
A

An Analytical Approach for Fast and Accurate Design Space
Exploration of Instruction Caches

Yun Liang, Advanced Digital Sciences Center, Illinois at Singapore
Tulika Mitra, School of Computing, National University of Singapore

Application-specific system-on-chip platforms create the opportunity to customize the cache configuration for optimal per-
formance with minimal chip area. Simulation, in particular trace-driven simulation, is widely used to estimate cache hit rates.
However, simulation is too slow to be deployed in design space exploration, especially when there are hundreds of design
points and the traces are huge. In this paper, we propose a novel analytical approach for design space exploration of instruc-
tion caches. Given the program control flow graph (CFG) annotated only with basic block and control flow edge execution
counts, we first model the cache states at each point of the CFG in a probabilistic manner. Then, we exploit the structural
similarities among related cache configurations to estimate the cache hit rates for multiple cache configurations in one pass.
Experimental results indicate that our analysis is 28 — 2,500 times faster compared to the fastest known cache simulator
while maintaining high accuracy (0.2% average error) in estimating cache hit rates for a large set of popular benchmarks.
Moreover, compared to a state-of-the-art cache design space exploration technique, our approach achieves 304 — 8086 times
speedup and saves up to 62% energy and on average 7% for the evaluated benchmarks.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories; C.3 [Special-purpose
and application-based systems]: Real-time and embedded systems.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Cache, Design Space Exploration

ACM Reference Format:
Liang, Y., Mitra, Tulika. 2012. An Analytical Approach for Fast and Accurate Design Space Exploration of Instruction
Caches. ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The fixed functionality nature of embedded systems opens up the opportunity to design a customized
system-on-chip (SoC) platform for a particular application or an application domain. Cache memory
subsystem bears significant importance in embedded system design as it bridges the performance
gap between the fast processor and the slow main memory. Generally, for a well-tuned and opti-
mized memory hierarchy, most of the memory accesses can be fetched directly from the cache in-
stead of the main memory, which requires more power consumption and longer delay per access. In
this work, we focus on instruction cache, which is present in almost all embedded systems. Instruc-
tion cache is one of the foremost power consuming and performance determining microarchitectural
feature of modern embedded systems as instructions are fetched almost every clock cycle. For exam-
ple, instruction fetch consumes 22% of the power in the Intel Pentium Pro processor [Brooks et al.
2000]. 27% of the total power is spent by instruction cache for StrongARM 110 processor [Mon-
tanaro et al. 1997]. Thus, careful tuning and optimization of instruction cache memory can lead to
significant performance gain and energy saving.

Author’s addresses: Y. Liang, Advanced Digital Sciences Center 1 Fusionopolis Way, #08-10 Connexis North Tower Sin-
gapore 138632; T. Mitra, Department of Computer Science, School of Computing, Computing 1, 13 Computing Drive,
Singapore 117417 National University of Singapore.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Application specific processor designs (such as Tensilica’s Xtensa processor [Tensilica, Xtensa
processor]) and soft-core processors in the FPGAs [Nios processor ; Microblaze processor] allow
the embedded system designer to customize the cache configuration for a particular application.
Choosing a suitable cache configuration for the application helps to improve the cache hit rate and
thus performance and energy. However, cache design parameters include the size of the cache, the
line size, the degree of associativity, the replacement policy, and many others. Hence, cache design
space consists of a large number of design points. The most popular approach to explore the cache
design space is to employ trace-driven simulation or functional simulation [Uhlig and Mudge 1997;
Zhang et al. 2003]. Although the cache hit/miss rate results are accurate, simulation could be very
slow, typically much longer than the execution time of the program. Moreover, the address trace
tends to be large even for a small program. Thus, huge trace sizes put practical limit on the size
of the application and its input. In this article, we explore analytical approach as an alternative to
simulation for fast and accurate estimation of cache hit rates.

We first introduce the concept of probabilistic cache states, which captures the set of possible
cache states at a program point along with their probabilities. We also define operators for update and
concatenation of probabilistic cache states. Then, we propose a static program analysis technique
that computes the probabilistic cache states at each point of the program control flow graph (CFG),
given the program branch probability and loop bound information. The static analysis makes effec-
tive use of the update and concatenation operators. With the computed probabilistic cache states, we
are able to derive the cache hit rate for each memory reference in the CFG and the cache hit rate for
the entire program. More importantly, there exist structural similarities among related cache con-
figurations. Based on this observation, we extend our analytical approach to model multiple cache
configurations in one pass. To achieve this goal, we borrow the data structure, called Generalized Bi-
nomial Tree (GBT), proposed by Sugumar and Abraham [Sugumar and Abraham 1995] to exploit
the inclusion property among related cache configurations. GBT enables us to capture the cache
states corresponding to a number of related configurations in one succinct representation. However,
as a program point can be reached from different contexts, we may have a number of GBTs, each
associated with the probability of the corresponding context. Thus, we propose probabilistic GBT
to capture the cache states corresponding to all cache configurations and all contexts at any program
point. Cache state operators such as update and concatenation are extended for probabilistic GBT.
Now, given these probabilistic GBT, we can easily estimate the cache hit rate of the entire program
for multiple cache configurations. However, maintaining these probabilistic GBTs and operating
on them can become space and time inefficient as the number of contexts increases. Therefore, we
propose a number of optimizations for space and time efficiency.

In summary, we propose an analytical method for fast and accurate design space exploration of
instruction caches. Our analysis method can estimate the cache hit rates for multiple cache con-
figurations in one pass. The input to our analysis is simply the basic block and control flow edge
count profiles, which is significantly more compact compared to memory address traces required
by trace-driven simulators and other trace based analytical works. Our experimental evaluation with
a set of popular embedded and SPEC benchmarks reveals that our estimation is highly accurate
(0.2% average error) and our single pass cache analysis is 28 — 2,500 times faster compared to
the fastest known single pass cache simulator Cheetah. We also extend our approach for exploring
design tradeoffs between performance and energy. Compared to a state-of-the-art [Zhang and Vahid
2003] cache design space exploration technique, our approach achieves 304 — 8086 times speedup
and saves up to 62% energy and on average 7% for the evaluated benchmarks.

The rest of this article is organized as follows: In section 2, we summarize the related work. Our
analysis framework is outlined in section 3. We present our analytical approach for a single and
multiple cache configurations in section 4 and 5, respectively. Finally, we present the experimental
results in section 6 and conclude the paper in section 7.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

2. RELATED WORK
Cache memory plays a critical role for embedded systems design in terms of both performance and
energy consumption. Various methods targeting improvement of cache performance have been pro-
posed such as efficient cache design space exploration [Liang and Mitra 2008a; 2008b; Ghosh and
Givargis 2004; Sugumar and Abraham 1995], instruction cache locking [Liang and Mitra 2010a]
and code reorganization [Guillon et al. 2004; Liang and Mitra 2010b]. In this paper, we focus on
cache design space exploration, which computes the cache hits/misses for various cache configu-
rations. To explore cache design spaces, we can rely on detailed trace driven simulation, analytical
modeling, or hybrid approach using both simulation and analytical modeling.

2.1. Trace Driven Simulation
Trace-driven simulation is widely used for evaluating cache design parameters [Uhlig and Mudge
1997]. The collected application trace is fed to the cache simulator which mimics the behavior of
some hypothetical cache configurations and outputs the cache performance metrics such as cache
hit/miss rate. However, complete trace simulation could be very slow and sometimes is not nec-
essary. Hence, lossless trace reduction techniques have been described in [Wang and Baer 1991;
Wu and Wolf 1999]. Wang and Baer observed that the references that hit in small direct mapped
cache will hit in larger caches. They exploited the observation to remove certain references from the
trace before simulation [Wang and Baer 1991]. In [Wu and Wolf 1999], cache configurations are
simulated in a particular order in order to strip off some redundant information from the trace after
each simulation. However, both of these techniques still need multiple passes of simulation. Single
pass simulation techniques have been proposed in [Sugumar and Abraham 1995; Hill and Smith
1989; Mattson et al. 1970]. Based on the inclusion property that roughly states that the content of a
smaller cache is included in a bigger cache for certain replacement policy, multiple cache configu-
rations can be evaluated simultaneously during a single pass. Various data structures, such as single
stack [Mattson et al. 1970], forest [Hill and Smith 1989], and generalized binomial tree [Sugumar
and Abraham 1995], have been proposed for utilizing the inclusion property. Cheetah [Sugumar
and Abraham 1995] is shown to be the most efficient single pass simulator so far. However, address
traces could be very big even for a small program and they have to be compressed for practical
usage. Simulation methodology that operates directly on a compressed trace have been presented
in [Li et al. 2004]. Recently, Mohammad et al. proposed a single pass simulation framework [Haque
et al. 2009]. However, it is not clear how fast their technique is when compared to Cheetah and
address trace is still needed by their technique. In contrast, our solution is shown to be much faster
than Cheetah and does not need address trace.

