
Para-Pipe: Exploiting Hierarchical Operator
Parallelism of ML Computational Graphs on SoCs

Yujie Zhang, Huiying Lan, Ehsan Aghapour, Zhiyuan Ning,
Peng Zan, Weidong Shao, Anuj Pathania, and Tulika Mitra

Abstract—As edge-based deep learning applications become
more complex, optimizing performance on heterogeneous System-
on-Chips (SoCs) presents unique challenges. Traditional pipelin-
ing techniques distributing the computation across different on-
chip processing units, while effective for throughput, do not ad-
dress the latency demands posed by modern neural networks with
complex interdependencies and extensive operator parallelism.
There is a potential in leveraging operator parallelism to enable
concurrent execution across multiple processing units, thereby
reducing inference latency. However, prioritizing pipelining or
parallel execution often necessitates a compromise, where opti-
mizing one performance metric adversely impacts the other.

This paper introduces Para-Pipe, a hierarchical mapping
framework that integrates intra- and inter-stage operator paral-
lelism within a pipelined architecture. Para-Pipe navigates the
trade-off between throughput and latency by selectively fine-
tuning parallelism levels within and across pipeline stages. This
strategy can significantly reduce inter-processor communication
overhead, significantly improving energy efficiency. Our eval-
uation demonstrates that Para-Pipe generates multiple Pareto-
optimal configurations, achieving a balance between throughput
and latency on an Amlogic SoC equipped with ARM big.LITTLE
CPUs and GPU, as well as the Black Sesame Technology SoC
featuring a deep learning accelerator and two DSPs. More im-
portantly, throughput-optimized configurations under Para-Pipe
on Amlogic SoC show an average energy efficiency improvement
of 11.0% over purely pipelined strategies and 23.3% relative to
non-pipelined parallel execution.

Index Terms—Hierarchical operator parallelism, heteroge-
neous SoCs, latency-throughput trade-off, energy efficiency.

I. INTRODUCTION

EDGE devices increasingly utilize heterogeneous multi-
processor System-on-Chips (SoCs), which comprise a

variety of computing units, including CPUs, GPUs, and spe-
cialized hardware accelerators, each distinguished by unique
power-performance characteristics [1]. Despite the capabilities
of these diverse units, mainstream machine learning (ML)
frameworks such as PyTorch [2], TVM [3], and the ARM Com-
pute Library (ARM-CL) [4] frequently underutilize them. Typi-
cally, these frameworks leverage the most high-performance or

This work was supported by the National Research Foundation, Singapore
under its Competitive Research Program Award NRF-CRP23-2019-0003 and
by a gift from Black Sesame Technologies. This article was recommended by
Associate Editor A. Kumar. (Corresponding author: Tulika Mitra.)

Yujie Zhang, Huiying Lan, and Tulika Mitra are with the School of
Computing, National University of Singapore, Singapore. (e-mail: zyu-
jie@comp.nus.edu.sg; hy.lan@nus.edu.sg; tulika@comp.nus.edu.sg).

Ehsan Aghapour and Anuj Pathania are with Parallel Computer Systems,
the University of Amsterdam, 1098 XH Amsterdam, The Netherlands (e-mail:
e.aghapour@uva.nl; a.pathania@uva.nl).

Zhiyuan Ning, Peng Zan, and Weidong Shao are with the Information
Technology Department, Black Sesame Technologies, San Jose, CA 95131
USA (e-mail: thomas.ning@bst.ai; peng.zan@bst.ai; david.shao@bst.ai).

���

��������� ������ ��� ��� ���

��������������������� �������������� ������� ������� �������

���

������������������ ������������ ������ ������ ������

��������� ������ ��� ��� ���

������

������

����

������

���

������

����

������

���

������

����

������

���

������

����

������

���

������

����

������

���

������

����

������

���

������

����

������

���

������

����

������

���

Fig. 1. A portion of PETR network architecture to illustrate intensive operator
parallelism [5].

energy-efficient unit for sequential task execution, simplifying
software complexity. While this approach facilitates program-
ming and deployment across different neural networks on edge
devices, it neglects the advantages of simultaneously utilizing
multiple compute units, which could significantly improve
execution speed and energy efficiency.

To better harness diverse resources, pipelining techniques
partition ML computational graphs and allocate segments to
specific compute units on the SoC, effectively maximizing
throughput by fully utilizing on-chip resources for concurrent
processing of streaming inputs [6]–[11]. These methods are
primarily designed for traditional convolutional neural net-
works like MobileNet. Their predominantly sequential archi-
tecture is conducive to straightforward partitioning. However,
the growing complexity and inter-dependencies among op-
erators in modern neural networks present substantial chal-
lenges for effective pipelining. Consider, for example, PETR
network [5], a spatiotemporal transformer-based encoder for
autonomous driving perception tasks, with partial architecture
illustrated in Fig. 1. Identifying optimal partition points within
such complex networks is increasingly challenging due to the
expanded number of operations and potential partition points.
Moreover, this approach can lead to increased latency per
frame due to enhanced inter-pipeline stage communication
overhead and suboptimal use of concurrent operator execution
within individual frames. Such latency increases are partic-
ularly detrimental in real-time decision-making applications,
including autonomous driving [12] and some IoT devices [13],
[14], where prompt response times are imperative.

Despite their complexity, modern neural networks are ripe
with opportunities for concurrent operator execution to im-
prove latency markedly. For instance, the InceptionNet fam-
ily [15] employs dimension-reduced inception modules that
process the same input with filters of varying scales in
parallel. Similarly, transformer-based networks utilize multiple
attention heads within self-attention mechanisms to parallel-
process the same input sequence. These computational designs

demonstrate considerable inter-operator parallelism, devoid of
complex data dependencies, suggesting that strategic partition-
ing and allocation of operations to multiple processing units
for truly parallel execution could substantially enhance latency.
However, prioritizing latency in single-frame acceleration by
engaging all available units [16]–[20] undermines the through-
put benefits of pipelining.

Achieving a balanced trade-off between latency and
throughput is critical for optimizing performance in edge-
based deep learning applications. Enhancements in through-
put reduce overall execution times for processing large-scale
inputs, while latency improvements decrease delays for indi-
vidual frames. In applications like video surveillance [21]–
[23], where both rapid processing of extensive data and
swift handling of single frames are essential, optimizing both
throughput and latency concurrently is imperative. In these
instances, standard pipelining or parallel execution strategies
that promote throughput at the expense of latency—or vice
versa—are suboptimal.

To tailor and optimize the balance between latency and
throughput in neural networks characterized by intensive
operator parallelism on heterogeneous SoCs, we introduce
Para-Pipe. This hybrid framework integrates pipelining with
parallel execution through a hierarchical structure. Para-Pipe
systematically identifies neural network subgraphs suitable for
parallel processing (e.g., GoogLeNet inception modules) and
allocates them across multiple units to maximize this paral-
lelism. For subgraphs exhibiting a lower operator parallelism,
it assigns them to individual units for sequential processing.
This dual approach effectively separates sequential and parallel
processing into distinct pipeline stages, thereby facilitating
hierarchical exploitation of inter-operator parallelism within
and across stages. Para-Pipe can selectively modulate intra-
and inter-stage operator parallelism levels, finely tuning the
latency and throughput balance. Correspondingly, it regulates
the cost associated with inter-processor communication within
and among stages, optimizing for significant reductions and
markedly enhancing energy efficiency—a critical issue in
embedded heterogeneous computing environments, especially
in multiprocessor SoCs [20], [24], [25]. Para-Pipe stands out
in terms of two aspects:

Para-Pipe optimizes the latency-throughput trade-off. Para-
Pipe provides the flexibility to adjust the workload of parallel
operator execution, enabling tailored optimization to suit spe-
cific computational requirements. Generally, latency decreases
when fewer pipeline stages and more parallel computing
resources are allocated to each stage, while throughput benefits
from a diminished workload per stage by adding more pipeline
stages. The lowest latency is achieved by engaging all avail-
able processors for single-frame inference without pipelining.
Meanwhile, the highest throughput is achieved for multi-frame
inference by creating multiple pipeline stages so that the
execution time of the longest stage is at a minimum. Crucially,
based on the workload customization of parallel operator
execution within stages, Para-Pipe effectively manages the
trade-off between latency and throughput.

Para-Pipe enhances energy efficiency in heterogeneous
SoCs. Relative to parallelism-only methods, Para-Pipe’s hy-

pipe-only
para-only

hybrid-A
hybrid-B

4

5

6

26%
Less

T
hr

ou
gh

pu
t

(f
ps

)

Throughput Latency

0.2

0.4

0.6

115%
more

L
at

en
cy

(s
)

(l
ow

er
is

be
tte

r)

pipe-only
para-only

hybrid-A
hybrid-B

1.1

1.15

1.2

1.25

1.3

E
ne

rg
y

E
ffi

ci
en

cy
(f

ra
m

es
/jo

ul
e)

Energy Efficiency

Fig. 2. Latency-throughput trade-offs and energy efficiency for scheduling
and mapping options for Inception-v3 [27] on Amlogic SoC [26]. hybrid-A
and hybrid-B combine pipelined and parallel execution with varying degrees
of parallel operator execution.

brid execution mode significantly reduces inter-processor com-
munication costs by allocating specific subgraphs to stages
managed by a single processor for sequential execution.
Moreover, compared to the pipeline-only setup, Para-Pipe
diminishes the necessity for inter-stage communication and
coordination by streamlining the number of pipeline stages.
Nonetheless, the parallel execution stages are not entirely
exempt from incurring inter-processor communication costs.
Through the judicious selection of processors for concurrent
execution within a single stage, Para-Pipe effectively mitigates
such overhead, thereby augmenting energy efficiency.

