi-core architectures for this realistic scenario.

III. BAHURUPI ADAPTIVE MULTI-CORE

We select a recently proposed architecture called Bahu-
rupi [28] as a representative adaptive multi-core architecture
for this study. Our decision is influenced by the fact that
Bahurupi offers a simple yet elegant approach towards core
coalition through a hardware-software cooperative solution. It
is a cluster based architecture that imposes realistic constraints
on the scheduler.

L2 $

C0 C1 C2 C3

C4 C5 C6 C7

L1 D$
L1 I$

L1 I$
L1 D$

Medium ILP TLP

High ILP

Coalition logic

Coalition logic

Fig. 3: Bahurupi adaptive multi-core architecture with 8 cores.

Bahurupi architecture is built on top of a m-core symmetric
multi-core architecture consisting of 2-way out-of-order cores.
Figure 3 shows an example of 8-core Bahurupi architecture
with two clusters (P0−P3) and (P4−P7). In coalition mode,
the cores can merge together to create a virtual core that can
exploit more ILP. For example, a 2-core coalition behaves like
a 4-way ooo processor, while a 4-core coalition behaves like
a 8-way ooo processor. Bahurupi can only create coalition
within a cluster. Thus each coalition can consist of at most 4
cores and each cluster can have at most one active coalition
at a time. The highlighted cores in Figure 3 are involved in
two coalitions of two (P0, P1) and four (P4 − P7) cores. In
this example one parallel application runs its two threads on
cores P2 and P3, one medium-ILP sequential application is
scheduled to coalition (P0 −P1) and one high-ILP sequential
application is scheduled to coalition (P4 − P7).

When running in coalition mode, participating cores co-
operatively execute a single thread in a distributed fashion.
Basically, the cores execute basic blocks of the sequential
thread in parallel and fall back to a centralized unit for syn-
chronization and dependency resolution. Dependency comes
in the form of control flow and data dependence. Bahurupi
handles these with compiler support and minimal additional
hardware.

A new instruction called sentinel instruction is added to
the ISA, which is the first instruction of each basic block
of the code. Basic blocks are constructed at compile time
along with the information about live-in and live-out registers
to/from each basic block. This information is encoded in the
corresponding sentinel instruction, which also embeds control
flow information, specifically, length of the basic block and
whether it ends with a branch instruction. Thus, sentinel
instructions capture both the dependency and the control flow
information among the basic blocks.

Physically, all the cores share a global PC, synchronization
logic, global register file, and global renaming logic. Cores
participating in the coalition make use of these global struc-
tures while other cores can independently run different threads.

The only communication across the cores is through the
live-in and live-out register values. A broadcast mechanism is
used to let the producer core send its live-out register value
to any consumer core. Each core snoops the broadcast bus for
live-in registers.

The architecture includes a cache structure with reconfig-
urable banked L1 instruction and data caches where each bank
is associated with a core. Cores participating in the coalition
share a combined L1 instruction and data cache reconfigured
from their banks. L2 instruction and data caches are shared
across all the cores irrespective of whether the core is in
coalition or not.

A key aspect of Bahurupi is its execution model. It em-
phasizes on operating in a distributed way with only a few
essential global structures. This is important because any
combination of cores can potentially become a coalition and
the number of cores in the coalition does not change the way
each core operates individually.

The overhead of adding/removing a core to/from a coalition
is determined by the reconfiguration of L1 caches and internal
resources. Bahurupi needs 100 cycles to reconfigure. This
overhead is very small compared to the execution time of
any application. The results presented in [28] show that, in
case of integer applications, a 2-core or 4-core coalition can
perform very close to a 4-way or 8-way out-of-order processor,
respectively. On the other hand, for floating point applications,
a 2-core or a 4-core coalition can even outperform a 4-way or
8-way true out-of-order processor. This is because Bahurupi
can look far ahead in the future to exploit ILP as the compiler
resolves dependencies across basic blocks. The reader may
refer to [28] for details on high-level architecture of Bahurupi.

IV. OPTIMAL SCHEDULE FOR ADAPTIVE MULTI-CORE

The goal of this section is to conduct a quantitative per-
formance limit study of the adaptive asymmetric multi-core
architectures. We design an efficient off-line scheduler to carry

5

out this limit study. We first present an optimal scheduler for
an ideal adaptive multi-core architecture that is not restricted
by any physical or technological constraint. Next, we impose
additional constraints to perform scheduling on a realistic
adaptive multi-core, namely Bahurupi (see Section III).

A. Optimal Schedule on Ideal Adaptive Multi-core
The ideal adaptive multi-core architecture consists of m

physical 2-way superscalar out-of-order cores supporting
shared memory through hardware cache coherence. Any subset
of these cores can be coalesced together to form one or
more complex out-of-order cores. If r cores (r ≤ m) form
a coalition, then the resulting complex core supports 2r-
way superscalar out-of-order execution. The architecture can
support any number of coalitions as long as the total number
of cores included in all the coalitions at any point in time
does not exceed m. We assume that the core coalition does
not incur any performance overhead, that is, the performance
of a 2r-way core coalition is identical to a native 2r-way core.
A parallel application can execute on any subset of the simple
cores, while a sequential application can execute on any simple
core or a core coalition.

The adaptive architecture allows both sequential and parallel
applications to use time varying number of cores. Thus we
model the applications as malleable workload [22], where the
number of cores allocated per application is not fixed and
can change during execution through preemption. For the
limit study, our goal is to create the optimal schedule for the
malleable tasks 1 on the ideal adaptive architecture.

The scheduling problem can be formulated as follows.
We consider an ideal adaptive multi-core architecture con-
sisting of m homogeneous independent physical processors
{P0, P2, ..., Pm−1} running a set of n (n ≤ m) preemptive
malleable tasks {T0, T2, ..., Tn−1}. We assume that all the
tasks arrive at time zero. The objective is to allocate and
schedule the tasks on the cores so as to minimize the makespan
Cmax = maxj{Cj} where Cj is the finish time of task Tj .