2.2. Other Approaches
Analytical approach has been proposed as an alternative to trace-driven simulation for efficient
cache design space exploration. Ghosh and Givargis [Ghosh and Givargis 2004] proposed an effi-
cient analytical approach for design space exploration of caches. Given the application trace and
desired performance constraint, the analytical model generates the set of cache configurations that
meet the performance constraints directly. However, for realistic cache design parameters (limited
associativity), the proposed analytical model is as slow as trace simulation.

Hybrid approaches are used to explore cache design space, where heuristics are used to prune
the design space and simulations are employed to obtain the cache hits/misses for selected cache
configurations. Zhang and Vahid proposed heuristics to find the cache configurations with the best
energy consumption, performance and pareto-optimal points with different energy and performance
tradeoffs [Zhang and Vahid 2003]. However, hybrid approaches may fail to find the global optimal
solution and they are still slow because quite a number of simulations are required.

Gordon-Ross et al. presented a one-shot configurable-cache tuner for hardware implementa-
tion [Gordon-Ross et al. 2007]. The hardware module non-intrusively collects the data access,
predicts the best cache configuration, and configures the cache dynamically. In comparison, our

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

technique does not need special hardware support; it only needs the basic block and control flow
edge count profiles as inputs which can easily collected through profiling. Arnold et al. described
a static cache analysis technique for estimating the Worst Case Execution Time (WCET) for hard
real-time systems [Arnold et al. 1994]. Their static program analysis relies on loop level analysis
and abstract cache state. In contrast, our technique aims to improve the average-case performance
of general embedded applications. Thus, we model the cache state in a probabilistic manner. Our
static cache analysis is based on efficient cache update and concatenation operators.

3. ANALYSIS FRAMEWORK
The analysis framework is shown in Figure 1. The inputs to our analysis framework are the exe-
cutable program code and its corresponding data set. We can obtain the basic block and control flow
edge counts through execution or quick functional simulation of an instrumented version of the
program. The instrumentation can be done very efficiently using edge profiling [Ball 1994]. More
importantly, the profiling needs to be done only once, as basic block and edge execution counts re-
main unchanged across different cache configurations. Our analysis constructs the loop-procedure
hierarchy graph (LPHG) corresponding to the whole program [Li et al. 2000]. The LPHG repre-
sents the procedure calls and loop nest relations in the program. Loop and procedure bodies are
represented as directed acyclic graphs (DAG), where the nodes of a DAG are the basic blocks. If a
loop/procedure contains other loops within its body, then the inner loops are represented as dummy
loops in the DAG. For each loop L, it is annotated with its loop count NL and its control flow graph
is transformed such that every loop has a loop pre-header, post-loop, start, and end node. Then, our
analysis proceeds with the singe pass cache design space exploration.

Given a basic block B and an edge Bi → Bj , we use NB and NBi→Bj to denote their execution
counts, respectively. For control flow edge Bi → Bj , the edge frequency f(Bi → Bj) is defined

as the probability that Bi is reached from Bj , that is, f(Bi → Bj) =
NBi→Bj

NBj

1. By definition,∑
e∈In(B) f(e) = 1, where In(B) represents all the incoming edges of B. Figure 1 shows an

example of annotated control flow graph and all basic blocks and control flow edges are annotated
with their execution information.

Cache Hit Rate. Let us use B to represent the set of the basic blocks of the program. Let IB be
the number of instructions and MB be the sequence of memory blocks accessed in basic block B.
Then, the cache hit rate of the program, Rhit, can be computed as

Rhit =

∑
B∈B

∑
m∈MB

NB ×Hm∑
B∈B NB × IB

(1)

where Hm is the cache hit rate of the mth memory block access ∈ MB .
More clearly, in Equation 1, the numerator represents the estimated number of cache hits and

the denominator represents the number of dynamically executed instructions. NB (the execution
counts of basic block B) and IB (the number of instructions of basic block B) are constants across
different cache configurations and are available through profiling. However, Hm is unknown and
may change across different cache configurations. In the following, we will illustrate how to estimate
Hm through our cache modeling technique.

4. CACHE MODELING FOR A SINGLE CONFIGURATION
In this section, we describe our cache analytical cache modeling approach for single configuration
and we extend it for multiple cache configurations in the next section.

Cache Terminology. A cache memory is defined in terms of four major parameters: block or line
size L, number of sets K, associativity A, and replacement policy. The block or line size determines

1Frequency of edge (loop pre-header to loop start) is 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

B1(100)

B0(1)

B2(40) B3(60)

B4(100)

B5(1)

40(f = 1) 60(f = 1)

40(f = 0.4) 60(f = 0.6)

1(f = 1)

1(f = 1)

Pre-header

Start

End

Post-loop

Annotated Control Flow Graph

Program & Input data

Annotated LPHG

profiling

Single Pass Cache Design

Space Exploration

100

Fig. 1. Our analysis framework. In the annotated LPHG, each basic block is annotated with its execution count
and each edge is associated with its execution count and frequency (probability). For example, the execution
count of basic block B2 is 40 and the execution count of edge B2 → B4 is 40 too. Probability of edge
B2→ B4 is 0.4.

the unit of transfer between the main memory and the cache. A cache is divided into K sets. Each
cache set, in turn, is divided into A cache blocks, where A is the associativity of the cache. For a
direct-mapped cache A = 1, for a set-associative cache A > 1, and for a fully associative cache
K = 1. In other words, a direct-mapped cache has only one cache block per set, whereas a fully-
associative cache has only one cache set. Now the cache size is define as (K × A × L). For a
set-associative cache, the replacement policy (e.g., LRU, FIFO, etc.) defines the block to be evicted
when a cache set is full.

Assumptions. Without loss of generality, we will limit our discussion to a fully associative cache.
A set-associative cache with associativity A can be easily modeled by modeling each cache set as
a fully associative cache containing A blocks. Let Mi denote the set of all the memory blocks that
can map to the ith cache set. Given a memory block m, it is mapped to only one cache set given
by (m modulo K). Thus,

∩K−1
i=0 Mi = ∅. In other words, there is no interference among the

cache sets and they can be modeled independently. More concretely, in the following, we consider
a fully-associative cache with A cache blocks and the program store as a set of memory blocks M .
To indicate the absence of any memory block in a cache line, we introduce a new element ⊥. In this
work, we consider LRU (least recently used) replacement policy, where the block replaced is the
one that has been unused for the longest time.

4.1. Concrete Cache States
Let us first formally define the concrete cache states and their corresponding operations. These
definitions will be used later to introduce the notion of probabilistic cache states.

DEFINITION 1 (Concrete Cache States). A concrete cache state c is a vector ⟨c[1], . . . , c[A]⟩
of length A where c[j] ∈ M ∪ {⊥}. If c[j] = m, then m is the jth most recently used memory
block in the cache. Ω denotes the set of all possible concrete cache states. We also define a special
concrete cache state c⊥ = ⟨⊥, . . . ,⊥⟩ called the empty cache state. Figure 2 shows some of the
concrete cache states corresponding to the control flow graph.

DEFINITION 2 (Cache Hit). Given a concrete cache state c ∈ Ω and a memory access m ∈ M

hit(c,m) =

{
1 if ∃j (1 ≤ j ≤ A) s.t. c[j] = m
0 otherwise

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

m0B1 }1,,,0,1{2 A!A� prmmC outB

}1023{3 A!� prmmmC outB

m1 m2

m3

B2
B3

Probabilistic cache state merging before B4

}1,,0,2,3{3 A!� prmmmCB

 AA 5001

¯
®

 A!�

 A!A�

5.0,,0,2,3

5.0,,,0,1
4

prmmm

prmm
C inB

m4 B4 Probabilistic cache state update after B4

®
 A!�

5.0,,0,1,4

4

prmmm
C outB

5.0)42(o BBf

¯
®

 !� 5.0,0,2,3,4
4

prmmmm
CB

5.0)43(o BBf

Fig. 2. Control flow graph consists of two paths with equal probability (0.5). The illustration is for a fully-
associative cache with 4 blocks starting with empty cache state. m0–m4 are the memory blocks. Two prob-
abilistic cache states before B4 are shown. The probabilistic cache states merging and update operation are
shown for B4.

DEFINITION 3 (Concrete Cache State Update). We define � as concrete cache state update
operator. Given a concrete cache state c ∈ Ω and a memory block m ∈ M ∪ {⊥}, c �m defines
the cache state after memory access m following LRU policy.

c�m =

c, if m =⊥
c′, where c′[1] = m;

c′[j] = c[j − 1], 1 < j ≤ k
c′[j] = c[j], k < j ≤ A if ∃k s.t. c[k] = m

c′, where c′[1] = m;
c′[j] = c[j − 1], 1 < j ≤ A otherwise

4.2. Probabilistic Cache States
At any program point, the concrete cache state is dependent on the program path taken before
reaching this program point. In general, a program point can be reached through multiple program
paths leading to a number of possible cache states at that point. We have to model the probability of
each of these cache states. For this purpose, we introduce the notion of probabilistic cache states.