We evaluate our framework across four InceptionNet family
and two transformer-based models on two real SoCs, an
Amlogic A331D SoC [26], equipped with dual CPU clusters
and a GPU, in addition to the Black Sesame Technology (BST)
SoC including an NPU and two DSPs. The results reveal that
Para-Pipe generates Pareto-optimal mapping options tailored
to various throughput and latency priorities. Notably, hybrid
configurations optimized for throughput on Amlogic SoC
achieve an average energy efficiency improvement of 11.0%
compared to purely pipelined strategies and 23.3% relative to
non-pipelined parallel execution.

Motivating Example: Fig. 2 shows performance trade-offs
associated with various mapping options during Inception-v3
network [27] inference on an Amlogic SoC. Methods focus-
ing solely on pipelining (‘pipe-only’) or parallel execution
(‘para-only’) show significant gains in throughput and latency,
respectively. However, these approaches also reveal notable
degradation in other metrics, a 115% increase in latency for
‘pipe-only’ and a 26% decrease in throughput for ‘para-only’.
In contrast, the ‘hybrid-A’ and ‘hybrid-B’ strategies, which
integrate pipelining with parallel execution, offer a more bal-
anced performance by modulating the degree of inter-operator
parallelism within the pipeline stages. Notably, the ‘hybrid-
A’ configuration leads to a 7.9% reduction in throughput
but concurrently secures a substantial latency improvement of
33.1%, compared to the ‘pipe-only’ approach. Furthermore,
the hybrid methods enhance the energy efficiency of the SoC;
for instance, the ‘hybrid-B’ achieves improvements of 6.2%
and 11.5% over the ‘pipe-only’ approach and the ‘para-only’
approach, respectively.

Our key contributions are summarised as follows:
• We introduce Para-Pipe, a partitioning and scheduling

framework designed to optimize the inference of modern
ML models on heterogeneous SoCs. Para-Pipe adeptly
balances the trade-offs between latency and throughput

Parallel Operator Mapping
2

Pipeline Mapping
1

I J K

G0 G1

Graph Partitioning

A

B

C

D

E

F

G

H

Stage0: Big & Small CPU Stage1: GPU

Pipeline Config. Generation

I J KA

B

C

D

E

F

G

H

Computational Graph

Cortex-A73

Cortex-A73

Cortex-A73

L2-Cache

Cortex-A73

Small CPU

Cortex-A53

L2-Cache

Cortex-A53

GPU

DDR

Core

L2-Cache

Core

Big CPU
SoC Description

Input

I J KA

B

C

D

E

F

G

H

I IJ K

GPU

Big

Small

A C

F

H

B E
Br0

D G
Br2

Fine-grained Mapping

Coarse-grained Mapping

Br2

A

B

C D

E

F G H
I IJ K

Reduction

Small

Br0

Br1 Br2

GPU

Big

Latency

Pareto Front

Latency

T
h
ro

u
g
h
p
u
t

E
n
er

g
y
 E

ff
ic

ie
n
cy

hybrid-B

para-only hybrid-E

hybrid-F

hybrid-Chybrid-A
hybrid-D

para-only

hybrid-A

hybrid-B

hybrid-D

Cost Estimation & Strategy Selection
3

On-board Evaluation
4

LatencyThroughput Energy Efficiency

Selected Strategies Based on User Requirement

Fig. 3. Para-Pipe framework: High-level overview.

while significantly enhancing energy efficiency.
• We propose a two-stage hierarchical mapping approach

that effectively leverages operator parallelism within a
pipelined structure, facilitating the development of robust
strategies for large-scale models.

• We develop two Integer Linear Programming (ILP)-
based parallel operator mapping algorithms with distinct
granularities, efficiently balancing mapping precision and
mapping time.

• We implement Para-Pipe runtime with ARM Compute
Library and evaluate its performance on Amlogic and
BST SoC to demonstrate versatility and applicability on
real platforms.

II. OVERVIEW

Para-Pipe features two levels of mapping: pipeline-level
(Section III) and operator-level (Section IV) as illustrated in
Fig. 3. In contrast to traditional DAG (Directed Acyclic Graph)
mapping algorithms [17]–[19], which are designed for generic
task graphs and conventional pipelining techniques [6]–[11],
our approach exploits the well-defined structures of most
ML computational graphs. This enables us to establish clear
boundaries for pipeline stages, optimizing the mapping process
more effectively. Given a computational graph sourced from
ML frameworks like PyTorch and TensorFlow, along with an
SoC specification, Pipeline Mapper identifies subgraphs that
exhibit dense operator parallelism and aligns them with a
subset of compute engines to form effective pipeline stages.
This approach simplifies the graph structure, making it more
linear and accessible to partition into pipeline stages, enabling
both intra-stage operator and inter-stage pipeline parallelism.

Operator Mapper, tailored for each pipeline stage, assigns
operations to compute engines to maximize parallelism and
reduce latency. It minimizes costs via ILP. Two algorithms
with different granularities are introduced: a coarse-grained
algorithm treating a branch as the mapping unit and a fine-
grained approach mapping each operator individually. This
dual-granularity mapping strategy ensures both generality and
efficiency, leveraging multi-branch structures to expedite ILP
problem resolution. A cost estimator (Section V-A) is included
to model the computational and communication costs required
for the ILP formulation.

Para-Pipe evaluates all available strategies using the cost
estimator to determine network inference latency, throughput,

Algorithm 1: Graph Partitioning
Input: Computational graph G, graph inputs inputs, graph

outputs outputs.
Output: Subgraph list subgraphs.

1 subgraphs← ∅; sinks← outputs;
2 G← mergeNodes(G);
3 if isLinear(G) then
4 foreach nodemerged ∈ G do
5 Gsub ← createSubgraph(nodemerged);
6 subgraphs.add(Gsub);
7 return subgraphs;
8 while sinks ̸= ∅ do
9 sink ← sinks.pop();

10 Ngo ← {sink}; Nstop, sinknext, Gsub ← ∅;
11 while sinknext = ∅ and Ngo ̸= ∅ do
12 Bend ← ∅;
13 foreach nodego ∈ Ngo do
14 Bend ← traceToBranchEnd(nodego, Gsub);
15 Bend ← Bend ∪Nstop;
16 sinknext ← isTerminalNode(Bend, inputs);
17 Nstop, Ngo ← isExtendable(Bend);
18 end while
19 if sinknext = ∅ then
20 sinks.add(sink);
21 else
22 sinks.add(sinknext); subgraphs.add(Gsub);
23 end while

and energy efficiency. It selects mapping strategies exhibit-
ing Pareto optimality (Section V-B), offering users multiple
choices aligned with their application requirements. Currently,
Para-Pipe operates as a one-time static process, with no
runtime dynamicity incorporated. The performance of these
mappings is subsequently validated on the real SoC platform
using the Para-Pipe runtime (Section VI-A).

III. PIPELINE MAPPING

A. Graph Partitioning

Modern neural networks often exhibit irregular structures
characterized by extensive operator volumes and complex
interconnections. To manage this complexity, we partition the
computational graph G into non-overlapping, topologically
ordered subgraphs, denoted as G1, G2, Each subgraph
exhibits either a linear chain of operator nodes or a fan-in
structure. A fan-in structure is characterized by the presence
of a single sink node to which all source nodes within the
subgraph ultimately connect. These source nodes are either
graph inputs or share a common parent node, which serves
as the sink node for the preceding subgraph. Fan-in structures

are prevalent in contemporary neural networks, such as the
InceptionNet family and transformer-based models, where they
facilitate processing image features and sentence structures by
consolidating common inputs into a unified output.

Algorithm 1 elaborates the graph partitioning approach. To
simplify the computational graph, operator nodes are initially
merged wherever feasible to reduce structural complexity. For
purely linear networks, the algorithm partitions the graph
by treating each operator node as an independent subgraph,
thereby broadening the framework’s applicability (Line 3-7).
For graphs with irregular structures, the algorithm commences
by traversing from graph outputs to discern subgraphs adhering
to fan-in structures. The graph outputs serve as initial sink
nodes, recorded in the set sinks. The entire graph is iteratively
explored until sinks is empty.

To identify subgraphs, two sets, Ngo and Nstop, are initial-
ized to track extensible and non-extensible nodes, respectively.
Gsub maintains nodes traced in the current subgraph. Initially,
only the sink node is placed in Ngo, and tracing operations
are executed on all nodes within Ngo.

During tracing, the furthest nodes in the same linear chain
as nodes in Ngo are identified and stored in Bend (Line 14).
These nodes serve as potential sources. Subsequently, Bend is
updated with nodes from Nstop. If nodes in Bend represent
inputs or share a common parent (Line 16), the algorithm
designates the parent as the sink node for the next subgraph
and generates the subgraph Gsub (Line 22). Otherwise, Ngo

and Nstop are updated based on the extensibility of nodes
in Bend: for extensible nodes, this update occurs after all
their child nodes have been visited, while for non-extensible
nodes, the update happens when at least one child node
remains unvisited (Line 17). Tracing persists if extensible
nodes exist until termination. If no extensible nodes are found,
and the traced nodes cannot form a fan-in structure, the sink
node is appended to sinks for later consideration (Line 20).
Ultimately, acquired subgraphs are ordered based on their
topological sequence.