1) Optimal schedule with continuous resources: We first
determine the optimal Cmax assuming that the number of
cores allocated to a task need not be an integer. Then we
transform this schedule to one that uses discrete resources.

Let us denote the number of processors assigned to a task
Tj by rj , where 0 < rj ≤ m. If rj is a continuous renewable
resource (i.e., rj can have real value), then we can adopt
the solutions presented for the continuous resource allocation
problem [33], [10] as our starting point.

Each task has a fixed amount of processing work pj > 0. In
a time interval of length t, a task performs t× g(t) amount of
work where g(t) = fj(rj) ≥ 0 is a continuous non-decreasing
processing speedup function that relates rj to the processing
speed of a task. The set of feasible resource allocations of
processors to tasks is as follows.

R =

r = (r0, ..., rn−1) | rj > 0,
n−1∑
j=0

rj ≤ m

1We use the terms task and application interchangeably.

Applying speedup function fj(rj) over the elements of R
we obtain the set of feasible transformed resource allocations

U = {u = (u0, ..., un−1) | uj = fj(rj), j = 0, ..., n− 1, rj ∈ R}

Theorem 1: (Resource allocation theory [33])
Let n ≤ m, convU be the convex hull of the set U, i.e, the

set of all convex combinations of the elements of U, and u =
p/C be a straight line in the space of transformed resource
allocations given by the parametric equations uj = pj/C, j =
0, ..., n− 1. Then, the minimum schedule length is

C0
max = min

{
C | C > 0,

p

C
∈ convU

}
(1)

where p = (p0, ..., pn−1) is the processing work for the tasks.
From (1) it follows that, the minimum makespan value

C0
max is given by the intersection point of the line u = p/C

and the boundary of the convU set in the n-dimensional
space of transformed resource allocations. The boundary of
the convU set has a shape that depends on the convexity or
concavity of the speedup functions fj . The referred resource
allocation solution is only valid for concave speedup functions
fj . In our evaluation, almost all the applications we tested
can be approximated with concave speedup functions. In
Figure 4, we give a geometrical interpretation of the resource
allocation problem applied in the case of n = 2 tasks, m
processors and concave speedup functions f0, f1. The set of
feasible allocations R is transformed into the set of feasible
transformed allocations U by applying the speedup functions.

r1

r0 m

m

0

R

u0

f1(m)

0

U = convU
u0

concave functions f0, f1

u1

f0(m)

Fig. 4: Resource transformation example for n = 2.

The value of C0
max is determined by the intersection point

u0, C0
max = pj/u

0
j , j = 0, ..., n − 1. Thus, in order to find

the minimum schedule length for our problem, we have to
find the point u0. [10] presents an algorithm that finds the
solution for the continuous resource allocation problem in
O(n max{m,n log2 m}) time.

Normally, the speedup functions are only defined at inte-
ger points for a resource (discrete functions). The speedup
functions fj are extended with piecewise linear functions
between consecutive rj points. This way the monotonicity
and concavity properties of the functions are maintained. The
piecewise linear functions are described by the equations

fj(r) = bj,sr + dj,s, r ∈ [s− 1, s],

s = 2, ...,m, j = 0, ..., n− 1,

bj,0 = dj,0 = 0

(2)

Figure 5 shows an example of piecewise interpolation applied
to the discrete speedup function for the mcf benchmark from

6

SPEC benchmark suite with m = 4. Note that mcf is a
sequential application. So the speedup on r cores correspond
to the speedup on 2r-way ooo core compared to the baseline
2-way ooo core.

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4

S
p
e
e
d
u
p

Number of cores

mcf

Fig. 5: Piecewise interpolation of speedup function for mcf

2) Optimal schedule with discrete resources: Clearly con-
sidering processors as continuous renewable resources is not a
realistic assumption. Fortunately, the solution to the continuous
problem can be transformed into a discrete solution with the
same optimal makespan value C0

max [9].
The discrete solution is obtained from the continuous

version through a rectangle packing procedure where two
rectangles are allocated to each task. The rectangles represent
the processing work and the number of cores allocated to a
task. The dimensions (height and width) of the rectangles (aj ,
vj), (bj , wj) are computed as follows

aj = ⌊r0j ⌋, bj = ⌈r0j ⌉
vj = (bj − r0j)pj/fj(r

0
j)

wj = (r0j − aj)pj/fj(r
0
j)

(3)

Essentially, Equation 3 rounds the processor allocation r0j
up and down to integer values and represent r0j as linear
combinations of these two values. Consequently bj − aj = 1
for any task Tj . The rectangles are packed in (C0

max, m)
rectangle using the rule of the southwest corner in which a
new rectangle is always assigned the leftmost position at the
bottom of the unoccupied area. It can be proved [9] that the
total width of the two rectangles can not exceed C0

max. Also
a rectangle always fits within the height m. Once a rectangle
exceeds C0

max along the width, it is cut and the excess portion
is moved back inside following the packing rule.

cores

time 0 Cmax

m

rectangles already assigned

Tj Tj

Tj
Tj

bj
aj

bj

wj

vj

Fig. 6: Rectangle packing for discrete resource problem.

An example is shown in Figure 6, where two rectangles
of height bj and aj are allocated to application Tj . The
rectangle of height bj is packed first and it exceeds C0

max.
The highlighted part of the rectangle is moved back and then
the second rectangle allocated for this task is placed. The

packing algorithm guarantees at most two preemption points
for each task and requires O(n) time. Consequently, the time
complexity to optimally schedule the malleable tasks on an
ideal adaptive multi-core is O(n max{m,n log2 m}).