DEFINITION 4 (Probabilistic Cache States). A probabilistic cache state C is a 2-tuple:
⟨C,X⟩, where C ∈ 2Ω is a set of concrete cache states and X is a random variable. The sample
space of the random variable X is the set of all possible concrete cache states Ω. Given a concrete
cache state c, we define Pr[X = c] as the probability of the cache state c in C. If c /∈ C, then
Pr[X = c] = 0. By definition,

(∑
c∈Ω Pr[X = c]

)
= 1. Finally, we define a special probabilistic

cache state C⊥ denoting the empty cache state. That is C⊥ = ⟨{c⊥}, X⟩, where Pr[X = c⊥] = 1.

DEFINITION 5 (Cache Hit/Miss Probability). Given a probabilistic cache state C = ⟨C,X⟩
and a memory block m, the cache hit probability PHit(C,m) of memory access m is

PHit(C,m) =
∑

c∈C,hit(c,m)=1

Pr[X = c]

In other words, we add up the probability of all the concrete cache states c ∈ C that contain the
memory block m. The cache miss probability can now be defined as

PMiss(C,m) = 1− PHit(C,m)

DEFINITION 6 (Probabilistic Cache State Update). We define � as the probabilistic cache
state update operator. Given a probabilistic cache state C = ⟨C,X⟩ and an access to memory

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

block m ∈ M , C �m defines the updated probabilistic cache state.

C �m = C′ where C′ = ⟨C ′, X ′⟩
C ′ = {c ▹ m|c ∈ C}
Pr[X ′ = c′|c′ ∈ C ′] =

∑
c∈C,c′=c�m

Pr[X = c]

For example, in Figure 2, the probabilistic cache state at the end of basic block B4 (starting with
empty cache state) consists of two concrete cache states with equal probability 0.5. The cache miss
probability of memory blocks m1–m3 in this probabilistic cache state is 0.5 whereas the miss
probability of m0 and m4 are 0.

4.3. Static Cache Analysis
In this subsection, we first describe cache analysis for a loop in isolation, i.e., we assume an empty
cache state at the loop entry point. Subsequently, we will extend this analysis to the whole program.
We consider the control flow graph (CFG) to be a directed acyclic graph (DAG), representing the
body of the loop. We first perform the analysis on the DAG to model cache behavior for a single
iteration of a loop. This will be followed by probabilistic cache state modeling across iterations.

4.3.1. Analysis of DAG. Let Cin
B and Cout

B be the incoming and outgoing probabilistic cache states
of a basic block B. Similarly, Cin

L and Cout
L denote the incoming and outgoing probabilistic cache

states of a loop L. Let start and end be the unique start and end basic blocks of the DAG corre-
sponding to the loop body. Then Cin

L = Cin
start and Cout

L = Cout
end. As we are analyzing the loop in

isolation at this point, Cin
L = C⊥. We relax this constraint in the next section.

Let genB = ⟨m1, . . . ,mk⟩ be the sequence of memory blocks accessed within a basic block B.
Then

Cout
B = Cin

B �m1 � . . .�mk (2)
That is, the outgoing probabilistic cache state of a basic block can be derived by repeatedly updating
the incoming probabilistic cache state with the memory accesses in B. Now in order to generate the
incoming cache state of B from its predecessor cache states, we need to define the following new
operator.

DEFINITION 7 (Probabilistic Cache States Merging). We define
⊕

as the merging operator
for probabilistic cache states. It takes in n probabilistic cache states Ci = ⟨Ci, Xi⟩ and a corre-
sponding weight function w as input s.t.

∑n
i=1 w(Ci) = 1. It produces a merged probabilistic cache

state C as follows. ⊕
(C1, . . . , Cn, w) = C where C = ⟨C,X⟩, C =

n∪
i=1

Ci,

Pr[X = c|c ∈ C] =
∑

∀i,c∈Ci

Pr[Xi = c]× w(Ci)

In other words, the concrete states in C is the union of all the concrete cache states in C1, . . . , Cn.
The probability of a concrete cache state c ∈ C is a weighted summation of the probabilities of c in
the input probabilistic cache states.

Let in(B) define the set of predecessors basic blocks. Then, we can derive the incoming proba-
bilistic cache state of B by employing the merging operation

⊕
on the outgoing probabilistic cache

states of in(B). We define the weight function w as w(Cout
B′) = f(B′ → B), where B′ ∈ in(B) is

a predecessor of block B. Then given in(B) = {B′, B′′, . . .}

Cin
B =

⊕
(Cout

B′ , Cout
B′′ , . . . , w) (3)

Figure 2 shows the merging operator at the input of B4. There are two probabilistic cache states
Cout
B2 and Cout

B3 at the entry of B4. As the two incoming edges to B4 have equal probability, the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

resulting probabilistic cache state at the entry of B4 contains Cout
B2 and Cout

B3 with equal probability.
The output probabilistic cache state Cout

B4 is obtained by updating input probabilistic cache state Cin
B4

with memory block m4 inside B4.

4.3.2. Hit Rate Computation.. Recall that genB = ⟨m1, . . . ,mk⟩ is the sequence of memory
blocks accessed within a basic block B. Now let us define k random variables Y1, . . . , Yk corre-
sponding to the memory blocks m1, . . . ,mk in genB . Yi denotes the cache hit/miss event for the
access of memory block mi. Now Yi can be modeled as a random variable with Bernoulli distribu-
tion by assuming Yi = 1 if mi is a cache miss and Yi = 0 otherwise.

Pr[Y1 = 1] = PMiss(Cin
B ,m1)

Pr[Yi = 1] = PMiss(Cin
B �m1 . . .�mi−1,mi), 1 < i ≤ k

Pr[Yi = 0] = 1− Pr[Yi = 1], 1 ≤ i ≤ k

By definition of Bernoulli distribution, the hit rate of memory block mi can be computed as Pr[Yi =
1].

4.3.3. Analysis of Loop. In the previous section, we have derived the incoming and outgoing
probabilistic cache states of each basic block for a single iteration of the loop body starting with
the empty cache state Cin

L = C⊥. However, for a loop iterating multiple times, the input cache state
at the start node of the loop body is different for each iteration. More concretely, let us add the
subscript ⟨n⟩ for the nth iteration of the loop. Then Cin

start⟨n⟩ = Cout
end⟨n−1⟩ for n > 1. However, in

order to compute Cin
start⟨1⟩, . . . , C

in
start⟨N⟩, where N is the loop bound, we do not need to traverse

the DAG N times. Instead, we introduce two new operators.

DEFINITION 8 (Concatenation of Concrete Cache States). Given two concrete cache states
c1, c2

c1 ⊙ c2 = c where c = c1 � c2[A] . . .� c2[1]

DEFINITION 9 (Concatenation of Probabilistic Cache States). Given probabilistic cache
states C1 = ⟨C1, X1⟩ and C2 = ⟨C2, X2⟩

C1
⊙

C2 = C where C = ⟨C,X⟩
C = {c|c = c1 ⊙ c2, c1 ∈ C1, c2 ∈ C2}
Pr[X = c] =

∑
c1∈C1,c2∈C2,c=c1⊙c2

(Pr[X1 = c1]× Pr[X2 = c2])

Let us assume the execution of two program fragments sequentially each starting with an empty
cache state. The probabilistic cache state after the execution of the first and second program frag-
ments are C1 and C2, respectively. Then the probabilistic cache state after execution of the two
program fragments sequentially is C1

⊙
C2.

Now we can compute the outgoing probabilistic cache state of a loop L for each iteration by
applying the

⊙
operator. First, we note that Cin

start⟨1⟩ = Cin
L = C⊥. Then for iteration n > 1

Cin
start⟨n⟩ = Cout

end⟨n−1⟩
Cout
end⟨n⟩ = Cin

start⟨n⟩
⊙

Cout
end⟨1⟩

(4)

The final probabilistic cache state after N iterations starting with empty cache state Cin
L = C⊥, is

denoted as Cgen
L where

Cgen
L = Cout

end⟨N⟩ (5)

The hit/miss of memory blocks in basic block B is dependent on the input probabilistic cache state
Cin
B of the corresponding basic block B, which in turn is dependent on Cin

start⟨n⟩ of the loop L. To
compute these probabilities for each memory block in each iteration is computationally expensive

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

A
C

A
C

in
C

avg
Cstart

C LC 2

g

LC 2
start

LC 2
=

in

LC 1

avg

LC 1A
C

start

LC 1 =

in

LC 1
L2L2 L2

L1

L1

][22

avg

L

gen

L CC
L2

L1L1

L2 L2

L1],[22 LL CC L1

],[11

avg

L

gen

L CC

out
C in

C
gen

C

],[11 LL

],[11

avg

L

gen

L CC
out

LC 1
in

LC 1

gen

LC 1=

(a) Inner loop analysis (b) Outer loop analysis (c) Whole program analysis

Fig. 3. Analysis of whole program.

and is equivalent to complete loop unrolling. Instead, we observe that we only need to compute an
“average” probabilistic cache state Cavg

L at the start node of the loop body. This captures the input
cache state of the loop over N iterations.
Cavg
L can be defined as

Cavg
L =

⊕
(Cin

start⟨1⟩, . . . , C
in
start⟨N⟩, w) (6)

where w(Cin
start⟨n⟩) =

1
N . Now, in Section 4.3.1, we simply replace Cin

start = C⊥ with Cin
start = Cavg

L .
The rest of the analysis for the DAG remains unchanged.