B. Stage Configuration Generation

Consider an SoC with m compute engines, Para-Pipe offers
pipeline configurations ranging from 1 (para-only) to m (pipe-
only) stages. It enumerates processor combinations for each
configuration, matching the number of stages while preventing
processor overlap and ensuring optimal utilization. Specifi-
cally, in each configuration, processors are divided into distinct
sets corresponding to each stage. This division guarantees that
each processor is uniquely assigned to one set, ensuring a
non-overlapping and exclusive allocation of processors across
different stages.

Once pipeline stages are linked with specific processor
combinations, Para-Pipe enumerates potential partition points
to generate multiple candidate pipeline configurations, de-
termining the set of sequential subgraphs for each stage.
The limited number of on-chip processors and the efficient
process of identifying subgraphs ensure minimal time over-
head for this enumeration. Notably, this enumeration approach
can produce a pipe-only configuration that achieves nearly

maximal throughput. Here, a stage is denoted as (Gl,k, P),
where l ≤ k, with Gl,k representing a graph composed of
subgraphs Gl, Gl+1, ..., Gk executed on the processor set P .
In the case of the Amlogic SoC example in Fig. 3, the
initial stage employs two CPU clusters for operator parallelism
within the first subgraph, followed by the processing of the
second subgraph by a GPU in the subsequent stage. A Parallel
Operator Mapping pass is subsequently applied to devise a
parallel mapping strategy for the first subgraph.

IV. PARALLEL OPERATOR MAPPING

We introduce two ILP-based algorithms operating at distinct
granularity. The coarse-grained method, suitable for graphs
with independent branch structures, provides solutions less
susceptible to execution jitters and synchronization overhead
very fast. Conversely, the fine-grained approach, unconstrained
by graph structure, yields superior mapping results but with
longer solving times. For example, as depicted in Fig. 3,
the fine-grained mapping approach, in contrast to the coarse-
grained method, allows for the segmentation of branches and
the distribution of operators across CPU clusters, effectively
minimizing processor idle time and thus reducing latency.

A. Coarse-grained Mapping

This mapper allocates operators within a single branch
to the same processor to minimize potential communication
overhead. Given a stage configuration (Gl,k, P), we employ it
to generate mapping strategies for subgraphs Gl, Gl+1, ..., Gk

sequentially. Our objective for each subgraph is to minimize
the execution time of the processor with the longest duration.

We begin by extracting independent branches from the
subgraph into set S. For each branch s, we create a binary
variable xs in Equation (1) to represent its placement strategy.
This variable is constrained by

∑
p∈P xsp = 1, ensuring that

a branch is assigned to only one processor. This constraint
allows for multiple branches to be allocated to one processor,
optimizing the utilization of high-performance processors.

xsp =

1,
if computationally demanding path of
branch s is assigned to processor p ,

0, otherwise.
(1)

In each branch s, we quantify the execution time of the
computationally intensive path on processor p as cpcsp, repre-
senting the cumulative sum of execution times for all included
operators. The sole sink node in the subgraph is allocated
to the highest-performance processor q. The communication
cost between s and the sink node t is denoted as cmcsp =
cmc(sl,t),pq , where sl represents the tail node of the computa-
tionally intensive path in branch s. The execution cost of s on
processor p can be represented as execsp = cpcsp + cmcsp.

The longest execution time duration L is formulated as
Equation (2). To minimize the value of L, we utilize ILP
techniques to determine optimal values of binary variables x,
which generates an effective computation path placement for
all branches.

L = max
p∈P

∑
s∈S

execsp × xsp (2)

Our algorithm employs idle or unused processors to address
the allocation of operators in nested branches that are not
part of the computationally demanding path. It replicates
the mapping process to effectively assign these nodes within
the nested structures to the appropriate processors, ensuring
optimal resource utilization.

B. Fine-grained Mapping

We first introduce the objective function and the execution
time modeling, including computational and communication
costs. Then, we describe the constraints to formulate the
parallelism limited by the availability of processors. In a graph,
the objective function is to minimize the maximum execution
time of all last operators. An operator v has P possible
mapping processors, which is formulated as a vector of length
P , each element is a binary variable denoting if v is assigned
to processor p, described in Equation (3). xv is constrained by∑P

p=1 xvp = 1, which requires an operator to be assigned to
only one processor.

xvp =

{
1, if operator v is assigned to processor p,
0, otherwise.

(3)

The execution time of v is formulated as Equation (4).
stv refers to the start time of operator v. Operator v starts
executing after all predecessors are finished. exec cpcv refers
to the actual time spent on computation, which is computed as∑P

p=1 xvp × cpcvp, and exec cmc(v,u) is the communication
cost for edge (v, u) calculated by

∑P
p=1

∑P
q=1 y(v,u),pq ×

cmc(v,u),pq . cpc and cmc are costs profiled offline and es-
timated with our cost model described in Section V-A.

stv ≥ stpred + exec cpcpred + exec cmc(pred,v) (4)

y(v,u),pq are binary variables representing whether a pair
of processors is selected, as shown in Equation (5). They
are under similar constraints to x that force only one pair
of processors to be selected,

∑P
p=1

∑P
q=1 y(v,u),pq = 1. By

introducing this variable, we can formulate the communication
cost of the edge (v, u) with the same approach of exec cpc.
By multiplying the binary variable and the corresponding
cost and summing them together, both the computational and
communication time of the graph are formulated.

y(v,u),pq =

{
1, if xvp ∧ xuq = 1,

0, otherwise.
(5)

Additionally, we formulate the availability of processors
to limit the number of operators executing in parallel. This
constraint requires that the execution time of two parallel
operators assigned to the same processor cannot overlap. For
each pair of parallel operators v and u, we formulate the
constraints in (6), where ft represents the operator finish time.

ftv ≤ stu OR ftu ≤ stv, if xv = xu (6)

We use the big M technique to express the condition and
transform (6) to (7).
ftv − stu ≤ M × (2− xvp − xup) +M × zuvp

ftu − stv ≤ M × (2− xvp − xup) +M × (1− zuvp)
(7)

zuvp is a set of binary variables introduced to formulate the
exclusive condition between the two formulas. If zuvp = 1,

the formula above holds true; otherwise, the below holds true.
And ftv is computed with stv + cpcvp. We solve this ILP
problem with gurobi [28].

V. COST ESTIMATION & STRATEGY SELECTION

After the Pipeline Mapping Pass—which details all poten-
tial pipeline configurations—and the Parallel Operator Map-
ping Pass—which establishes mapping strategies within these
stages—a comprehensive performance and energy estimation
is conducted. Para-Pipe identifies Pareto-optimal mapping op-
tions based on this estimation. Users can then select from these
options to find those that best meet their latency, throughput,
and energy efficiency preferences.

A. Cost Estimation

1) Performance: Within a specific mapping option, model
latency is defined as the cumulative execution time of all
stages, while throughput is defined as the reciprocal of the
execution time of the longest stage. For the concurrent ex-
ecution of processors within a stage, we simulate both the
co-execution of processors and the associated communication
costs. On Amlogic SoC, operator computation times are sys-
tematically profiled offline. The costs associated with operator
communication are determined based on the time required for
data transition and conversion. This includes profiling SDRAM
access times for CPUs and GPU, as well as the overhead
associated with data conversion tasks like address mapping.
These measurements are carried out using benchmarking tools
such as TinyMemBench [29] and clpeak [30], which provide
precise insights into memory access and data handling effi-
ciencies under various operational scenarios. For BST SoC,
computation and communication costs are derived using its
operator simulator, as detailed in Section VI-B.

2) Energy Efficiency: Given one mapping strategy, energy
efficiency, quantified as inference requests per unit of energy
(frames/joule), is computed by dividing its throughput by
total platform active power. Due to the absence of an energy
estimation model provided by BST [31], this study evaluates
energy efficiency exclusively on the Amlogic SoC. The total
active power is determined as the sum of the estimated power
consumption of all processors. It is important to note that
memory power is inherently included in the processor power
consumption measurements and is therefore not accounted for
separately.

We use the model proposed in [32] to estimate processor
power consumption, expressed in Equation (8). At the volt-
age/frequency level of Vf/f , the processor power is the sum
of dynamic power αV 2

f Uff , where α is capacitance, and Uf

is processor utilization, and static power βVf with the leakage
current β. α and β are platform-specific constants. To refine
these parameters, we measure variations in power consumption
at different processor utilizations and apply linear regression.

Pf = αV 2
f Uff + βVf (8)

Power consumption measurements are facilitated using a
USB power meter [33]. This USB power meter quantifies the

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1.5

2

2.5

para-only

pipe-only
hybrid-T

hybrid-L

Latency (s)

T
hr

ou
gh

pu
t

(f
ps

)
All Options Pareto-optimal Options Balanced Options

Fig. 4. Pareto optimal analysis of mapping options in Para-Pipe for Inception-
ResNet-v2 on Amlogic SoC: Balanced options are strategies achieving mod-
erate throughput and latency performance.

power consumption of the entire platform, denoted as P , with
all unused processors deactivated to exclude their impact on
the total power consumption. To ascertain the influence of non-
processor components on the total power, all processors are
turned off, and this power measurement is labeled as Pnon.
The power consumption of the specific processor under test
is then calculated by subtracting Pnon from P , represented as
P − Pnon.

For GPU utilization, data is sourced from kernel activity
logs via sysfs attributes [34]. Sysfs, a RAM-based filesystem,
exports kernel data structures, attributes, and linkages to
user space, thus facilitating the monitoring of hardware and
system metrics. CPU cluster utilization is monitored using the
htop tool, which helps us calculate the average utilization of
included cores, representing the cluster’s overall utilization.