B. Task Scheduling on Bahurupi

When scheduling tasks on a realistic adaptive multi-core
architecture, we must take into consideration all the constraints
and limitations imposed by the system. More concretely, for
Bahurupi architecture, we need to consider the following
constraints in forming core coalitions for sequential tasks. The
constraints are actually quite generic and are present in almost
all adaptive multi-core architectures in the literature even
though the exact values for the constraints can be different.

C1. A sequential application can use at most four cores.
C2. We can form at most m/4 coalitions at any time.
C3. A sequential application can only use cores that

belong to the same cluster.
There is no such constraints for the parallel tasks. A parallel

task may use any number of available cores to minimize
the overall makespan. The scheduling solution for Bahurupi
needs to add the constraints to the optimal scheduling solution
presented in Section IV-A for the ideal adaptive architecture.
Algorithm 1 presents the scheduling algorithm for Bahurupi.

1) Constraint C1: Bahurupi restricts any sequential appli-
cation to use at most four cores due to the limited amount
of ILP found in sequential applications and the increase in
coalition overhead when using more than four cores. To im-
plement this constraint we modify the set of feasible resource
allocation such that, the system can allocate at most four cores
for sequential applications.

R =

{
r = (r0, ..., rj , ..., rn−1) | rj > 0,

n−1∑
j=0

rj ≤ m

}

max(rj) =

{
4 if application Tj is sequential,
m if application Tj is parallel

Function Apply constraint C1 in Algorithm 1 implements this
constraint for the sequential tasks.

2) Constraint C2: Bahurupi architecture can accommodate
at most one coalition per cluster. For each cluster, Bahurupi
uses the coalition logic, which can be allocated to at most one
coalition. Figure 7 illustrates an example of a 4-core Bahurupi
architecture running two sequential tasks, hmmer and gsm and
one parallel task swaptions. This architecture can support at
most one coalition. The time at which the tasks are preempted
are marked on the top of the charts. The original schedule for
the ideal adaptive architecture shown in Figure 7(a) violates
the bound on number of coalitions in the interval ∆0 – ∆1

where there are two coalitions of two cores ({P0, P1} and
{P2, P3}) used simultaneously by the tasks hmmer and gsm.

The one coalition per cluster constraint is imposed through
Apply constraint C2 during the placement of the rectangles
in the function Generate and pack rectangles in Algorithm
1. The rectangles are ordered initially by the function Or-
der rectangles in decreasing order of their heights. Rectangles

7

Algorithm 1: Malleable Task Scheduler on Bahurupi

AdaptiveScheduler(task list, m, n) begin
restart = FALSE;
Apply constraint C1(task list, m, n);
Find contiunous cmax(task list, m, n);
Convert to discrete(task list, m, n);
Generate and pack rectangles(task list, m, n,
restart);
if restart == TRUE then

AdaptiveScheduler(task list, m, n);
Apply constraint C3(task list, m, n);

Generate_and_pack_rectangles(task list, m, n,
restart)

begin
constraint violated = FALSE;
current task = 1;
rectangles = Generate rectangles(m, n);
Order rectangles(rectangles, n);
while constraint violated == FALSE do

Place rectangles(rectangles[current task]);
Apply constraint C2(task list, m, n,
constraint violated);
if constraint violated == TRUE then

restart = TRUE;
violating task = current task;
break;

current task = current task + 1;
if constraint violated == TRUE then

Constrain remaining tasks(current task, n);
Apply_constraint_C2(task list, m, n,
constraint violated)

begin
for all time intervals (∆j , ∆j+1) do

n coalitions = Count coalitions(∆j , ∆j+1);
CLj = Build coalitions list(∆j , ∆j+1);
NCLj = Build non coalitions list(∆j , ∆j+1);
if n coalitions > (m/4) then

constraint violated = TRUE;
break;

Apply_constraint_C3(task list, m, n)

begin
constraint violated = FALSE;
for all tasks in CLj do

for 1 ≤ k < (m/4) do
if task uses cores P4k and P4k−1 then

constraint violated = TRUE;
break;

if constraint violated == TRUE then
Pack coalitions(CLj);
Pack non coalitions(NCLj);

0

1

2

3

4

 1346 0 200 400 600 800 1000 1200

C
o

re
s

Cycles (x 1MIL)

∆0 ∆1 ∆2 ∆3

hmmer gsm swaptions

(a) Violation of constraint C2 from ∆0–∆1

0

1

2

3

4

 0 200 400 600 800 1000 1200 1400

C
o

re
s

Cycles (x 1MIL)

hmmer gsm swaptions

(b) Satisfying constraint C2 by restricting gsm to use one core

Fig. 7: Example of imposing constraint C2.

having the same height are ordered in decreasing order of
the corresponding processing work pj . After placing a new
rectangle, we scan each time interval (∆j–∆j+1) to count
the number of coalitions used by the sequential tasks in
that interval. If there are more than m/4 coalitions, then the
constraint C2 is violated.

If the constraint C2 is violated, then we abort the rectangle
packing and constrain the sequential tasks that are not placed
yet (including the last placed task) to use only one processor,
i.e., rj = 1. The algorithm is then resumed with the new
constraint. Imposing constraint C2 may lead to increased
makespan. For example, in Figure 7(b), gsm is restricted to
using only one core and the makespan is increased.