More importantly, for any cache configuration, the operator
⊙

need not be invoked N times in
practice. The probabilistic cache states converge very quickly for most loops. After convergence
point, both the content of probabilistic cache state and its associated probability do not change.

4.3.4. Special case for Direct Mapped Cache. The computation of Cavg
L and Cgen

L , as discussed
earlier, is quite general and works for fully associative, set-associative, as well as direct mapped
caches. However, for direct mapped caches (where A = 1), the computation of average probabilistic
cache state is much simpler. As mentioned earlier, in a direct mapped cache with K cache sets, each
cache set is treated independently. Let Mi denote the set of all the memory blocks that can map to
the ith cache set. Then, a concrete cache state c corresponding to the ith cache set is a vector ⟨c[1]⟩
of length 1, where c[1] ∈ Mi ∪ {⊥}.

As before, we assume Cin
L = C⊥ and let Cout

end⟨n⟩ = ⟨C⟨n⟩, X⟨n⟩⟩ for 1 ≤ n ≤ N be the outgoing
cache state after nth iteration. It is easy to see that if associativity A = 1, then given any two
iterations n, n′ where n ̸= n′, the set of concrete cache states remain unchanged, i.e., C⟨n⟩ =
C⟨n′⟩. Moreover, if c⊥ /∈ C⟨n⟩, then the probability distribution function remains unchanged across
iterations as well. That is, Pr[X⟨n⟩ = c] = Pr[X⟨n′⟩ = c] for any concrete cache state c. If
c⊥ ∈ C⟨n⟩, then the probability distribution function changes across iterations. Let us assume that
the concrete cache state c ∈ C⟨n⟩ contains the memory block m ∈ Mi. That is, c[1] = m. Also, let
p be the probability of this cache state after first iteration, i.e., Pr[X⟨1⟩ = c] = p. Similarly, let q
be the probability of the empty cache state after first iteration, i.e., Pr[X⟨1⟩ = c⊥] = q. Now what
is the probability of cache state c after n iterations? It is the summation of (1) the probability of the
corresponding memory block m being accessed in nth iteration, and (2) the probability of cache
state c after n− 1 iterations and no memory block being access in nth iteration. Thus

Pr[X⟨n⟩ = c] = p+ q × Pr[X⟨n−1⟩ = c] (7)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

By solving this recursion with the base case Pr[X⟨1⟩ = c] = p,

Pr[X⟨N⟩ = c] = p · 1−qN

1−q
N−1∑
n=1

Pr[X⟨n⟩ = c] = p · (N − 1)(1− q)− q(1− qN−1)

(1− q)2

For c⊥, it is in cache after n iterations if no memory block is accessed in the previous n iterations,
therefore the following equations hold

Pr[X⟨N⟩ = c⊥] = qN

N−1∑
n=1

Pr[X⟨n⟩ = c⊥] =
q · (1− qN−1)

1− q

Cavg
L is defined as the the average input probabilistic cache state at loop entry. Thus, based on

Equation 6 and 4, the average probabilistic cache state at loop entry Cavg
L = ⟨C,X⟩ can be com-

puted as follows with Cin
L = C⊥

C = C⟨1⟩

Pr[X = c] = 1
N

(
Pr[X⟨1⟩ = c] + . . .+ Pr[X⟨N−1⟩ = c

)
= p

N · (N−1)(1−q)−q(1−qN−1)
(1−q)2

Pr[X = c⊥] = 1
N (1 + Pr[X⟨1⟩ = c⊥] + . . .

+Pr[X⟨N−1⟩ = c⊥]) =
1−qN

N ·(1−q)

The final probabilistic cache state after N iterations starting with empty cache state Cin
L = C⊥,

Cgen
L is

C = C⟨1⟩

Pr[X = c] = Pr[X⟨N⟩ = c] = p · 1− qN

1− q

Pr[X = c⊥] = Pr[X⟨N⟩ = c⊥] = qN

4.3.5. Analysis of Whole Program. So far we have assumed that the execution of a loop starts
with an empty cache state. In this section, we show how to compute the probabilistic cache state
in the context the whole program. Recall that Cgen

L represents the final cache state of loop L after
N iterations starting with an empty cache state. Also, we use Cavg

L to denote the average proba-
bilistic cache state at loop entry across N iterations, again assuming that the loop L is executing
in isolation. If Cin

L is the initial cache state for loop L in the context of the whole program, then
the average probabilistic cache state of a basic block in loop L is computed by simply starting with
the cache state Cin

L

⊙
Cavg
L . The analysis of the whole program then requires computing the initial

probabilistic cache states for all the loops and procedures in the program.
In order to compute the initial cache states, we construct the loop-procedure hierarchy graph

(LPHG) for the whole program. The LPHG represents the procedure call and loop nest relations in
the application. We first traverse the LPHG in bottom-up fashion, i.e., we start with the innermost
loops/procedures and compute Cgen

L and Cavg
L for all such loops/procedures as shown in Figure 3(a).

Next, we replace the innermost loops/procedures with “dummy” nodes in the DAG of the enclosing
loop/procedure. While traversing the DAG of the enclosing loop/procedure, special care is taken
for the dummy nodes. Let Cin

L be the input cache state for dummy node L during traversal of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

11(00) 00(00) C2
L(2)

Set no

00
11(00) 10(01) 01(10) 10(11)

10(01)

01(10) 00(10)

10(11)

01

10

11

00(00) 00(10)

10(11)11
110(0)

011(0)

100(1)

101(1)C1
L(2)

1 2

011(0)

000(0) 001(0)

101(1)

110(0) 011(0)

100(1) 101(1)

0

1

C1 (2)

1001
C0

L(2)

1 2

1100

0110 1011

1001 1100

1 2

0000 0010

(a) Cache content (b) General Binomial Forest Construction

associativity

Memory trace 0000,0010,0110,1011,1100,1001

() ()

Fig. 4. Cache content and construction of generalized binomial forest. Memory blocks are represented by tags
and set number, for example, for memory block 11(00), 00 denotes the set and 11 is the tag.

DAG. Then we treat the dummy node as a black box and compute the output cache state of the
dummy node as Cout

L = Cin
L

⊙
Cgen
L as shown in Figure 3(b). At the end of this bottom-up traversal

process, we reach the root node (main procedure). We have already computed Cgen
L and Cavg

L for
all loops/procedures. Now we perform a top-down traversal to compute the cache state at each basic
block in the context of the whole program. Suppose L is a dummy node in main with input cache
state Cin

L and start node start. Then we traverse the DAG of L starting with Cin
start = Cin

L

⊙
Cavg
L

as shown in Figure 3(c) and compute the probabilistic cache state at each node of the DAG. This
top-down process continues till we reach all the innermost loops. At this point, we have computed
the “average” probabilistic cache state for each basic block in the context of the whole program.

5. CACHE MODELING FOR MULTIPLE CONFIGURATIONS
Although the cache modeling we propose in section 4 can estimate the cache hit rate of a pro-
gram for a specific configuration, it does not solve the problem of design space exploration due to
vast number of cache configurations in the cache design space. Fortunately, there exist structural
relations among the related cache configuration [Sugumar and Abraham 1995]. Based on this ob-
servation, in this section, we extend our analytical approach to model multiple cache configurations
in one pass by utilizing the structural relations among related cache configurations. To exploit the
structural relations among related cache configurations, we rely on Generalized Binomial Tree
(GBT) [Sugumar and Abraham 1995] data structure. However, as a program point can be reached
from different contexts, we may have a number of GBTs, each associated with the probability of
the corresponding context. Therefore, we propose probabilistic GBT to capture the cache states cor-
responding to all cache configurations and all contexts at any program point. Cache state operators
such as update and concatenation are extended for probabilistic GBT. As for the underlying static
program analysis, it almost remains the same as that of single configuration. Thus, we can derive
the probabilistic GBT at each point of the program as before. Now, given a probabilistic GBT, we
can easily estimate the cache hit rate of a memory access and entire program for all possible cache
configurations. However, maintaining these probabilistic GBTs and operating on them can become
space and time inefficient as the number of contexts increases. Therefore, we propose a number of
optimizations for space and time efficiency.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

1001 1001 1100Level 02

1100
0110

1011

Level 1

2

10110110 0000

0101

0010

Level 21 1

0010 0101 11110000
0010

1111

GBT Array

0 0 0 0

GBT Array

Fig. 5. Mapping from GBT to array. The nodes in GBT are annotated with their ranks.