After establishing the power estimation equation (8), we
measure processor utilization to estimate average power con-
sumption accurately. Since model operators typically do not
fully utilize CPU or GPU resources, we directly measure
the processor utilization across the entire model. We hy-
pothesize that this measurement effectively represents the
utilization of individual operators. Furthermore, by analyzing
the processors’ spare time indicated by mapping strategies
and observing processor utilization during the execution of
assigned operators, we can calculate the average processor
utilization associated with specific mapping strategies.

B. Strategy Selection

Following the estimation, we offer users a range of Pareto-
optimal configuration options tailored to their preferences for
throughput and latency trade-offs. Energy efficiency consid-
eration of generated mapping strategies is also included as a
selection metric.

1) Pareto Optimal Analysis: Based on estimated latency
and throughput, configurations exhibiting inferior performance
across both metrics are excluded, while those demonstrating
Pareto optimality are retained. Fig. 4 illustrates the perfor-
mance trade-offs associated with various Para-Pipe configura-
tions for Inception-ResNet-v2 on the Amlogic SoC, employing
coarse-grained mapping to develop parallel operator strategies.

The pipe-only configuration achieves maximum throughput
but suffers from impractical latency levels. Conversely, the
para-only setup minimizes latency at the expense of signifi-
cantly reduced throughput. Hybrid configurations present mul-
tiple Pareto-optimal solutions that effectively balance through-
put with latency. When both metrics are accorded equal

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

-30

-20

-10

0

10

20

30

RMSPE: 15.25%

T
hr

ou
gh

pu
t

E
rr

or
(%

)

para-only hybrid-L hybrid-T pipe-only

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

-30

-20

-10

0

10

20

30

RMSPE: 6.40%E
ne

rg
y

E
ffi

ci
en

cy
E

rr
or

(%
)

Fig. 5. Prediction error of throughput (left) and energy efficiency (right) of
selected Para-Pipe mapping options on Amlogic SoC.

Fig. 6. Picture of Khadas VIM3 Pro board (left) and BST A1000 evaluation
board (right).

importance (Balanced Options), Para-Pipe also yields several
commendable configurations for users to choose from. This
study focuses on pipe-only, para-only, and hybrid options that
achieve the lowest latency and highest throughput (hybrid-L
and hybrid-T) for further analysis.

2) Estimation Accuracy: To assess the effectiveness of our
cost estimator, we evaluated it across four configurations: para-
only, hybrid-L, hybrid-T, and pipe-only. Our findings indicate
that the root mean squared prediction error (RMSPE) for
latency, throughput, and energy efficiency stands at 15.33%,
15.25%, and 6.40%, respectively, across all benchmarks.
Details of the throughput and energy efficiency prediction
errors are illustrated in Fig. 5. Despite an approximate 15%
prediction error in latency and throughput, the cost estimator
effectively determines the relative performance rankings of
mapping strategies for both metrics. These rankings have
been verified on the real platform using runtime evaluations,
ensuring the reliability of the cost estimator in identifying
robust and practical Pareto-optimal solutions.

VI. RUNTIME MANAGEMENT ON SOC
We implement the runtime management of Para-Pipe onto

Amlogic A311D SoC of Khadas Vim3 Pro Platform [35]
(Fig. 6). Additionally, we conduct performance estimation
using the BST A1000 evaluation board (Fig. 9) provided
by [31], which is explained in detail in Section VI-B.

A. Implementation on Amlogic SoC

The Amlogic SoC incorporates an ARM big.LITTLE CPU
architecture, featuring a high-performance quad-core Cortex-
A73 cluster and a power-efficient dual-core Cortex-A53 clus-
ter, along with an ARM G52 MP4 GPU, as depicted in Fig. 3.
Since most ML libraries optimize at the operator level for

Big CPU Small CPU GPU Computational Kernels Activated Scheduler

Thread

Pool

OpenCL

Queue

B B B B S S

Scheduler #0 Scheduler #1 Scheduler #2

Core Core

Scheduler

Computational

Graph𝐴 𝐹𝐵 𝐸𝐶 𝑫

Computation

Dispatch

Fig. 7. ARM-CL runtime illustration: sequential execution of computational
graph across big CPU cluster, small CPU cluster, and GPU on Amlogic SoC.

Big CPU Small CPU GPU

(1) Coarse-grained mapping (2) Fine-grained mapping

𝐴
𝐶 𝐷𝐺 𝐻
𝐽

𝐵𝐸 𝐹𝐼 𝐸
𝐴
𝐶 𝐷𝐺 𝐻
𝐽

𝐵 𝐹𝐼
Sync Points

A→B, A→C,

I→J, G→J

A→C, B→E,

C→G, D→H,

E→I, F→I,

G→J, I→J

Data

Conversion

Points

A→B, I→J

A→C, A→D,

B→E, D→H,

F→I, G→J,

I→J

(3) Synchronization and data conversion

points in two mapping strategies

Coarse-grained Fine-grained

Fig. 8. Runtime comparison of coarse- vs. fine-grained mapping strategies:
Analyzing synchronization and inter-processor communication overhead.

sequential neural networks, Para-Pipe can be adapted to any
of these libraries to achieve specific latency-throughput trade-
offs and improved energy efficiency without compromising
operator-level optimization. In this paper, we build the Para-
Pipe runtime for Amlogic SoC on top of ARM Compute
Library (ARM-CL), which provides a collection of state-of-
the-art low-level ML functions optimized for ARM Cortex-A
CPU and Mali GPU architectures. ARM-CL features a Graph
API for constructing a model graph representation employing
graph-level optimizations to enhance efficiency. This library
employs Neon (or SVE) for acceleration on ARM CPUs and
OpenCL for GPU.

Since the default ARM-CL only supports sequential execu-
tion onto CPUs or GPU, we configure unique target backends
for CPUs and GPU to distribute graph nodes across processors.
Nodes are assigned to specific backends based on our mapping
strategy. We employ separate schedulers for CPU clusters
and GPU to support the concurrent execution of operators; a
simplified illustration of the sequential execution of operators
across processors is depicted in Fig. 7. The schedulers for
CPUs are associated with a thread pool consisting of worker
threads bound to the corresponding CPU cluster cores. During
node execution, the scheduler pertinent to the target backend
is invoked. The CPU scheduler manages the execution by
dispatching computation kernels to worker threads, while the
GPU scheduler enqueues computational kernels for asyn-
chronous execution in the OpenCL queue.

1) Pipeline Deployment: We generate an ARM-CL graph
for each pipeline stage and execute it on a single thread.
In cases where multiple engines are utilized for computation
within a stage, the same number of threads are initiated
for independent execution. Meanwhile, a data buffer stores
transferred data between consecutive stages. Whenever a stage
produces output data, its successor stage is notified.

2) Co-execution of CPUs and GPU: Separate threads are
spawned to concurrently execute nodes on both CPU clusters
and GPUs, with semaphores employed to manage data de-
pendencies. Regarding inter-node data transfer between CPU

ARM
CPU

DDR

Shared RAM

DSP DSP

DSP DSP

Task Scheduler

Convolution Core

Vectorized Computation Core

Matrix Multiplication Core

NPU

BTMEM

Fig. 9. BST A1000 SoC hardware architectural diagram.

clusters, no data conversion is required. However, data con-
version is imperative for the intricate communication between
CPU clusters and GPU. GPU computation exclusively operates
on data formatted in the OpenCL tensor format. When GPU
computation requires CPU data, a specialized OpenCL tensor
is created to accommodate the transferred data. Conversely,
an additional address mapping is required to facilitate CPU
access to GPU output within the device address space. Fig. 8
compares the runtime overhead of coarse- and fine-grained
mapping strategies. The comparison indicates that a coarse-
grained approach exhibits reduced susceptibility to synchro-
nization overhead and frequent communication demands.

B. Implementation on BST SoC

The BST A1000 SoC offers high-performance, low-power
neural network inference. It incorporates an ASIC accelerator
NPU and four Cadence DSP cores. It is designed for a
wide range of embedded applications, with a central focus
on camera-based sensing and AI computing for Level-3 au-
tonomous driving systems. Fig. 9 provides a simplified view
of the BST A1000’s hardware architecture. In real-world use
cases, two DSPs are reserved for other uses in autonomous
driving. Therefore, we use a 1 NPU + 2 DSP combination to
simulate a realistic scenario.

We utilize an operator simulator provided by [31] to esti-
mate runtimes on both processing engines and the communica-
tion times between them. The runtime and communication cost
estimation for operators utilizes historical data from previously
tested configurations as a benchmark. For operators without
prior testing under diverse parameter settings, we apply a k-
means clustering algorithm to predict runtime and communi-
cation cost based on operator similarities. These estimations
serve as the foundation for applying our Para-Pipe framework,
providing data for the ILP formulation in the Parallel Operator
Mapper and enabling the estimation of latency and throughput
for the generated mapping strategies.

VII. EXPERIMENTAL EVALUATION

This section evaluates the Para-Pipe framework on Amlogic
and BST SoCs, focusing on selected strategies, including
pipe-only, para-only, and hybrid options targeting the lowest
latency (hybrid-L) and the highest throughput (hybrid-T). All
experimental data for the Amlogic SoC, encompassing latency,
throughput, and energy efficiency, were obtained from the real
Khadas Vim3 Pro platform. Conversely, the data for the BST
SoC are derived from simulations.