3) Constraint C3: Constraint C3 ensures that a sequential
task is restricted to using only the cores within a cluster. In
Figure 8(a) we consider a set of three sequential applications
gobmk, bitcount and fft and two parallel applications, blacksc-
holes and canneal. We can see that the constraint C3 is violated
for time intervals ∆2–∆5 assuming that processors P0 – P3

belong to one cluster and P4 – P7 belong to another cluster.
Function Apply constraint C3 in Algorithm 1 implements

this constraint. To impose this constraint, we first assume
that the schedule has already been modified to satisfy the
constraints C1 and C2. For each time interval ∆j–∆j+1, we
check if any sequential task uses cores across clusters. This
can be done by simply checking if any sequential task uses
cores P4k and P4k−1, where 1 ≤ k < (m/4). If the constraint
is violated in any time interval, then we need to migrate the

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(a) fft violates C3 constraint from ∆2 – ∆5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(b) Schedule after imposing C3 constraint in ∆2 – ∆3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(c) Schedule after imposing C3 constraint in ∆3 – ∆4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

C
o

re
s

Cycles (x 1MIL)

∆1 ∆2 ∆3 ∆4∆0 ∆5

gobmk
bitcount

fft

blackscholes
canneal

(d) Schedule after imposing C3 constraint in ∆4 – ∆5

Fig. 8: Example of imposing constraint C3.

tasks within that interval.

For each time interval ∆j–∆j+1, let CLj be the list of
rectangles for which the height is greater than 1 and the
corresponding tasks are sequential (i.e., sequential tasks that
need coalitions) and NCLj be the list with rectangles that
correspond to sequential tasks without coalition or parallel
tasks. These lists are built while the rectangles are packed. As
constraints C1 and C2 have already been satisfied, it follows
that we can fit each rectangle from CLj list on a unique cluster
P4k – P4k+3, where 0 ≤ k < (m/4). This is implemented by
function Pack coalitions. The one-unit height rectangles from
NCLj can fit in the available free cores regardless of the
clusters, while the rectangles (threads) corresponding to the
parallel tasks can be scheduled such that they fill the remaining
free cores. This is done in function Pack non coalitions.

Figure 8(b) shows the scheduling after applying the con-
straint C3 for the interval ∆2–∆3. Here, CL2 = {bitcount,
fft} and NCL2={canneal, blackscholes, gobmk}. The tasks
bitcount and fft are placed on cores P0–P1 and P4–P5 as they
are sequential applications running on coalitions. After this
step, the cores P2 and P3 are free. We choose gobmk to run
on core P2 and one thread of parallel application blackscholes
to run on core P3. Figures 8(c)–(d) show the results for the rest
of the intervals. As this step is only a rectangle rearrangement,

application of the constraint C3 has no effect on the makespan.
Note that imposing constraints C1 and C3 maintain the

optimality of the schedule. However, imposing constraint C2
may violate the optimality of the schedule. Among all the
task sets we evaluated, only 1% of the task sets violate the
constraint C2 in the optimal schedule on ideal adaptive multi-
core. Thus, for most of the task sets, the schedule obtained
for Bahurupi is the optimal schedule.

V. ONLINE SCHEDULE FOR ADAPTIVE MULTI-CORE

The off-line schedule described in the previous section
assumes all the tasks are ready at time zero. However, in a real
system, the tasks can arrive at any point in time and the arrival
times are not known beforehand. In this section, we present
an online schedule for Bahurupi architecture to quantitatively
evaluate the performance of an adaptive multi-core compared
to static symmetric and asymmetric multi-cores.

We allow the tasks to arrive in the system with different
arrival times. Every task Tj is now defined by the tuple
< typej , arrj , fjk >, where typej is the type of the
task (serial or parallel), arrj is the arrival time and fjk is
its speedup function on k cores. The arrival times arrj are
randomly distributed in the interval [0,

∑n−1
j=0 pj] allowing the

tasks to compete for limited number of free cores.

9

Algorithm 2: Online scheduler for Bahurupi

InitAdaptiveOnlineScheduler(m, n) begin
free cores = m;
free clusters = m/4;

OnlineSchedule_tick()

begin
if task queue.empty() == FALSE then

if free cores > 0 then
next task = task queue.front();
Place task(next task);

if current task is finished then
Update free cores(current task, free cores);
free clusters = free cores/4;

Place_task(task)

begin
max cores = Get max cores(task);
use cores = max cores;
if max cores < free cores then

use cores = free cores;
if task.type == PARALLEL then

Allocate cores(task, use cores);
else

use cluster = (use cores > 1);
if (free clusters - use cluster) > 0 then

Allocate cores(task, use cores);
free clusters = free clusters - use cluster;

else
use cores = 1;
Allocate cores(task, use cores);

free cores = free cores - use cores;

Algorithm 2 presents our online scheduler for Bahurupi
adaptive multi-core. Here we model the workload as moldable
tasks [22]. A moldable task can be scheduled on any number
of cores just like malleable tasks but with the restriction that
it cannot be preempted. This assumption makes it easy for us
to integrate the scheduler in existing operating systems.

When a task arrives in the system, the only information
required by the scheduler is its speedup function. This can be
obtained by profiling the task on different number of cores.
The scheduling decision is taken periodically at every system
tick by the function OnlineSchedule tick. As the moldable
tasks cannot be preempted, once a task is scheduled on one
or more cores using Allocate cores function, it will run till
completion. Once a task completes execution, the number of
free cores is updated by Update free cores function.

The dynamic allocation of the tasks to the cores is handled
by Place task function. For most tasks, the speedup function
tends to have a flat region when applied to a large number of
cores (see Figure 9). In this region, the increase in performance
on rj + 1 cores is minimal compared to the performance on
rj cores. The function Get max cores returns the number
of cores beyond which the speedup improvement is lower
than 40%. This way we avoid allocating unnecessary cores
that contribute little to performance improvement. Instead,

these cores can be allocated to future tasks. The algorithm
also ensures that the constraints C1, C2 and C3 mentioned
earlier are satisfied. When constraint C3 is violated, function
Allocate cores migrates the tasks such that no sequential task
spans across clusters.

VI. QUANTITATIVE RESULTS

In this section, we first present quantitative characterization
of the performance limit of ideal adaptive multi-core and
realistic adaptive multi-core (Bahurupi) compared to static
symmetric and asymmetric multi-cores. This is followed by
performance comparison of Bahurupi with static multi-cores
using online scheduler.