5.1. Generalized Binomial Tree (GBT)
To exploit the inclusion property among related cache configurations, we rely on General Binomial
Forest (GBF) data structure. Let us explain the Generalized Binomial Forest GBF data structure
with an example. Let us recall that we consider LRU as the cache replacement policy. Figure 4(a)
shows, for the same memory address trace, the contents of six caches with number of sets = 1, 2, 4
and associativity = 1, 2. From the example, we observe that for the caches with the same associa-
tivity, the memory blocks in the cache with 2(1) sets are included in the cache with 4(2) sets. For
the caches with the same number of sets, the memory blocks in the cache with associativity 1 are
included in the cache with associativity 2.

GBF exploits the aforementioned inclusion property that holds between cache configurations. Let
us denote a set-associative cache with 2S sets, line size L, and associativity N as CL

S (N). A GBF
can represent a set of cache configurations {CL

S (n)|Smin ≤ S ≤ Smax;n ≤ N}, where 2Smin

(2Smax) is the minimum (maximum) number of sets among the group of cache configurations and
N is the maximal associativity.

A GBF consists of one or more Generalized Binomial Trees (GBT). A GBT can be defined
recursively as follows. A GBT of degree 0 is a list of length N and the elements in the list are
ordered according to LRU policy (i.e., the top element is the most recently accessed address, while
the bottom element is the least recently accessed address). A GBT of degree k is constructed by
linking two GBTs of degree k − 1 together, with the most recently accessed N references in either
root lists of the two GBTs as the new root list. By definition, a GBT of degree k has 2k ·N nodes.

Let us explain the construction of GBF based on the example shown in Figure 4. The GBF for the
cache configuration CL

2 (2) consists of 4 GBTs of degree 0 (one corresponding to each set). We use
⊥ to denote an empty cache block. The GBF for the cache configuration CL

1 (2) contains 2 GBTs
of degree 1 (one corresponding to each set). The GBT for a set s in CL

1 (2) is obtained by linking
two GBTs of CL

2 (2) that map to the set s. For example, the memory blocks in set 0 and 2 of CL
2 (2)

map to set 0 of CL
1 (2). They are merged together with the most recently accessed 2 references as

the new root. The merging is done similarly for set 1 in CL
1 (2). This process is continued until the

GBF for the cache configuration with the minimum number of sets CL
0 (2) is constructed. Now the

contents of all the cache configurations in the set {CL
S (n)|0 ≤ S ≤ 2;n ≤ 2} can be found in the

GBF for the cache configuration CL
0 (2). A detailed description of GBT as well as their search and

update procedure can be found in [Sugumar and Abraham 1995].

Array Implementation. We use an array based implementation of GBT [Sugumar and Abraham
1995]. Let us assume the degree of GBT as M . The GBT is implemented as a two-dimensional
array with 2M+1 − 1 rows and N columns. The rows are divided into M + 1 levels from 0 to M
and level k has 2k rows. As discussed before, a GBT of degree M has 2M · N nodes. Thus, array
implementation has about a factor of two redundancy.

Figure 5 shows an example of the array implementation of GBT, where M = 2 and N = 2.
Given a node t in the GBT, we use des(t) to denote the number of descendants (inclusive) of node
t. The rank of a node is defined as log(⌈des(t)

N ⌉). Memory block at a node of rank k maps to level

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

M − k and the row within the level is determined by the least significant M − k bits of the memory
block address. There are at most N memory blocks in the same row and they are arranged in the
order in which they have been accessed (i.e., the leftmost memory block is the most recently used,
while the rightmost memory block is the least recently used).

Given an incoming memory block address address, the search and update procedure of GBT
starts from the top level and only one row in each level is checked. The row examined in level k is
determined by the least significant k bits of address and the tag matches are done with the memory
blocks in that row. For example, in Figure 5, suppose we are searching for address 0101. We first
examine 1001 and 1100 in level 0. Then, in level 1, the address 0101 maps to row 1 and so 1011 is
examined. Finally, in level 2, the address 0101 maps to row 1 and it is found there.

Cache Hits Computation. A two dimension array hit is used for storing the cache hits for mul-
tiple cache configurations. Array hit will be updated if a memory block is cache hit, and the corre-
sponding entries will be increased by 1. However, hit[m][n] only stores the number of references
that hit in cache configuration CL

m(n) but miss in smaller caches CL
m(n′) where n′ < n. According

to the inclusion property related to associativity, the number of hits in CL
m(n) can be computed by

summing up the hits of itself and those from smaller caches as
∑n

i=1 hit[m][i].

5.2. Probabilistic GBT
We now describe the probabilistic cache modeling based on GBT. The multiple cache configurations
we support varying number of cache sets, degree of associativity and line size. In other words, we are
interested in the set of configurations {CL

S (n)|Smin ≤ S ≤ Smax;n ≤ N ;Lmin ≤ L ≤ Lmax},
where 2Smin (2Smax) is the minimum (maximum) number of cache sets, 2Lmin (2Lmax) is the
minimum (maximum) line size and N is the maximum associativity.

Assumptions. First, each GBF corresponds to the set of cache configurations with constant line
size but varying number of cache sets and associativity. In the following, we assume constant line
size (L). As for the cache configurations with more than one GBFs (i.e. different line size), each
GBF can be modeled independently. Second, for each GBF, we have 2Smin GBTs with degree
Smax − Smin in the GBF. However, one memory block maps to only one GBT based on its index
in CL

Smin
(N) (i.e. the least significant Smin bits). Thus, there is no interference among different

GBTs. Thus, we assume Smin = 0. In other words, there is only one GBT of degree Smax in the
GBF. For the configurations with more than one GBTs, each GBT can be modeled independently.

More concretely, in the following, we consider a GBT of degree M(Smax) and root list length as
N . To indicate the absence of any memory block in a cache line, we introduce a new element ⊥. We
use Ω to denote the set of all the possible GBTs of the program. We also introduce a special empty
GBT c⊥. At any program point, the GBT is determined by the program path taken before reaching
this program point. Usually a program point can be reached via multiple program paths leading to a
number of possible GBTs at that point. Thus, we introduce the notion of probabilistic GBT.

DEFINITION 10 (Probabilistic GBT). A probabilistic GBT C is a 2-tuple: ⟨C,X⟩, where C ∈
2Ω is a set of GBTs and X is a random variable. The sample space of the random variable X is Ω.
Given a GBT c, we define Pr[X = c] as the probability of c in C. If c /∈ C, then Pr[X = c] = 0.
By definition,

(∑
c∈Ω Pr[X = c]

)
= 1. Finally, we define a special probabilistic GBT C⊥ denoting

the empty probabilistic GBT. That is C⊥ = ⟨{c⊥}, X⟩, where Pr[X = c⊥] = 1.

Now, we use � to denote GBT search and update operator. Given a memory block m and a GBT
c, c � m returns the GBT after accessing m. Meanwhile, we redefine operator � as the search
and update operator of probabilistic GBT. Given a memory block m and a probabilistic GBT C =
⟨C,X⟩, � will update each GBT c ∈ C and C �m returns the updated probabilistic GBT. Also we
extend operator

⊕
in section 4.3 to merge multiple probabilistic GBT.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

100 011

memory trace

110, 111011, 100

array

111 110

memory trace array

c1 c2

memory trace array

100

011

111 110

c3

110, 111011, 100,

0113

c1 c2 c1 110 111 c3= =

Fig. 6. Concatenation for GBTs where M = 1 and N = 2.

5.2.1. Concatenation of Probabilistic GBTs. In this subsection, we introduce the concatenation of
probabilistic GBTs, which will be used later. We first define the operator ⊙ for the concatenation of
two GBTs in Algorithm 1.

Algorithm 1: Implementation of ⊙ operation
input : GBT c1 and c2
output: c = c1 ⊙ c2
c = c1;1
for lev ←M to 0 do2

Let T be the two dimension array at level lev in c2;3
foreach row ∈ T do4

for col← N to 1 do5
if T [row][col] ̸=⊥ then6

c = c� T [row][col] ;7
8
9

10
return c;11

In the array based implementation of GBT, c2 is a multilevel two-dimensional array. The con-
catenation is done by using the memory blocks in c2 from the bottom level to top level and from
right to left to update c1. In other words, the update is done from the least recently used to most
recently used memory blocks of c2. An example of GBT concatenation is shown in Figure 6. Let us
assume the GBT after the first and second memory traces are c1 and c2, respectively. Then the GBT
after accesses corresponding to the two memory traces sequentially is c1 ⊙ c2. Next, we extend the
concatenation operation to probabilistic GBTs.