TABLE I
STRUCTURAL DETAILS OF BENCHMARK MODELS

Network #Subgraphs Maximum
Parallelism Major Operators / Modules

GoogLeNet 11 4 3 Conv + 9 Inception Modules + 1 FC
Inception-v3 13 6 5 Conv + 11 Inception Modules + 1 FC

Inception-v4 21 6 11 Conv + 14 Inception Modules
+ 2 Reduction Modules + 1 FC

Inception-
ResNet-v2 45 4 13 Conv + 40 Residual Inception

Modules + 2 Reduction Modules + 1 FC

PETR-based 24 16 ResNet-50 + 3D Position Encoder +
Transformer Decoder + Query Generator

BEVFormer-
based 25 4 6 Spatial Cross-attention + 6

Transformer + 6 Temporal Self-attention

A. Experimental Setup

1) Benchmarks: The pipelined execution of linear models
was comprehensively evaluated in our prior work [11] on
the Amlogic SoC. This study focuses on six modern models
with dense operator parallelism to evaluate the performance
of Para-Pipe. The chosen models, GoogLeNet, Inception-v3,
Inception-v4 [36], and Inception-ResNet-v2 [36] exemplify
conventional regular DNNs with distinct independent branch
structures. Two networks featuring complex and irregular
connections, i.e., PETR-based network [5] and BEVFormer-
based [12], are the state-of-the-art in autonomous driving.
Some operators included are not supported by ARM-CL on
Amlogic SoC; so we evaluate them on BST SoC to demon-
strate the platform portability of our framework.Table I out-
lines model structural details, including the number of sub-
graphs generated by the Graph Partitioner, serving as partition
points in Para-Pipe Pipeline Configuration Generator.

2) Platform Setup: We assess the performance and effi-
ciency of the Amlogic SoC using a real Khadas Vim3 Pro
platform. In our experiments, the platform’s big and small
CPU clusters are set to operate at their maximum voltage
and frequency levels—1.04 V/2.2 GHz and 0.83 V/1.8 GHz,
respectively. Additionally, the ARM GPU on the platform is
configured to run at its peak performance level of 1.15 V/0.8
GHz. We connect the board to a host machine via an Ethernet
cable using Secure Shell (SSH) for reliable and secure data
transfer. A Khadas-provided DC 5 V cooling fan is utilized
throughout testing to mitigate potential thermal instabilities.

We input a continuous stream of 50 frames for each map-
ping strategy and measure the average throughput, quantified
as frames processed per second and the average latency per
frame. A USB power meter [33] is employed to monitor the
total power consumption of the board, from which we calculate
the average active power and energy efficiency. Following each
run, the board is left idle to cool down adequately before
proceeding with the next test.

3) Baseline: In this study, we establish two baseline config-
urations. Firstly, we employ the Layer-switched algorithm [37]
to illustrate the performance capabilities of traditional se-
quential execution of models utilizing all on-chip processor
resources. The Layer-switched algorithm supports layer-wise
transitions among processors and follows a sequential ex-
ecution strategy to minimize latency by effectively manag-
ing the switching overhead between processors. Notably, the
algorithm achieves superior latency and throughput perfor-
mance without leveraging operator or pipeline parallelism,

TABLE II
SUBGRAPH ALLOCATIONS FOR HYBRID-L AND HYBRID-T STRATEGIES

ACROSS FOUR REPRESENTATIVE MODELS IN Para-Pipe ON BST SOC

Network Option Pipeline Config. Subgraph Allocation

GoogLeNet hybrid-L NPU - 2DSPs [1,10] - [11]
hybrid-T NPU - 2DSPs [1,9] - [10,11]

Inception-v4 hybrid-L NPU+DSP - DSP [1,20] - [21]
hybrid-T DSP - NPU+DSP [1,3] - [4,21]

PETR-based hybrid-L NPU+DSP - DSP [1,17] - [18,24]
hybrid-T NPU+DSP - DSP [1,15] - [16,24]

BEVFormer-based hybrid-L NPU+DSP - DSP [1,23] - [24,25]
hybrid-T DSP - NPU+DSP [1,2] - [3,25]

thus serving as an upper bound for sequential execution
performance when utilizing any single or multiple hardware
platform components. This evaluation on Amlogic SoC utilizes
the tool reported in [9].

Secondly, we implement and compare two classic DAG
mapping algorithms, HEFT and CPOP, as detailed in [19]. For
each tested model, we select the algorithm that demonstrates
optimal latency to serve as a comparative baseline in our
experiments, and we refer to this algorithm as HEFT &
CPOP throughout this paper. HEFT algorithm prioritizes tasks
based on the highest upward rank value at each decision
point, assigning tasks to the processor that enables the earliest
completion. In contrast, CPOP integrates both upward and
downward ranks to prioritize tasks, specifically scheduling
those on the critical path to the processor that minimizes
total execution time. We use these algorithms to evaluate our
parallel operator mapping algorithms rigorously.

B. Resultant Configurations
This section briefly analyzes the pipelined configurations of

the hybrid-L and hybrid-T options in Para-Pipe. On Amlogic
SoC, both options utilize a dual-stage configuration employing
CPU clusters and the GPU across all supported models. The
configuration utilizes a coarse-grained algorithm for parallel
operator mapping within the stages. This is because parallel
processing within a single stage prefers processors with similar
architectures and data formats to reduce unnecessary data con-
version and communication overhead. The details are further
explained in Section VII-F. Conversely, the partial operator
support of BST SoC’s NPU, necessitating the offloading
of certain operators to DSP, limits the feasibility of Para-
Pipe’s ideal operator or stage arrangement. Therefore, for most
benchmark models, the hybrid options mostly combine NPU
and DSP in one stage while solely using DSP in another.
The DSP is leveraged not only as a fallback for operators
unsupported by the NPU but also to exploit operator paral-
lelism within subgraphs when feasible. The irregular models
evaluated on BST SoC necessitate a fine-grained mapping
approach.

To understand how Para-Pipe selects pipeline structures
with preferences for latency and throughput, we focus on
the BST SoC and select four representative benchmarks for
enhanced visualization. The allocations for the hybrid-L and
hybrid-T strategies are detailed in Table II. The hybrid-T op-
tion typically maintains a balanced pipeline configuration, as it
enhances throughput by decreasing delays in the longest stage
while concurrently distributing a significant workload to other

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.5

1

1.5

2

N
or

m
al

iz
ed

L
at

en
cy

(l
ow

er
is

be
tte

r)
Layer-switched HEFT & CPOP para-only hybrid-L hybrid-T pipe-only

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.5

0.75

1

1.25

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.75

1

1.25

N
or

m
al

iz
ed

A
ct

iv
e

Po
w

er

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.5

0.75

1

1.25

1.5 Energy Effic. Imp. (%): hybrid-T
36.0

11.5 14.7

31.0

N
or

m
al

iz
ed

E
ne

rg
y

E
ffi

ci
en

cy

Fig. 10. Normalized latency, throughput, active platform power, and energy efficiency for Layer-switched method, HEFT & CPOP algorithm and four
representative Para-Pipe mapping strategies on Amlogic SoC relative to the para-only option.

1

3

5

✗N
or

m
al

iz
ed

L
at

en
cy

(l
ow

er
is

be
tte

r)

Layer-switched HEFT & CPOP para-only hybrid-L hybrid-T pipe-only

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2 PETR-based
BEVFormer-

based

0.5

1

1.5

2

✗

Throughput Imp. (%): hybrid-T
21.6 13.0 11.9

25.1
11.9 15.6

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Fig. 11. Normalized latency and throughput for Layer-switched method,
HEFT & CPOP algorithm and four representative Para-Pipe mapping strate-
gies on BST SoC relative to the para-only option.

stages. Based on the data in Table II, we identify two methods
by which the hybrid-L option accelerates execution per frame
relative to the hybrid-T option. The first method maps more
subgraphs onto the high-performance NPU, decreasing the
overall execution time for a single frame, as demonstrated in
the GoogLeNet configuration. The second method boosts intra-
stage operator parallelism by allocating additional subgraphs
for parallel processing, as seen in the configurations for re-
maining networks. Para-Pipe can adaptively adjust workloads
within and across stages to optimize latency and throughput
trade-offs through hierarchical mapping passes.

C. Latency-Throughput Trade-off

We normalize these metrics relative to the para-only method
to explore the balance between latency and throughput. The
comparative results for Amlogic SoC are depicted in Fig. 10
and for BST SoC in Fig. 11.

Our findings indicate that traditional sequential execution
modes fail to fully utilize on-chip computing resources even
with layer-wise transitions among processors when models
exhibit intensive operator parallelism. The Layer-switched
algorithm, although effective, cannot surpass the performance
of purely parallel operator execution.

Our parallel operator mapping algorithm (para-only) signifi-
cantly improves over the better-performing baseline algorithm,
either HEFT or CPOP. Specifically, it achieves an average
latency improvement of 10.9% on Amlogic SoC and 15.5%
on BST SoC, and throughput improvements of 12.5% and
18.8%, respectively. Accurate profiling of operator runtime
statistics, combined with ILP-based techniques for solving

parallel mapping problems, empowers our algorithm to devise
strategies that optimize for minimal execution time.

However, purely parallel operator execution does not nec-
essarily yield higher throughput than pipelined execution,
while pipelined execution inevitably causes a higher overhead
in latency. For example, on Amlogic SoC, the pipe-only
configuration approaches the highest throughput but results
in an average of 113.8% increase in latency compared to
the para-only setup. Conversely, the para-only setup achieves
the shortest execution times, albeit with an average of 26.6%
reduction in throughput. Hybrid strategies that prioritize either
throughput or latency offer a viable compromise. The hybrid-
L configuration, for instance, decreases throughput by 12.4%
but significantly reduces latency by 36.0% compared to the
pipe-only approach. Similarly, the hybrid-T strategy decreases
throughput by 7.3% but improves latency by 26.8%. In the
case of Inception-v4, the hybrid-T strategy excels, surpassing
the pipe-only configuration in throughput while halving the
latency.