Benchmarks Inputs Suite Type
gzip input.source

SPEC2000

sequential

mesa mesa.ppm
mcf inp.in

equake inp.in
crafty crafty.in
ammp ammp.in
parser test.in

perlbmk diffmail.pl
bzip input.program

SPEC2006

gobmk capture.tst
calculix beampic

hmm bombesin.hmm
sjeng test.txt

quantum 50 5
lbm reference.dat

sphinx an4.ctl
basicmath

runme large.sh MiBench

bicount
qsort
susan

dijkstra
patricia

sha
adpcm

fft
gsm

stringsearch
blackscholes

simsmall PARSEC parallel

swaptions
canneal

vips
bodytrack
raytrace

TABLE I: Benchmark applications used in our study.

A. Workload
We select 27 sequential applications from SPEC2006,

SPEC2000 and embedded MiBench benchmark suites and
6 parallel applications from PARSEC benchmark suite. The
characteristics of the benchmarks appear in Table I.

We generate different workload (task sets) consisting of
varying mix of ILP and TLP tasks. We ensure that the tasks
within a task set have similar processing workload so that all
the tasks are competing for the resources throughout execu-
tion. This restriction in variability of processing workload is
achieved as follows. Given the workload pj for each task Tj ,
we compute the average workload and the standard deviation.
We ensure that the ratio of standard deviation and average
does not exceed 0.35 for a task set. Across all the tasks sets,
the ratio of sequential tasks ranges from 25% to 80%; so the
ratio of parallel tasks ranges from 20% to 75%.

10

B. Multi-Core Configurations

Configuration Description
(S1) 8x2-way Symmetric eight 2-way cores
(S2) 4x4-way Symmetric four 4-way cores
(A1) 2x4-way + 4x2-way Asymmetric two 4-way + four 2-way cores
(A2) 1x8-way + 4x2-way Asymmetric one 8-way + four 2-way cores
(A3) 1x8-way + 2x4-way Asymmetric one 8-way + two 4-way cores
(Ideal) 8x2-way Ideal adaptive multi-core
(Bahurupi) 8x2-way Bahurupi Adaptive multi-core

TABLE II: Multi-core configurations used in our study

We model seven different static and adaptive multi-core
configurations in our study as shown in Table II. All these
configurations are roughly area equivalent to eight 2-way
multi-core architecture (S1) under the assumption that the area
of a 2r-way core is equivalent to that of r 2-way cores.

The symmetric eight 2-way multi-core architecture S1 is
treated as the baseline. We also consider another symmetric
multi-core S2 with medium complexity cores: four 4-way
cores. The static asymmetric multi-core architectures A1, A2,
and A3 employ different combination of small, medium, and
large complexity cores. For example, A1 has more number of
cores compared to A3 and hence is more suitable for TLP
tasks, while A3 can accelerate ILP tasks better than A1.

The ideal adaptive multi-core and Bahurupi require the same
amount of physical area as the baseline static symmetric multi-
core. However, they can be morphed at runtime to form various
different symmetric or asymmetric configurations. As men-
tioned earlier, the ideal adaptive architecture has no restriction
on how core coalitions can be formed while Bahurupi imposes
certain constraints driven by implementation considerations.

We use MARSS cycle-accurate multi-core simulator [27]
for our quantitative characterization work. The configuration
parameters for out-of-order cores with different superscalarity
values are shown in Table III. The resources available to a
core increases with increasing superscalarity.

C. Speedup Functions

Both static and adaptive multi-core architectures allow par-
allel tasks to use any number of cores. The speedup function
for parallel tasks on different number of cores are shown in
Figure 9. We compile the parallel task with r threads and
execute the threads on r cores to obtain the speedup. In
other words, the speedup function represents the ideal scenario
where the number of threads is equal to the number of cores.
In reality, a parallel task compiled with r threads may need to
use a different number of cores during execution. Similarly,
for an adaptive architecture, a task can be allocated varying
number of cores during execution. However, we noticed little
difference in performance when an application compiled with
m threads executed on r cores where r < m.

The static symmetric and asymmetric multi-cores use native
4-way and 8-way cores. The speedup of serial tasks on native
4-way and 8-way cores are obtained from MARSS cycle-
accurate simulator [27]. Both ideal adaptive and Bahurupi
architecture, on the other hand, employ core coalition to create
virtual 2r-way cores from r 2-way physical cores. We have

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2way 4way 6way 8way

S
p
e
e
d
u
p

Core configurations

bzip

gobmk

calculix

hmm

sjeng

quantum

lbm

sphinx

equake

(a) SPEC sequential applications

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2way 4way 6way 8way

S
p
e
e
d
u
p

Core configurations

basicmath

bitcount

qsort

susan

dijkstra

patricia

sha

adpcm

FFT

(b) MiBench sequential applications

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
e
e
d
u
p

Number of cores

blackscholes

swaptions

canneal

vips

bodytrack

raytrace

(c) PARSEC parallel applications

Fig. 9: Speedup functions for sequential and parallel tasks.

established before [28] that the performance of a virtual 2r-
way core through core coalition in Bahurupi is either close to
or even surpasses the performance of native 2r-way core. For
serial tasks running on virtual cores in adaptive architectures
(Ideal and Bahurupi), we use speedup obtained from core
coalition. As going beyond 8-way cores does not provide
futher speedup due to limited ILP, we restrict the speedup
function for serial tasks to 8-way core as shown in Figure 9.

D. Scheduling on Static Multi-cores

The scheduling algorithms presented in Section IV are used
to obtain the makespan for Ideal and Bahurupi architectures.
For the symmetric architectures S1 and S2, we can employ the
same optimal scheduling algorithm used for Ideal by simply
restricting the sequential applications to use only one core.