DEFINITION 11 (Concatenation of Probabilistic GBTs). Given probabilistic GBTs C1 =
⟨C1, X1⟩ and C2 = ⟨C2, X2⟩

C1
⊙
C2 = C where C = ⟨C,X⟩

C = {c|c = c1 ⊙ c2, c1 ∈ C1, c2 ∈ C2}
Pr[X = c] =

∑
c1∈C1,c2∈C2,c=c1⊙c2

(Pr[X1 = c1]× Pr[X2 = c2])

Let us assume the execution of two program fragments sequentially each starting with an empty
GBT. The probabilistic GBT after the execution of the first and second program fragments are C1
and C2, respectively. Then the probabilistic GBT after execution of the two program fragments
sequentially is C1

⊙
C2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

(a) Combination of probabilistic GBT ! � XccC },,{ 21

100 011

110

100 011 100 011

+ =

Pr = 1

110101

Pr [X=c1] = 0.5

Pr = 0 5 Pr = 0 5

101

110

Pr [X=c2] = 0.5

Pr 0.5 Pr 0.5

100 011Pr = 1

(b) Probabilistic GBT concatenation and combination

100 011

C
Pr = 1

C =

110 110

101101

P 0 25 P 0 25 P 0 5Pr = 0.25 Pr = 0.25 Pr = 0.5

Fig. 7. Probabilistic GBT combination and concatenation.

5.2.2. Combining GBTs in a Probabilistic GBT. A program path can be specified by the basic
block sequence. Although multiple paths could reach a program point, they probably traverse some
common basic block subsequence. Thus, the set of GBTs in a probabilistic GBT can include some
identical memory blocks. By combining the similar GBTs together, we can reduce the space re-
quirement of probabilistic GBTs. More importantly, the search and update of probabilistic GBTs
will be much faster.

In the array based implementation, GBT is divided into M + 1 levels. We combine the GBTs
level by level from top to bottom. More concretely, given two GBTs, if the content of the top
k (k ≤ M + 1) levels are identical, then they are combined together to have only one copy of the
top k levels as shown in Figure 7(a). Also as the GBTs are combined together, the probabilities are
now associated with each level rather than with the GBTs.

It is possible to perform combination at finer granularity, for example, using rows rather than
levels. However, the complexity of the combination process increases considerably leading to slower
implementation. It is also possible that two GBTs are different at the top levels, but they are identical
at the bottom levels. We choose not to perform combination for such GBTs. This is because, as the
probabilistic GBT is updated, the contents from the upper levels move to the lower levels. Thus the
commonality among the GBTs are lost and they have to be split again. It is far more efficient to
combine GBTs only if they are identical at the top levels.

The implementation of a combined GBT can be viewed as a tree with the sub-arrays (levels)
of the original GBTs as nodes (see Figure 7(a)). The sub-array corresponding to the common top
levels 0 − k is the root node of this tree. Level k, however, has multiple children at level k + 1.
Now the search and update of probabilistic GBTs become more efficient. Consider a memory block
m that is present somewhere in the top k levels. Without combination, m will be searched in all
the original GBTs; now it will be searched only once in the combined GBT. For example, in Figure
7(a), before combination, the reference to memory block 100 is searched in both c1 and c2. With
combined GBT, it is only searched once. In Figure 7(b), we show the combined probabilistic GBT
after concatenation operation.

5.2.3. Bounding the size of Probabilistic GBT. We observe that, in a probabilistic GBT, some of
the constituent GBTs have very low probabilities. That is, these GBTs correspond to rare program
paths. Based on this observation, we prune some of the GBTs for space and time efficiency.

We define the metric dist for pruning. Consider a combined GBT with two nodes at level k.
Each node is a two dimension array with 2k rows and N columns. Given two such nodes n1, n2 at
the same level, we define d(n1, n2) as the measure of the distance between them. It is defined as
a function of the number of different memory blocks between them. But higher priority is given to
the more recently used memory blocks as shown in Equation 8.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Level k

Pr[m] < Te
+ P []

Level k+1
+ Pr[m]

m
1

m

Level k+2

Fig. 8. Pruning in probabilistic GBT.

dist(n1, n2) =
∑
∀i,j

{
N − j + 1, if n1[i][j] ̸= n2[i][j]
0 otherwise (8)

We apply two merging strategies. First, if the probability of a node n is too small (< Te), then the
subtree rooted at n is pruned. But its probability is added to the subtree rooted at the closest sibling
of n (the closest is defined by the dist metric). Second, if the number of children of a node exceeds a
pre-defined limit Z, then Z children with highest probability are kept and the subtrees rooted at the
rest of the children are pruned. As before, the probability of each pruned child is added to its closest
surviving sibling defined by the dist metric. The pruning process continues from top to bottom. As
shown in Figure 8, the subtree rooted at m (including m) is pruned because its probability is too
small. However, its probability is added to the subtree rooted at m1, which is the closest sibling of
m. Similar pruning strategy can be applied across independent or merged GBTs in a probabilistic
GBT. In practice, we set Te to 10−6 and Z to 4.

5.2.4. Cache Hit Rate of a Memory Block. Recall that in section 5.1, if a memory block m results
in a cache hit, the corresponding entries in the array hit are incremented by 1. However, in our
probabilistic cache modeling, we get a cache hit probability by looking up the probabilistic GBT.
The hit probability is simply the sum of the probabilities of all the nodes where m can be found in
the probabilistic GBT. Now we add this hit probability to the hit array. For memory block m, we
can get its hit rate Hm for different cache configurations if the probabilistic GBT at that program
point is known. Then the cache hit rate of the whole program can be derived from Equation 1. Now
we present our static analysis method to derive the probabilistic GBTs at every program point.

5.3. Static Cache Analysis
The static cache analysis remains almost the same as the one presented in section 4.3. All the prob-
abilistic cache state operators such as update, merging, concatenation have been extended for prob-
abilistic GBT. The analysis for DAG and loop iterations, and the whole program are not changed.

More importantly, the operator
⊙

need not be invoked N times in practice as the probabilistic
GBTs across iterations may converge. After convergence point, the size and content of the prob-
abilistic GBT as well as the probability of each GBT in the probabilistic GBT do not change. In
practice, we relax the convergence constraint. If the difference of probabilities between every pair
of identical GBTs in Cout

end⟨n⟩ and Cout
end⟨n+1⟩ are within Te, we declare convergence. Experimen-

tal results confirm that convergence is reached quickly for most of the loops in all the benchmark
programs. In the worst case, concatenation operations is terminated at a pre-defined threshold of
MaxN iterations. The average probabilistic GBT across these MaxN iterations is used as an ap-
proximation of the average probabilistic GBT across NL iterations. In practice, we set MaxN to
100 and Te to 10−6.

6. EXPERIMENTAL EVALUATION
In this section, we will first evaluate our analytical approach for cache design space exploration in
terms of accuracy and efficiency. Then, we present how to use our approach for exploring design

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Table I. Embedded benchmark characteristics

Benchmark Trace Size (MB) Time(sec) Speedup
Trace1 Trace2 Prof Trace Dinero Cheetah Estimation Dinero Cheetah

bitcount 3583 1700 17.04 314.99 15569 198.15 0.091 171,096 2, 177
dijkstra 4700 2000 9.05 437.11 15380 235.07 0.094 163,625 2, 500

adpcmdec 791 1215 3.22 76.85 4415 42.14 0.265 16,661 159
adpcmenc 961 1261 4.10 94.01 4352 52.19 0.100 43,522 521

sha 706 622 0.69 65.14 3181 24.54 0.170 18,714 144
rijndael 1600 1400 0.99 136.07 23590 153.09 0.122 193,360 1,254
susans 4206 1400 5.70 392.49 15603 204.07 0.306 50,990 666
susanc 519 896 0.25 83.43 7878 74.55 0.747 10,546 99

gsmenc 2089 469 2.01 215.04 18749 174.16 1.757 10,671 99
gsmdec 1800 1400 8.29 154.51 14556 112.66 1.627 8,946 69

Table II. SPEC benchmark characteristics

Benchmark Trace Size (MB) Time(sec) Speedup
Prof Trace Dinero Cheetah Estimation Dinero Cheetah

swim 2600 1 854 19880 108.62 0.882 22539 123
mgrid 3040 0.125 127 21910 110.15 3.891 5630 28

equake 6500 1.549 563 49245 136.25 3.685 13363 36
applu 4338 0.662 298 32886 175.69 5.189 6337 33

tradeoffs between performance and energy. Finally, we compare our approach with a state-of-the-art
cache design space exploration technique [Zhang and Vahid 2003].

6.1. Experiments Setup
We try a set of embedded applications from MiBench benchmark suite [Guthaus et al. 2001] and
larger general-purpose applications from SPEC2000. The details of the benchmarks are shown in
Table I and Table II, respectively. We compare the accuracy and efficiency of our approach with
trace-driven simulator Dinero [Edler and Hill] and Cheetah [Sugumar and Abraham 1995]. Dinero
is a widely used trace-driven cache simulator, but it can only simulate one cache configuration at one
time. Thus, it has to be invoked for each cache configuration in the design space. On the other hand,
Cheetah is the fastest known cache simulator, which can simulate multiple cache configurations in
a single pass. Both Dinero and Cheetah are simulators that can produce exact cache hit/miss count;
but they are different in terms of running time.