D. General Applicability
Graph-aware modulation of intra- and inter-stage operator

parallelism enables Para-Pipe to effectively navigate platform
constraints, such as limited processor support for certain
operators, by offering various mapping strategies. Here, we
utilize BST SoC to illustrate this general applicability of
our framework Para-Pipe. As shown in Fig. 11, limited pro-
cessor support significantly undermines the efficacy of pipe-
only optimizations in throughput. Specifically, unsupported
operators may be situated at crucial partition points, rendering
an ideal pipe-only configuration infeasible. Compared to the
para-only strategy, the pipe-only option results in substantial
latency overheads without providing throughput benefits for
most models. For instance, in the PETR-based model, the
pipe-only configuration incurs a latency that is 5.7 times
greater and a throughput that is only 31.4% of that achieved
with the para-only method. Moreover, generating an efficient
pipe-only configuration for a BEVFormer-based network is
infeasible. Conversely, the hybrid-T option, which utilizes one
DSP to support operators that the NPU alone cannot, during
the parallel processing stage, achieves an average throughput
improvement of 16.2% across all tested models relative to
the para-only strategy. This represents the highest throughput
enhancement across the majority of tested models. Regarding
latency, the hybrid-L and para-only options perform compa-
rably. These results verify that Para-Pipe can successfully

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.5

1

1.5

2

2.5 Latency Imp. (%): para-only

4.1 18.5 23.4 13.7

N
or

m
al

iz
ed

L
at

en
cy

(l
ow

er
is

be
tte

r)
Big CPU (ARM-CL) Small CPU (ARM-CL) GPU (ARM-CL) Big+Small Big+GPU Big+Small+GPU (para-only)

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.25

0.5

0.75

1

1.25

1.5 Throughput Imp. (%): para-only

4.3
22.7

30.6
15.9

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

GoogLeNet
Inception-v3

Inception-v4
Inception-

ResNet-v2

0.5

1

1.5

2

2.5 Energy Effic. Imp. (%): para-only

26.8
41.1 34.1 23.3

N
or

m
al

iz
ed

E
ne

rg
y

E
ffi

ci
en

cy

Fig. 12. Normalized latency, throughput, and energy efficiency for coarse-grained non-pipelined, parallel co-execution on Amlogic SoC relative to sequential
execution on its big CPU cluster.

recommend adaptive mapping strategies, considering platform
compatibility, to align with users’ preferences.

E. Energy Efficiency

This section uses Amlogic SoC to evaluate the energy
efficiency of Para-Pipe. Fig. 10 showcases the normalized
average active platform power and energy efficiency relative
to the para-only strategy. Our analysis reveals that the Layer-
switched and HEFT & CPOP algorithms exhibit average
degradations of 24.5% and 8.0% in energy efficiency, respec-
tively, compared to para-only. These declines are primarily
attributed to frequent processor switching, a scheduling bias
toward high-performance but less energy-efficient components,
and additional communication overhead due to suboptimal
parallel operator mapping.

Compared to HEFT & CPOP, para-only employs optimized
workload mapping strategies, which reduce synchronization
contention and processor idle time. Consequently, its addi-
tional area overhead primarily results from increased runtime
processor utilization rather than inefficient hardware resource
consumption. Runtime measurements, averaged across tested
models, indicate a modest 3.3% increase in platform active
power, improved memory access patterns, and an 11.7% re-
duction in mutex contention. These trade-offs are well-justified
by the substantial performance and energy efficiency benefits,
making para-only highly suitable for workloads demanding
low latency and high energy efficiency.

Conversely, the pipe-only configuration consistently out-
performs the para-only setup across all tested benchmarks,
achieving an average improvement of 12.2%. Additionally, the
hybrid-L and hybrid-T configurations demonstrate average in-
creases in energy efficiency of 16.7% and 23.3%, respectively,
relative to the para-only approach. When compared to the
pipe-only configuration, these gains are 8.7% for hybrid-L and
11.0% for hybrid-T, underscoring their enhanced performance.

An exception is observed with Inception-v4, where the
hybrid-T option reaches 0.53 fps/J, slightly underperforming
against the pipe-only’s 0.54 fps/J, translating to a minor
setback of 1.7%. This slight decrease in energy efficiency
with Inception-v4 can be ascribed to a marginal 0.4% increase
in throughput and a 33.3% improvement in latency offered
by the hybrid-T option. To encapsulate, the hybrid-T option
enhances energy efficiency and presents a nuanced trade-off in
performance, particularly noticeable in models with extensive
operator parallelism.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GoogLeNet
Inception-v3
Inception-v4

Inception-ResNet-v2

GoogLeNet
Inception-v3
Inception-v4

Inception-ResNet-v2

GoogLeNet
Inception-v3
Inception-v4

Inception-ResNet-v2

29.2% 19.5% 21.6% 16.5%

11.7%

Latency (s)

Comp. Sync. Overhead Program Overhead

Big+Small+GPU

Big+GPU

Big+Small

Fig. 13. Latency distribution of fine-grained mapping for non-pipelined, par-
allel co-execution on Amlogic SoC: computation, synchronization overhead,
and program overhead.

F. Co-execution of Heterogeneous Units
This section evaluates the performance of coarse- and fine-

grained mapping algorithms in non-pipelined parallel execu-
tion via various on-chip processor combinations to demon-
strate the efficacy of the operator mapping approaches. We
implement and test the strategies generated to ensure a robust
analysis, collecting corresponding experimental data on an
Amlogic SoC, specifically using a real Khadas Vim3 Pro
platform.

1) Coarse-grained Mapping: Fig. 12 illustrates perfor-
mance and energy gains achieved through coarse-grained co-
execution mapping strategies: CPU clusters, big CPU cluster
with GPU, and CPU clusters with GPU, relative to the highest-
performance big CPU cluster. Parallel processing with CPU
clusters obtains an average latency decrease of approximately
16.4% and a throughput increase of about 19.8%. However, the
setup with a big CPU and a GPU only marginally outperforms
the dual CPU cluster configuration, even if the small CPU can-
not deliver even half the performance of the GPU. For models
exhibiting lower degrees of parallelism, such as GoogLeNet
and Inception-ResNet-v2, the advantages of CPU-GPU co-
execution were offset by communication overheads, making it
less beneficial. Despite utilizing two CPU clusters and a GPU
for parallel inference, the improvement was relatively limited
compared to the dual CPU cluster option. Thus, employing
purely operator-based parallel execution using heterogeneous
on-chip computing resources is not advisable except where
extreme latency reduction is required.

Regarding energy efficiency, since the small CPU and GPU
are specifically optimized for power efficiency, integrating a
big CPU with either a small CPU, GPU, or both can signif-
icantly boost energy efficiency. The corresponding combina-
tions deliver average energy efficiency gains of 14.2%, 17.6%,
and 31.3%, respectively. These improvements primarily stem

from reduced reliance on the power-intensive big CPU cluster
and reduced execution times by engaging more processors.
However, while the GPU is recognized for its exceptional
power efficiency, its combined use with CPUs somewhat
dilutes these benefits.

Consequently, the pipe-only and various hybrid configu-
rations in Para-Pipe, which integrate sequential processing
stages featuring the GPU, more effectively preserve the GPU’s
contribution to power efficiency. Besides, selecting processors
with compatible computing architectures and data formats,
like big and small CPU clusters, for parallel processing
within stages is more advantageous. These strategies enhance
throughput with minimal latency trade-offs and reduce un-
necessary communication and data conversion overhead, thus
improving the efficient and effective utilization of on-chip
resources.

2) Fine-grained Mapping:
a) Overhead Analysis: We assess latency distributions

for fine-grained mapping strategies by comparing them to
those obtained from coarse-grained mappings across both
runtimes. Program overhead, defined as the additional runtime
introduced by the implementation complexity of fine-grained
mapping, is estimated as the difference between coarse-grained
mapping performance on coarse- and fine-grained runtimes.
The computational cost associated with fine-grained mapping
is reflected in the lower execution times observed for both
strategies. Synchronization overhead is calculated as the dif-
ference between the execution time of a fine-grained strategy
and the sum of its program overhead and computational cost.

As illustrated in Fig. 13, fine-grained mapping incurs an
average program overhead of 5.9% during the concurrent
execution of CPU clusters and GPUs, notably impacting large-
scale model inferences, such as the 11.7% overhead observed
in Inception-ResNet-v2. Synchronization overhead averages
21.7% across tested models when using a large CPU cluster
and GPU but decreases significantly to 4.7% with the addition
of a small CPU cluster. The inclusion of the small CPU
cluster redistributes operators more evenly, alleviating GPU
workloads and reducing CPU-GPU synchronization points
by 20.1% on average. This, in turn, minimizes CPU-GPU
communication and streamlines coordination. Conversely, con-
figurations with only a large CPU cluster and GPU experience
frequent and complex CPU-GPU communications. These are
further exacerbated by the asynchronous and intermittent com-
mand submissions to the OpenCL queue, resulting in execution
jitters that disrupt synchronization efficiency.