For asymmetric architecture, however, we need to modify
the scheduling algorithm. We first obtain the optimal makespan
C0

max assuming continuous resource allocation. Then for each
task Tj , we round up or down the resource allocated r0j
to match an available simple or complex core, except for
r0j < 1 in which case r0j becomes 1. Finally, we perform

11

Type Issue Commit Dispatch ROB LSQ ALU FP LSU I/D TLB I/D L1$ I/D L2$
width width width size size cnt cnt cnt size size size

2-way 2 2 2 64 32 2 1 1 16 128K 2MB
4-way 4 4 4 128 64 3 2 2 32 256K 2MB
6-way 6 6 6 192 96 4 3 3 48 384K 2MB
8-way 8 8 8 256 128 5 4 4 64 512K 2MB

TABLE III: Configuration parameters for out-of-order cores: issue, commit, dispatch width; reorder buffer (ROB) size; load-
store queue (LSQ) size; number of ALU, floating point (FP), and load-store (LSU) units; instruction-data TLB size, L1
instruction-data cache size, and unified L2 cache size.

strip packing [24] to optimally schedule the tasks. Note that
scheduling using strip-packing is computationally expensive
for static asymmetric multi-cores; but scheduling on static
asymmetric multi-cores is not the focus of our work. We
merely use it for comparison purposes.

For online schedule on static multi-cores, we adapt the
online algorithm presented for Bahurupi in Section V. In all
the schedules, we assume a preemption penalty of 100 cycles
and reconfiguration penalty of 100 cycles [28].

E. Limit Study of Adaptive Multi-core

We now proceed to characterize the performance limit
of adaptive multi-cores compared to static multi-cores. As
mentioned earlier, we generate 850 task sets and compute the
makespan of each task set on different multi-core architectures.
The results are presented in Figure 10. The speedup on Y-
axis is defined w.r.t. the makespan on baseline symmetric
S1 architecture consisting of eight 2-way cores. We plot
the speedup on six different architectures for each task set
represented on the X-axis. That is, each point in this graph
represents the speedup of a particular task set on a particular
architecture compared to baseline S1. For ease of presentation,
the task sets along X-axis are sorted in non-decreasing order
of speedup on Bahurupi.

The results clearly demonstrate that adaptive architectures
(Ideal and Bahurupi) perform significantly better when com-
pared to static symmetric and asymmetric architectures. It
is interesting to note that the performance of Bahurupi is
practically identical to that of Ideal adaptive architecture even
though Bahurupi imposes certain constraints on core coalition.
Thus, a cluster-based adaptive architecture like Bahurupi is
quite effective in reaching the speedup limit set by ideal
adaptive architecture.

The normalized speedup of adaptive architectures ranges
from 10% to 49%. When the speedup on adaptive architecture
is low, the speedup on static multi-cores is also very low
or they perform even worse than the baseline symmetric
architecture S1 due to lack of resources. On an average, adap-
tive architectures outperform the asymmetric configurations
A1, A2 and A3 by 18%, 35% and 52% respectively. When
compared with the symmetric configuration S2, the adaptive
architecture performs 26% better, which makes the symmetric
configuration S2 a better option than the asymmetric configu-
rations A2 and A3. This is due to the availability of a number
of powerful cores in S2 that can accelerate both the sequential
and parallel tasks.

The results also anticipate the performance benefit of the
announced asymmetric big.LITTLE multi-core [15], which
includes two 3-way Cortex A-15 out-of-order cores and four

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal Bahurupi Asymmetric

A1

Asymmetric

A2

Asymmetric

A3

Symmetric S2 Symmetric S1

P
ro
ce
ss
o
r
u
ti
li
za
ti
o
n

Multi core processor configurations

Fig. 11: Utilization of architectures in offline schedule.

dual-issue in-order Cortex A-7 cores on the same die. This
configuration is close to the asymmetric A1 configuration,
which performs the best out of all asymmetric configurations.

Figure 11 reports the processor utilization (averaged across
all tasks sets) for different static and adaptive multi-core
architectures. The adaptive architectures have the best utiliza-
tion (94%) and performance making them the most efficient
architectures. In contrast, the asymmetric multi-core A3 has a
high utilization (92%) but low performance, making it the least
efficient multi-core architecture. The symmetric configuration
S1 has low utilization (61%) as it can only exploit TLP from
parallel tasks. The serial tasks keep only a subset of the cores
busy. The asymmetric configuration A1 has good utilization
(82%) making it the most efficient asymmetric configuration.

F. Realistic Performance Benefit of Adaptive Multi-core

We now present the performance benefit of adaptive multi-
core architecture such as Bahurupi in the context of realistic
online scheduling where tasks can arrive at arbitrary point
in time. The results are shown in Figure 12. The X-axis
and Y-axis are defined similar to Figure 10. We perform
the experiments for the same 850 task sets used for offline
schedule; however, we run each task set with five different
arrival times to create a total of 4,250 task sets.

Again Bahurupi outperforms static symmetric and asymmet-
ric multi-core architectures with speedup ranging from 10%
to 62%. On an average, Bahurupi outperforms asymmetric
A1, A2 and A3 configurations by 17%, 26%, and 28%,
respectively. The symmetric architecture S2 shows a loss in
performance of 26% when compared to Bahurupi. This shows
that in the case of online scheduling, the speedup trend for
different configurations is almost the same as that of off-line
schedule (Figure 10). The asymmetric configuration A1 offers
the best asymmetric performance, while the configuration A3
offers the worst performance.