We use Simplescalar toolset [Austin et al. 2002] for the experiments. We instrument sim-profile,
a functional simulator, to collect the execution count of basic blocks and control flow edges for
our analysis. The time spent in our instrumentation is shown in column Prof in Table I and II. We
also change sim-profile to output the execution trace for trace-driven simulators and the overhead
for trace generation is shown in column Trace. As shown, our profiling overhead is relatively small
thanks to the efficient edge profiling [Ball 1994]. For embedded benchmark applications, we pro-
vide two inputs (Trace1 and Trace2) to evaluate the robustness of our analysis against different
inputs. Column Trace Size shows the corresponding trace size. As shown, the trace size can be quite
large even for small inputs. The input to our analysis is just the basic block and control flow edge
execution profile, whose size is so small that it can be ignored.

Given the program executable and execution profile, our analysis first disassembles the executable
to construct CFG and LPHG, and then proceeds with the cache hit estimation. We perform all the
experiments on a 3GHz Pentium 4 CPU with 2GB memory.

6.2. Accuracy
For each benchmark, we compare the estimated cache hit rate returned by our technique and the ex-
act hit rate returned by simulation. We evaluate the embedded and SPEC benchmarks using different
cache sizes as they have different working set sizes.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

adpcmdec (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

adpcmenc (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

sha (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

bitcount (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

dijkstra (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

rijndael (bsize: 16)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

susans (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

susanc (bsize: 16)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

gsmenc (bsize: 16)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

gsmdec (bsize: 16)

estimation

simulation

Fig. 9. Estimation vs simulation for embedded applications. bsize represents the cache block/line size.

For each embedded benchmark application, we vary the number of cache sets (4, 8, 16, 32, 64),
associativity (1, 2, 4, 8), and block size (8, 16, 32 bytes). That is, a total of 60 configurations are
estimated and simulated. The cache size in the design space ranges from 32 bytes to 16K. Figure 9
shows the results of simulation and estimation across 20 configurations (varying cache sets and
associativity but with constant line size).

For each SPEC benchmark application, we vary the number of cache sets (16, 32, 64, 128, 256),
associativity (1, 2, 4, 8), and block size (8, 16, 32 bytes). There are 60 configurations in the design
space, which covers a wide range of caches from 128 bytes to 64K. Figure 10 shows the results of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

applu (bsize: 16)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

equake (bsize: 8)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

mgrid (bsize: 16)

estimation

simulation

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

swim (bsize: 8)

estimation

simulation

Fig. 10. Estimation vs simulation for SPEC applications. bsize represents the cache block/line size.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

E
r
r
o

r

Fig. 11. Average estimation error.

simulation and estimation across 20 configurations (varying cache sets and associativity but with
constant line size).

In Figure 9 and 10, the horizontal axis represents the selected 20 configurations, where a × b
represents the cache with a cache sets and b associativity. As shown, the estimation results from
our analysis track the simulation results quite closely for both the embedded and SPEC applications
(most of them are almost the same). Figure 9 and 10 show the results of 20 configurations. Only
20 configurations are shown but similar accuracy has been observed for other line sizes. We define
the estimation error as |est − sim|, where est(sim) is the estimated (simulated) cache hit rate.
The average error across 60 configurations for each benchmark is shown in Figure 11. For all the
benchmarks and configurations, we achieve high accuracy (average error 0.2%).

In the above experiments, the estimation is based on the profile (basic block and control flow
edges execution count) of one input. Then, the simulation results are collected using the same input
as estimation. Here, we evaluate the sensitivity of our analysis across different inputs for the embed-
ded applications (Trace1 and Trace2 in Table I). More clearly, we use the profile of one input and
estimate its cache hit rate. Then, we compare it with the simulation result of another input. Over-
all, for all the benchmarks and cache configurations, our analysis is still accurate (0.5% average
error). We achieve high accuracy because different inputs stay stable in terms of control flow edge
probability. Thus, our derived probabilistic cache states are still accurate.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

6.3. Efficiency
Recall that in section 5.3, we mentioned that the concatenation operator does not need to be invoked
N (loop bound) times, because the probabilistic GBTs could converge. Here, we support this claim
by concrete experimental results. Figure 12 shows the distribution of the number of iterations that
the cache sets take to converge. Almost 80% of the cache sets converge after the second iteration
for all the loops in all our benchmarks.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

C
a

c
h

e
S

e
t

P
er

ce
n

ta
g

e

Loop Iterations

Cache Set Convergence

Fig. 12. Cache set convergence.

The runtime comparison between simulation and our analytical approach is shown in Table I
and II.For simulation, both Dinero and Cheetah running time are shown. We first observe that
compared to Dinero, Cheetah is much more efficient as it exploits the inclusion property among
related cache configurations. The instrumentation overhead for basic block and control flow edge
execution count collection required by our analysis is shown in column Prof. As for trace-driven
techniques, the trace generation overhead is shown in column Trace. Both the instrumentation and
trace generation need to be done only once, as the basic block execution profile and execution trace
remain unchanged across different cache configurations. However, our analysis and simulation can
be invoked multiple times for different set of cache configurations. Thus, we do not include the
instrumentation or trace generation overhead for speedup calculation. The runtime of our analysis
is shown in column Estimation and the speedup of our analysis over both Dinero and Cheetah are
shown in Table I and II. Overall, our analysis is much faster than simulation. Compared to the fastest
simulator Cheetah, our analysis is shown to be significantly faster (28 - 2,500X).

6.4. Performance and Energy Tradeoff
In the previous section, we have shown that our cache modeling is accurate in terms of cache

hits/misses estimation. In this section, we aim to optimize the performance and energy consumption
of the memory hierarchy using our analysis. It is very important to evaluate the design tradeoff
between performance and energy consumption for various cache configurations. First, high cache
hit rate does not always guarantee better performance as complex caches (large block size) have
significantly longer access times. Furthermore, the energy per access of large and high associativity
caches are greater than that of small and low associativity caches [Steven and Norman 1996]. Thus,
large and high associativity cache may improve the performance at the expense of more energy
consumption.

Performance and Energy Model. As for the cache access latency, we assume 1 cycle latency
for cache hit. The main memory access is considered to be pipelined. The first access to main
memory is 100 cycles, while the subsequent accesses take 2 cycles each. We utilize the energy
model from [Zhang et al. 2003] which accurately models the energy consumption of the memory
hierarchy. The energy model includes both dynamic and static energy consumption. The dynamic
energy consumption is computed as follows

energy dynamic = cache hit× energy hit+ cache miss× energy miss

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

where cache hit(cache miss) are the number cache hits/misses and energy hit(energy miss)
are the energy consumption per cache hit or miss. We determine energy hit of different cache
configurations using the CACTI [Steven and Norman 1996] model for 0.13µm technology. The
energy miss includes the energy of off-chip memory access, cache block filling and processor
stall [Zhang et al. 2003]. The cache hit(cache miss) can be obtained by simulation or our analysis.
Finally, each design point represents a cache configuration (number of cache sets, associativity, and
block size) and it is associated with two numbers — performance and energy consumption.

Pareto-optimal Points. The entire cache design space (total 60 configurations) is explored via
both simulation and estimation (our analytical modeling). The entire design space for both simula-
tion and estimation are shown in Figure 13. Only the embedded applications are shown but similar
accuracy has been observed for SPEC applications. As shown, our estimation is close to simulation
results in terms of both individual points and entire design space.

In the large cache design space, we are only interested in the pareto-optimal points. Each pareto-
optimal point represents a cache configuration. We now proceed to qualitatively evaluate the quality
of the pareto-optimal points generated through simulation and our analysis. For each pareto-optimal
point generated by either method, we additionally perform detailed simulation to obtain highly
accurate performance and energy numbers using Wattch [Brooks et al. 2000]. Wattch is a micro-
architecture level energy/performance simulator [Brooks et al. 2000]. However, Wattch does not
model the energy consumption of memory. We extend it to include the energy consumption of
memory component. We consider an in-order issue processor. Our focus is instruction cache, so we
disable the data cache component in the Wattch simulator.

Now, we have two sets of pareto-optimal points — one from simulation and the other one from
estimation. To compare these two sets of pareto-optimal points, we rely on the metric in [Zitzler
et al. 2000]. Let X ′, X ′′ be two sets of pareto-optimal points,

C(X ′, X ′′) =
|{a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ≼ a′′}|

|X ′′|

where a′ ≼ a′′ means a′ covers (dominate or equal) a′′. C(X ′, X ′′) is in interval [0, 1], where
C(X ′, X ′′) = 1 means that all solutions in X ′′ are covered by solutions in X ′; C(X ′, X ′′) = 0
means that none of the solutions in X ′′ are covered by the set X ′. Let sim, est be the two sets
of pareto-optimal points for simulation and estimation, respectively. Then, we are interested in
C[est, sim]. For all the benchmarks, C[est, sim] = 1. In other words, all the exact solutions (cache
configurations returned via simulation) are covered by the solutions returned by our analysis.