Despite these challenges, fine-grained mapping is markedly
more effective for aligning irregular model structures with
units that share similar architectures and data formats, as
demonstrated with two CPU clusters in our study. In scenarios
involving the co-execution of two CPU clusters, the fine-
grained approach circumvents the complexities of synchro-
nization and program implementation, yielding an average
improvement of 3.35% in latency and 4.28% in throughput
compared to coarse-grained mapping.

b) Operator Mapping Choice: The coarse-grained
method rapidly generates parallel operator mapping strategies
for graphs with independent branches, minimizing processor

TABLE III
ILP SOLUTION TIME (MINUTES) FOR FINE-GRAINED MAPPING

ALGORITHM FOR NON-PIPELINED, PARALLEL EXECUTION WITH NPU AND
TWO DSPS (para-only) ON BST SOC: PERFORMANCE EVALUATION ON

INTEL(R) XEON(R) GOLD 6326 CPU @ 2.90GHZ

Network #Subgraphs #Operators Time (minutes)
GoogLeNet 11 141 < 1
Inception-v3 13 220 4
Inception-v4 21 343 4
Inception-ResNet-v2 45 576 <1
PETR-based 24 337 361
BEVFormer-based 25 257 <1

switching and complex synchronization requirements. This
approach is remarkably robust against execution jitters and
runtime interruptions from the operating system, making it
well-suited for more volatile environments. Conversely, when
applied to these relatively straightforward graphs, the fine-
grained method performs best in stable runtime environments
with uniform computing architectures. Moreover, it excels in
mapping complex and irregular model graphs with solution
times that scale appropriately with the degrees of operator
parallelism.

G. Mapping time Analysis

The dual parallel mapping methods of Para-Pipe enhance
the parallel scheduling of subgraphs by generating multiple
ILP problems, thereby increasing the efficiency of scheduling
large models. Due to its detailed granularity, fine-grained
mapping inherently demands longer resolution times than
coarse-grained mapping. Consequently, this discussion con-
centrates on fine-grained mapping to comprehensively assess
the scheduling time overhead associated with our framework.

Table III presents solution times for the fine-grained al-
gorithm when generating the para-only option on the BST
SoC. Once parallel operator mapping strategies are established
for each subgraph, no further ILP computations are neces-
sary. Para-Pipe utilizes these results to efficiently generate
additional mapping options, such as hybrid-T and hybrid-L,
with minimal overhead. Thus, ILP times shown in Table III
approximate the total scheduling time required to generate all
Pareto-optimal points.

By constructing subgraph-based ILP problems, we can
rapidly devise efficient mapping solutions for most networks
within 5 minutes. For the PETR-based network, the largest
subgraph contains 169 operators and exhibits an inter-operator
parallelism degree of 16, making it the most complex subgraph
analyzed in this study (its partial architecture with 67 oper-
ators is detailed in Fig. 1). The ILP solution time for this
subgraph is approximately 6 hours. For large-scale models
with multiple complex subgraphs, such as those found in
PETR-based networks, subgraph mappings can be scheduled
in parallel to expedite the solution process significantly. Unlike
meta-heuristic or heuristic algorithms, our subgraph-based ILP
approach swiftly generates optimal results for each subgraph
without requiring time-consuming iterative adjustments. This
approach ensures the optimal solution is found within a
tolerable timeframe, even for highly intricate subgraphs.

VIII. RELATED WORK

Optimizing ML inference on heterogeneous SoCs has gar-
nered extensive research interest. Brakel et al. [38] have
explored model parallelism within distributed infrastructures,
focusing on intra- and inter-operator parallelism, and high-
lighted their findings through case studies on multi-billion
parameter transformer models. This paper aims to explore ML
inference on SoCs further, concentrating on the following key
dimensions:

a) Pipelining: Pipe-it [6] exploits inter-operator paral-
lelism through pipelining to engage ARM big and LITTLE
CPU clusters concurrently, enhancing throughput. Similarly,
PipeBERT [39] focuses on pipelining BERT models onto
heterogeneous CPU clusters, employing an improved binary
search algorithm to optimize pipeline configurations. Mukher-
jee et al. [40] and Flexi-BOPI [10] utilize dynamic pro-
gramming and Bayesian optimization respectively to automate
the partitioning process. While these strategies significantly
enhance throughput, they do not always ensure acceptable
execution latency, especially when applied to large-scale mod-
ern neural networks. This limitation poses challenges for
applications where low latency is critical.

b) Operator Parallel Execution: Tumeo et al. [17] intro-
duce an Ant Colony Optimization algorithm for mapping tasks
onto heterogeneous multiprocessor architectures. A Mixed ILP
model is developed in [18] to optimize task mapping by
considering the data exchange overhead among processors.
Topcuoglu et al. [19] propose two classic DAG mapping
algorithms, utilizing defined upward and downward rank val-
ues to prioritize task scheduling. Zhang et al. [20] devise
reliable scheduling for parallel task execution in heterogeneous
computing systems, emphasizing both task reliability and
energy efficiency. These methodologies are primarily designed
for handling task graphs with limited operator parallelism
and assume the presence of random and irregular structures,
which do not always align with the structured nature of
many real-world applications. Additionally, DUET [16] par-
titions complex-structured DNNs into subgraphs and employs
a greedy-correction subgraph scheduling algorithm for near-
optimal placement across coupled CPU-GPU architectures.
This approach primarily targets multi-model tasks without
delving into fine-grained operator-level parallelism.

c) Intra- and Inter-Operator Parallelism: Minakova et
al. [8] generate the execution pipeline using CPUs at the
operator-level granularity, with GPUs accelerating heavy com-
putation within operators. Similarly, Jeong et al. [41] highlight
parallelization using GPU and NPU via pipelining and mul-
tithreading on TensorRT. Synergy [42] proposes a dynamic
runtime strategy, work-stealing, to adjust workload mapping
configuration on SoCs. Despite these advancements, the focus
remains predominantly on linear models, leaving room for op-
timization in more complex and irregular model architectures.

d) Multiple Workloads: Kim et al. [43] present an
energy-aware pipeline-based mapping methodology for multi-
ple DL applications onto multi-processors. They focus on the
dynamic scheduling of applications to reduce energy consump-
tion via DVFS under latency constraints, with each application
being a simple and linear graph. Moreover, DAIMO-NPU [44]

TABLE IV
COMPARING Para-Pipe WITH OTHER FRAMEWORKS THAT SUPPORT ML

INFERENCE ON HETEROGENEOUS SOCS

Framework Irregular
Model Grapha Pipelineing Operator Parallel

Execution
Strategy

Selectionb

[16]–[20] ✗ ✗ ✓ ✗
[6]–[11], [39], [40] ✗ ✓ ✗ ✗

Para-Pipe ✓ ✓ ✓ ✓
aA complex neural network with intensive operator parallelism and interdependencies,
unlike simpler linear networks like MobileNet and ResNet50. bSelection of mapping

strategies based on prioritized metrics like latency or energy efficiency.

adopts a cyclic scheduling algorithm to support dynamic addi-
tion and removal of model execution tasks onto heterogeneous
NPU settings. BAND [45] orchestrates multi-DNN workloads
on heterogeneous compute engines, partitioning models into
subgraphs and dynamically scheduling these subgraphs for
optimized execution. These strategies are crafted for scenarios
involving the scheduling of multiple applications under latency
constraints without extensively exploring the intricate model
structures characteristic of single, complex, and computation-
intensive application inferences.

Our work innovatively addresses the processing of irregular
modern model graphs by leveraging hierarchical operator
parallelism within a pipelined architecture. This meticulous
tuning of inter- and intra-stage operator parallelism signifi-
cantly broadens the scope of ML inference optimization on
heterogeneous SoCs. Our method achieves a balanced trade-
off between latency and throughput and boosts the platform’s
energy efficiency. Additionally, it generates multiple Pareto-
optimal strategies, accommodating diverse user preferences
across various performance metrics. Table IV underscores the
critical distinctions between our methodology and existing
works, highlighting our contributions to the field.

IX. CONCLUSION

This paper presents Para-Pipe, a novel partitioning and
scheduling framework that optimizes the trade-offs between
latency and throughput to maximize energy efficiency on
embedded computing platforms. Para-Pipe efficiently maps
modern neural networks across heterogeneous processors by
leveraging hierarchical operator parallelism within computa-
tional graphs. The proposed methodology decomposes the
model graph into subgraphs with varying degrees of operator
parallelism and assigns them to different computing units for
parallel or sequential execution in distinct pipeline stages.
This adaptive fusion of parallel and sequential execution
enables fine-grained control over latency-throughput trade-
offs, enhancing overall energy efficiency. Experimental evalu-
ations on two distinct SoCs (Amlogic and BST) demonstrate
Para-Pipe’s ability to generate Pareto-optimal configurations,
balancing latency and throughput while identifying the most
energy-efficient mapping strategies for networks with dense
inter-operator parallelism.

REFERENCES

[1] T. Mitra, “Heterogeneous multi-core architectures,” Information and
Media Technologies, vol. 10, no. 3, pp. 383–394, 2015.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[3] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-to-End}
optimizing compiler for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018, pp.
578–594.

[4] ARM, “Compute library: A software library for machine learning,” 2023.
[Online]. Available: https://www.arm.com/technologies/compute-library

[5] Y. Liu, T. Wang, X. Zhang, and J. Sun, “PETR: Position embedding
transformation for multi-view 3D object detection,” in European Con-
ference on Computer Vision. Springer, 2022, pp. 531–548.

[6] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput CNN inference on embedded ARM big.
LITTLE multicore processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2254–
2267, 2019.

[7] H.-I. Wu, D.-Y. Guo, H.-H. Chin, and R.-S. Tsay, “A pipeline-based
scheduler for optimizing latency of convolution neural network inference
over heterogeneous multicore systems,” in 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2020, pp. 46–49.