Figure 13 plots the average processor utilization of the dif-
ferent architectures in online scheduling. The utilization trend
is similar to that of offline schedule (Figure 11). Bahurupi

12

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

10%

20%

30%

40%

50%

S
p
e
e
d
u
p

Task sets

Ideal Bahurupi Asymmetric A1 Asymmetric A2 Asymmetric A3 Symmetric S2

Fig. 10: Comparison of adaptive and static multi-cores under offline schedule. The speedup is w.r.t. symmetric multi-core S1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Bahurupi Asymmetric A1 Asymmetric A2 Asymmetric A3 Symmetric S2 Symmetric S1

P
ro
ce
ss
o
r
u
ti
li
za
ti
o
n

Multi core processor configurations

Fig. 13: Utilization of architectures in online schedule.

shows very good efficiency with 76% average utilization, while
the asymmetric configuration A3 shows the worst efficiency
with 67% average utilization. Similarly, symmetric configu-
ration S1 has the lowest utilization (44%) due to the large
number of simple cores that can only benefit the parallel
applications, whereas the serial applications keep the occupied
cores busy for a long time.

The measured average competitive ratio between our online
scheduler and an optimal online scheduler (obtained using strip
packing) is 1.14.

G. Reconciling ILP and TLP

The main objective of adaptive multi-core architectures such
as Bahurupi is to reconcile the conflict between ILP and
TLP tasks and provide performance benefit for both. We now
provide quantitative validation that Bahurupi indeed manages
to accelerate both sequential and parallel tasks.

As mentioned before, we use 27 sequential and 6 parallel
applications to create 850 different task sets for our online
scheduling experiment. Each task set is run with 5 different
randomly selected arrival times to create a total of 850 × 5
different task sets. For each task and multi-core configuration
used in our study, we compute the average speedup of the task
across all the online schedules in which the task participates.
The speedup is computed w.r.t. the execution time of the task
on a single 2-way core.

Figure 14 shows the speedup for the sequential applica-
tions. Bahurupi is the clear winner here and provides the

best speedup for each application among all the multi-core
configurations. Asymmetric A3 using native 8-way core is
close to Bahurupi. Also as expected, symmetric S2 deploys
4-way cores and hence has better speedup for serial tasks
compared to symmetric S1 using 2-way cores. The perfor-
mance of asymmetric A1 and A2 for serial applications appear
somewhere in between.

In contrast, Figure 15 shows the speedup for parallel ap-
plications. Again, the speedup of Bahurupi is close to that
of baseline symmetric S1, which understandably has the best
speedup because it has a large number of simple cores. The
other symmetric and asymmetric configuration perform quite
badly for parallel applications.

So in summary, adaptive multi-core architecture like Bahu-
rupi is successful in accelerating both serial and parallel tasks.
While symmetric S1 with large number of simple cores is quite
effective for TLP, it shows poor performance for serial tasks.
Asymmetric architecture A3 can perform well for serial tasks
due to the presence of a complex core but suffers badly for
parallel tasks. Among the static asymmetric configurations,
the configuration A1 provides the best balance of ILP and
TLP speedup; but is far behind adaptive multi-core architecture
Bahurupi.

VII. CONCLUSIONS

We have presented a comprehensive quantitative approach
to establish the performance potential of adaptive multi-core
architectures compared to static symmetric and asymmetric
multi-cores. Ours is the first performance study that considers
a mix of sequential and parallel workloads to observe the
capability of adaptive multi-cores in exploiting both ILP and
TLP. We employ an optimal algorithm that allocates and
schedules the tasks on varying number of cores so as to
minimize the makespan. This optimal schedule allows us to
define the performance limit of ideal adaptive multi-cores for
realistic workloads. We then modify this optimal schedule to
satisfy the constraints imposed by a realistic adaptive multi-
core, namely Bahurupi. The experiments reveal that both the
ideal and the realistic adaptive architecture provide significant
reduction in makespan for mixed workload compared to static

13

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

10%

20%

30%

40%

50%

60%

70%
S
p
e
e
d
u
p

Task sets

Bahurupi Asymmetric A1 Asymmetric A2 Asymmetric A3 Symmetric S2

Fig. 12: Comparison of Bahurupi with static multi-cores under online schedule. The speedup is w.r.t. symmetric multi-core S1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p

Bahurupi Asymmetric A1 Asymmetric A2 Asymmetric A3 Symmetric S1 Symmetric S2

Fig. 14: Speedup of sequential applications averaged across all task sets normalized w.r.t. execution on native 2-way core.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

blackscholes canneal bodytrack vips swaptions raytrace

S
p
e
e
d
u
p

Bahurupi Asymmetric A1 Asymmetric A2 Asymmetric A3 Symmetric S1 Symmetric S2

Fig. 15: Speedup of parallel applications averaged across all task sets normalized w.r.t. execution on one 2-way core.

14

symmetric and asymmetric architectures. Finally, we compare
the performance of adaptive and static multi-cores in an online
scheduling policy and demonstrate the same performance
trend.

Acknowledgements: This work was partially supported
by Singapore Ministry of Education Academic Research Fund
Tier 2 MOE2009-T2-1-033.

REFERENCES

[1] SPEC CPU Benchmarks. http://www.spec.org/benchmarks.html.
[2] P.-E. Bernard, T. Gautier, and D. Trystram. Large Scale Simulation of

Parallel Molecular Dynamics. In Proceedings of the 13th International
Symposium on Parallel Processing and the 10th Symposium on Parallel
and Distributed Processing, pages 638–644, 1999.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings
of the 17th international conference on Parallel Architectures and
Compilation Techniques, pages 72–81, 2008.

[4] E. Blayo and L. Debreu. Adaptive Mesh Refinement for Finite-
Difference Ocean Models: First Experiments. Journal of Physical
Oceanography, 29:1239–1250, 1999.

[5] J. Blazewicz, T. C. E. Cheng, M. Machowiak, and C. Oguz. Berth and
quay crane allocation: a moldable task scheduling model. Journal of the
Operational Research Society.

[6] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling Multiprocessor
Tasks to Minimize Schedule Length. IEEE Transactions on Computers,
1986.

[7] J. Blazewicz, M. Drozdowski, G. Schmidt, and D. de Werra. Scheduling
independent multiprocessor tasks on a uniform k-processor system.
Parallel Computing, 20(1):15–28, Jan. 1994.

[8] J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram. Handbook on
Parallel and Distributed Processing. Springer, 2000.

[9] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and
J. Weglarz. Preemptable Malleable Task Scheduling Problem. IEEE
Transactions on Computers, 55(4):486–490, Apr. 2006.

[10] J. Blazewicz, M. Machowiak, J. Weglarz, M. Y. Kovalyov, and D. Trys-
tram. Scheduling malleable tasks on parallel processors to minimize the
makespan. Annals of Operations Research, 129, 2004.

[11] G.-I. Chen and T.-H. Lai. Preemptive scheduling of independent jobs
on a hypercube. Information Processing Letters, 28(4):201–206, July
1988.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst.
Numerical Linear Algebra on High-Performance Computers. SIAM,
1999.

[13] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems.
SIAM Journal on Discret Mathematics, 1989.

[14] P.-F. Dutot and D. Trystram. Scheduling on hierarchical clusters
using malleable tasks. In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures, pages 199–208,
2001.

[15] P. Greenhalg. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7. Technical report, ARM, 2011.

[16] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger.
Multitasking workload scheduling on flexible-core chip multiprocessors.
In Proceedings of the 17th international conference on Parallel archi-
tectures and compilation techniques, pages 187–196, 2008.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization,
pages 3–14, 2001.

[18] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41(7):33–38, July 2008.

[19] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors. In Pro-
ceedings of the 34th annual International Symposium on Computer
Architecture, pages 186–197, 2007.

[20] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler. Composable Lightweight Processors. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 381–394, 2007.

[21] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded
Workload Performance. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, pages 64–, 2004.

[22] J. Leung. Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. 2004.

[23] W. T. Ludwig. Algorithms for scheduling malleable and non-malleable
parallel tasks, 1995. PhD thesis. Department of Computer Science,
University of Wisconsin-Madison.

[24] S. Martello, M. Monaci, and D. Vigo. An Exact Approach to the Strip-
Packing Problem. INFORMS Journal on Computing, 15(3):310–319,
July 2003.

[25] G. Mounie, C. Rapine, and D. Trystram. Efficient approximation
algorithms for scheduling malleable tasks. In Proceedings of the eleventh
Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 23–32, 1999.

[26] G. Mounie, C. Rapine, and D. Trystram. A 3
2

-Approximation Algorithm
for Scheduling Independent Monotonic Malleable Tasks. SIAM Journal
of Computing, 37(2):401–412, May 2007.

[27] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: a full system
simulator for multicore x86 CPUs. In Proceedings of the 48th Design
Automation Conference, pages 1050–1055, 2011.

[28] M. Pricopi and T. Mitra. Bahurupi: A polymorphic heterogeneous
multi-core architecture. ACM Transactions on Architecture and Code
Optimization, 8(4):22:1–22:21, January 2012.

[29] D. Tarjan, M. Boyer, and K. Skadron. Federation: repurposing scalar
cores for out-of-order instruction issue. In Proceedings of the 45th
Annual Design Automation Conference, pages 772–775, 2008.

[30] D. Trystram. Scheduling Parallel Applications Using Malleable Tasks
on Clusters. In Proceedings of the 15th International Parallel and
Distributed Processing Symposium, pages 199–, 2001.

[31] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling
parallelizable tasks. In Proceedings of the fourth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 323–332, 1992.

[32] Q. Wang and K. H. Cheng. A heuristic of scheduling parallel tasks and
its analysis. SIAM Journal on Computing, 21(2):281–294, Apr. 1992.

[33] J. Weglarz. Modelling and control of dynamic resource allocation project
scheduling systems. In S. G. Tzafestas, editor, Optimization and Control
of Dynamic Operational Research Models. Amsterdam: North-Holland,
1982.

[34] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A Parallel Hash Join
Algorithm for Managing Data Skew. IEEE Transactions on Parallel and
Distributed Systems, 4(12):1355–1371, 1993.

[35] H. Zhong, S. A. Lieberman, and S. A. Mahlke. Extending Multicore
Architectures to Exploit Hybrid Parallelism in Single-thread Applica-
tions. In Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 25–36, 2007.

Mihai Pricopi is a Ph.D. candidate working on
Dynamic Heterogeneous Computer Architectures,
Static Asymmetric Architectures and Embedded
Systems. His major work is focused on the Bahu-
rupi heterogeneous processor architecture that allows
simple multi-cores to adapt dynamically creating
more complex cores. He is also working on schedul-
ing techniques for asymmetric and dynamic hetero-
geneous architectures that are able to exploit the en-
ergy efficiency of such systems. He joined National
University of Singapore in 2009 after receiving his

Master of Computer Engineering in Advanced Computing Architectures.
He obtained his Bachelor Degree in Computer Engineering at Faculty of
Automatic Control and Computing Engineering of Iasi, Romania.

Tulika Mitra is an Associate Professor in the School
of Computing at National University of Singapore.
She received her Ph.D. from the State University
of New York at Stony Brook (2000), M.E. from
Indian Institute of Science (1997), and B.E. from
Jadavpur University (1995), all in Computer Sci-
ence. Her research interest focuses on compilers
and architectures for real-time embedded systems.
Her work has received best paper award at Inter-
national Conference of Field Programmable Tech-
nology 2012, best paper nominations at Design Au-

tomation Conference (2009, 2012), International Conference of VLSI Design
(2013), International Conference on Hardware/Software Codesign and System
Synthesis (2008), International Conference on Field Programmable Logic
and Applications (2007), and Euromicro Conference on Real-Time Systems
(2007). She has served as program committee member and associate editor of
several leading conferences and journals in the embedded systems domain.