[8] S. Minakova, E. Tang, and T. Stefanov, “Combining task-and data-level
parallelism for high-throughput CNN inference on embedded CPUs-
GPUs MPSoCs,” in Embedded Computer Systems: Architectures, Mod-
eling, and Simulation: 20th International Conference, SAMOS, Samos,
Greece, July 5–9, Proceedings 20. Springer, 2020, pp. 18–35.

[9] E. Aghapour, D. Sapra, A. Pimentel, and A. Pathania, “ARM-CO-UP:
ARM COoperative Utilization of Processors,” ACM Transactions on
Design Automation of Electronic Systems, 2024.

[10] Z. Wang, P. Yang, B. Zhang, L. Hu, W. Lv, C. Lin, and Q. Wang,
“Flexi-BOPI: Flexible granularity pipeline inference with Bayesian op-
timization for deep learning models on HMPSoC,” Information Sciences,
p. 120984, 2024.

[11] E. Aghapour, Y. Zhang, A. Pathania, and T. Mitra, “Pipelined CNN
inference on heterogeneous multi-processor system-on-chip,” in Embed-
ded Machine Learning for Cyber-Physical, IoT, and Edge Computing:
Software Optimizations and Hardware/Software Codesign. Springer,
2023, pp. 405–427.

[12] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai, “BEV-
Former: Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers,” in European conference on
computer vision. Springer, 2022, pp. 1–18.

[13] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use AI to enhance
security?” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41–49,
2018.

[14] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review
of machine learning and IoT in smart transportation,” Future Internet,
vol. 11, no. 4, p. 94, 2019.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[16] M. Zhang, Z. Hu, and M. Li, “DUET: A compiler-runtime subgraph
scheduling approach for tensor programs on a coupled CPU-GPU
architecture,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2021, pp. 151–161.

[17] A. Tumeo, C. Pilato, F. Ferrandi, D. Sciuto, and P. L. Lanzi, “Ant colony
optimization for mapping and scheduling in heterogeneous multipro-
cessor systems,” in International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation. IEEE, 2008, pp.
142–149.

[18] A. Bender, “MILP based task mapping for heterogeneous multiprocessor
systems,” in Proceedings EURO-DAC’96. European Design Automation
Conference with EURO-VHDL’96 and Exhibition. IEEE, 1996, pp.
190–197.

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[20] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing
reliability with energy conservation for parallel task scheduling in a
heterogeneous cluster,” Information Sciences, vol. 319, pp. 113–131,
2015.

[21] V. Tsakanikas and T. Dagiuklas, “Video surveillance systems-current
status and future trends,” Computers & Electrical Engineering, vol. 70,
pp. 736–753, 2018.

[22] L. Cheng, J. Wang, and Y. Li, “Vitrack: Efficient tracking on the edge for
commodity video surveillance systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 3, pp. 723–735, 2021.

[23] J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed deep
learning model for intelligent video surveillance systems with edge
computing,” IEEE Transactions on Industrial Informatics, 2019.

[24] H. Bouzidi, M. Odema, H. Ouarnoughi, S. Niar, and M. A. Al Faruque,
“Map-and-Conquer: Energy-efficient mapping of dynamic neural nets
onto heterogeneous MPSoCs,” in 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–6.

[25] X. Chen, A. Krishnakumar, U. Ogras, and C. Chakrabarti, “PED: Prob-
abilistic energy-efficient deadline-aware scheduler for heterogeneous
SoCs,” Journal of Systems Architecture, vol. 147, p. 103051, 2024.

[26] L. Amlogic, “Amlogic AI processor A311D datasheet,” 2023.
[Online]. Available: https://dl.khadas.com/hardware/VIM3/Datasheet/
A311D Datasheet 01 Wesion.pdf

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[28] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2022.
[29] S. Siamashka, “TinyMemBench,” 2019. [Online]. Available: https:

//github.com/ssvb/tinymembench
[30] K. Bhat, “clpeak,” 2015. [Online]. Available: https://github.com/

krrishnarraj/clpeak
[31] L. Black Sesame Technologies Co., “Black Sesame Technologies,”

2024. [Online]. Available: https://www.blacksesame.com.cn/en/
[32] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra, “Power-

performance modelling of mobile gaming workloads on heterogeneous
MPSoCs,” in Proceedings of the 52nd Annual Design Automation
Conference, 2015, pp. 1–6.

[33] L. RDTech, “UM25C,” 2023. [Online]. Available: https://sigrok.org/
wiki/RDTech UM series#UM25C

[34] P. Mochel, “The sysfs filesystem,” in Linux Symposium, vol. 1. The
Linux Foundation San Francisco, CA, USA, 2005, pp. 313–326.

[35] L. Khadas Tech. Co., “Khadas Vim3 Pro,” 2023. [Online]. Available:
https://www.khadas.com/vim3

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017.

[37] E. Aghapour, D. Sapra, A. Pimentel, and A. Pathania, “CPU-GPU layer-
switched low latency CNN inference,” in 25th Euromicro Conference on
Digital System Design (DSD). IEEE, 2022, pp. 324–331.

[38] F. Brakel, U. Odyurt, and A.-L. Varbanescu, “Model parallelism on
distributed infrastructure: A literature review from theory to llm case-
studies,” arXiv preprint arXiv:2403.03699, 2024.

[39] H.-Y. Chang, S. H. Mozafari, C. Chen, J. J. Clark, B. H. Meyer, and
W. J. Gross, “PipeBERT: high-throughput BERT inference for ARM big.
LITTLE multi-core processors,” Journal of Signal Processing Systems,
vol. 95, no. 7, pp. 877–894, 2023.

[40] A. Mukherjee and S. Dey, “Automated deep learning model partitioning
for heterogeneous edge devices,” in Proceedings of the Second Interna-
tional Conference on AI-ML Systems, 2022, pp. 1–8.

[41] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep learning inference
parallelization on heterogeneous processors with TensorRT,” IEEE Em-
bedded Systems Letters, vol. 14, no. 1, pp. 15–18, 2021.

[42] G. Zhong, A. Dubey, C. Tan, and T. Mitra, “Synergy: An HW/SW
framework for high throughput CNNs on embedded heterogeneous
SoC,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 2, pp. 1–23, 2019.

[43] J. Kim and S. Ha, “Energy-aware scenario-based mapping of deep
learning applications onto heterogeneous processors under real-time
constraints,” IEEE Transactions on Computers, 2022.

[44] K. Sohn, I. Choi, S. Kim, J. Lee, J. Lee, and J. Kim, “A strategy to
maximize the utilization of AI neural processors on an automotive com-
puting platform,” in 2024 IEEE International Conference on Consumer
Electronics (ICCE). IEEE, 2024, pp. 1–4.

[45] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,
“BAND: coordinated multi-DNN inference on heterogeneous mobile
processors,” in Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services, 2022, pp. 235–247.

Yujie Zhang received the B.S. degree in software
engineering from Shandong University, Jinan, China,
in 2020. She is currently pursuing a Ph.D. degree at
the National University of Singapore, Singapore.

Her research focuses on the efficient deployment
of deep learning models on resource-constrained
systems.

Huiying Lan received the Ph.D. degree from the
University of Chinese Academy of Sciences, Bei-
jing, China, in 2019. She was a Research Fellow
at the National University of Singapore, Singapore,
from 2023 to 2024. She is currently a Senior Soft-
ware Engineer at Lumai, Oxford, UK, leading the
design and development of software stacks.

Her research interests include AI compiler, infer-
ence engine, and software-hardware co-design.

Ehsan Aghapour received the B.S. and M.S. de-
grees from Sharif University of Technology, Tehran,
Iran, in 2016 and 2019, respectively. He is currently
pursuing a Ph.D. degree at the University of Ams-
terdam, Netherlands.

His research interests include Edge AI and low-
power system design.

Zhiyuan Ning received the B.S. and M.S. degrees
from the University of Southern California, CA,
USA, in 2020 and 2022, respectively. He was a
Senior AI Framework Software Engineer at Black
Sesame Technologies, Inc., CA, USA, from 2022
to 2024. He is currently a Senior AI Framework
Software Engineer at Advanced Micro Devices, Inc.
(AMD), CA, USA.

Peng Zan received the Ph.D. degree in electrical
engineering from the University of Maryland, MD,
USA, in 2019. He was a Senior AI Framework Soft-
ware Engineer at Black Sesame Technologies, Inc.,
CA, USA, from 2021 to 2023. He is currently a Staff
Engineer in AI Software at Samsung Semiconductor,
Inc., CA, USA.

His research interests include model compression
and efficient AI systems.

Weidong Shao received the M.S. degree from
Stanford University, CA, USA, in 2009. He was
Senior AI Tools and Data Platform Director at Black
Sesame Technologies, Inc., CA, USA, from 2020
to 2024. He is currently an independent consultant
specializing in system integration and AI/ML solu-
tions, helping organizations transition cutting-edge
research with production-grade deployments.

Anuj Pathania received his Ph.D. degree from
Karlsruhe Institute of Technology (KIT), Germany
in 2018.

He is currently an Assistant Professor at the Uni-
versity of Amsterdam. His research focuses on the
high-performance, low-power design of embedded
systems.

Tulika Mitra received a BE degree in computer
science from Jadavpur University, Kolkata, India,
in 1995, an ME degree in computer science from
the Indian Institute of Science, Bengaluru, India,
in 1997, and a Ph.D. degree from the State Uni-
versity of New York, Stony Brook, NY, USA, in
2000. She is currently Provost’s Chair Professor
of Computer Science at the School of Computing,
National University of Singapore, Singapore. Her
research interests include the design automation of
embedded realtime systems with particular emphasis

on software timing analysis/optimizations, application-specific processors,
energy-efficient computing, and heterogeneous computing.