Overall, our analysis can be employed in the early design stage. It can help the embedded sys-
tem designers to accurately and efficiently explore the large cache design space to identify the cache
configurations that optimize certain objectives, such as performance, energy consumption, or a com-
bination of the two.

6.5. Comparison with Zhang-Vahid Method
In this section, we compare our technique with Zhang-Vahid method [Zhang and Vahid 2003] —
a state-of-the-art cache design space exploration technique. Zhang-Vahid method is a hybrid ap-
proach, which uses heuristics to prune the cache design space but still needs multiple rounds of
simulations to obtain the cache hits/misses for the selected cache configurations. In [Zhang and
Vahid 2003], Zhang and Vahid demonstrated that their method can be used for searching the de-
sign points with the best energy consumption, best performance, and the pareto-optimal points in
between. In the following, we first compare our technique with Zhang-Vahid method in terms of
energy optimization. Then, we compare the two approaches for other design objectives.

When searching for the best configuration (cache size, line size and associativity) in terms of
energy consumption, Zhang-Vahid method holds two parameters steady and vary the third one. The
search depends on the impact of the varied parameters on miss rates and energy consumptions. In

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for adpcmd

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for bitcount

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for adpcmc

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 1e+006

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for susanc

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 10

 100

 1000

 10000

 10 100 1000 10000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for sha

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for rijndael

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for susans

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for dijkstra

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for gsmdec

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

 100

 1000

 10000

 100000

 100 1000 10000 100000

E
n

e
rg

y
 (

m
J
)

Performance (million cycles)

Design space for gsmenc

Simulation Design Points
Estimation Design Points
Simulation Pareto Points
Estimation Pareto Points

Fig. 13. Performance-energy design space and pareto-optimal points for both simulation and estimation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

Table III. Comparison with Zhang-Vahid method. (2048, 64, 1) represents the 2048 bytes cache with 64 bytes line
size and 1-way associativity.

Benchmark Zhang-Vahid Ours Optimal Speedup
run-time(sec) Configuration run-time(sec) Configuration Configuration

bitcount 667 (2048, 64, 1) 0.15 (2048, 64, 1) (2048, 64, 1) 4,446
dijkstra 659 (2048, 64, 1) 0.314 (2048, 64, 1) (2048, 64, 1) 2,098

adpcmdec 189 (2048, 64, 1) 0.145 (2048, 64, 1) (2048, 64, 1) 1,303
adpcmenc 186 (2048, 64, 1) 0.023 (2048, 64, 1) (2048, 64, 1) 8,086

sha 136 (2048, 64, 1) 0.248 (2048, 64, 1) (2048, 64, 1) 548
rijndael 1011 (2048, 64, 1) 0.214 (8192, 64, 1) (8192, 64, 1) 4,724
susans 668 (2048, 64, 1) 0.682 (2048, 64, 1) (2048, 64, 1) 979
susanc 450 (8192, 64, 1) 1.811 (8192, 64, 1) (8192, 64, 1) 248

gsmenc 1071 (4096, 64, 1) 3.487 (4096, 64, 1) (4096, 64, 1) 307
gsmdec 831 (8192, 64, 1) 2.731 (4096, 64, 1) (4096, 64, 1) 304

their method, cache size is considered to be the most important parameter, followed by line size,
and finally associativity. Zhang-Vahid heuristic is summarized as follows:

(1) Begin with the smallest size of cache (direct-mapped, smallest line size). If the increase in cache
size (doubling the cache size) yields energy improvement, continue to increase the cache size
until the limit. Finally, the best cache size with the best energy is chosen.

(2) For the best cache size determined by Step (1), if the increase in line size (doubling the line
size) yields energy improvement, continue to increase the line size until the limit. Finally, the
line size with the best energy is chosen.

(3) For the best cache size determined by Step (1) and the best line size determined by Step (2), if
the increase in associativity (doubling the associaitivity) yields energy improvement, continue
to increase the associativity until the limit. Finally, the associativity with the best energy is
chosen.

Cache size, line size, and associativity are always a power to two. Thus, the search process moves
to the next point by doubling the parameter value. In Zhang-Vahid method, to compare two con-
figurations, simulations are required to obtain the cache hits/misses for both configurations. They
use the cache simulator in SimpleScalar [Austin et al. 2002] for this purpose. In our experiments,
we use trace-driven simulation Dinero as trace-driven cache simulator is faster than the functional
cache simulator in SimpleScalar. Then, the cache hits/misses are fed into energy model to derive the
energy consumption. For energy model, we use the model in Section 6.4, which is exactly the same
energy model used by Zhang and Vahid [Zhang and Vahid 2003].

We explore the same cache design space used by Zhang-Vahid [Zhang and Vahid 2003]. The
cache design space includes varying cache size (2K, 4K, 8K), varying block size (16, 32, 64 bytes),
and associativity (1, 2, 4). Thus, there are total 27 cache configurations in the design space. The
results are shown in Table III. For each benchmark, we show the corresponding optimal cache con-
figuration. The optimal solution is obtained by exhaustively searching the cache design space using
the exact cache hit/miss from simulation. As for our approach, we find the best cache configuration
by exhaustively searching the cache design space using our estimated cache hits/misses.

First of all, our approach returns the optimal cache configuration for all the benchmarks, but
Zhang-Vahid method fails for two benchmarks (rijndael and gsmdec). For rijndael, both our solution
and the optimal solution are (8192, 64, 1), which represents the cache with 8192 bytes size, 64
bytes line size and 1-way associativity, but Zhang-Vahid method returns (2048, 64, 1). For rijndael,
cache (4096, 16, 1) and cache (2048, 16, 1) return the same number of cache hits. Thus, in Zhang-
Vahid method, cache (2048, 16, 1) is considered to be the best cache size due to its reduced energy
consumption (bigger size cache consumes more energy per access). Though cache (4096, 16, 1) and
cache (2048, 16, 1) return the same number of cache hits, cache(8192, 16, 1) achieves significantly
more cache hits than cache (4096, 16, 1) because rijndael working set fits in 8192 bytes sizes cache.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

Hence, Zhang-Vahid method can not return the global optimal solution because it is stuck at a local
optimal solution. For gsmdec, both our solution and the optimal solution choose cache (4096, 64,
1), but Zhang-Vahid method chooses cache (8192, 64, 1). Zhang-Vahid method chooses 8192 bytes
cache as the best cache size because cache (8192, 16, 1) consumes less energy than cache (4096, 16,
1). After fixing the cache size to 8192 bytes, Zhang-Vahid method finally chooses 64 bytes block
size and 1-way associativity. However, for caches with bigger block size (64 bytes), cache (4096,
64, 1) is better than cache (8192, 64, 1) because they have similar number of cache hits and 4096
bytes cache incurs less energy per access than 8192 bytes cache. Hence, the global optimal solution
is cache (4096, 64, 1).

Given an application, its optimal cache configuration depends on its particular temporal and spa-
tial localities. Our approach is based on the cache states at any point of the program, which accu-
rately capture the localities. Thus, our approach returns the optimal solution for all the benchmarks.
On the other hand, Zhang-Vahid method can relatively easily get trapped in a local optimal when the
cache behavior does not change monotonically following the cache size, line size and associativity
increases. In Figure 14, we show that the energy consumption of the cache configurations returned
by Zhang-Vahid method, our approach and the optimal solution for all the embedded applications.
The energy consumption is normalized to the optimal solution. For 8 out of the 10 benchmarks,
Zhang-Vahid method returns the optimal solution. However, it fails to return the optimal solution
when the cache hits do not follow the trend predicted by the heuristic as shown by Table III. For
example, Zhang-Vahid method incurs 62% and 3% more energy consumption than the optimal so-
lution for rijndael and gsmdec, respectively. In summary, compared to Zhang-Vahid method, our
technique achieves up to 62% and on average 7% energy savings for the evaluated benchmarks.

Second, Zhang-Vahid method could be very slow as simulations are still needed to collect the
cache hits/misses for the configurations chosen by the heuristics. In comparison, our technique is
much more efficient as it is based on static program analysis. Compared to Zhang-Vahid method, our
technique achieves 304—8086 times speedup as shown in Table III. Finally, we also observe that,
direct mapped and bigger block size caches turn out to be good choices for energy optimization.
Similar observations have been made in [Zhang and Vahid 2003].

Our solution can be used for searching the pareto-optimal points with different energy and per-
formance tradeoffs as shown in Section 6.4. Now, let us compare the two methods in terms of the
pareto-optimal curve. Let us define the cache configuration with the best energy as A and the cache
configuration with the best performance as B. To search for point B, Zhang and Vahid method
performs a similar search: start from the cache with biggest size, biggest line size and highest asso-
ciativity, then decrease each parameter if it yields performance improvement. Then, in order to find
the pareto-optimal points with different performance and energy tradeoffs, all the points between A
and B will be tested. For example, if the cache size of point A and B are 2K and 8K respectively,
then all the cache sizes in between (2K, 4K, 8K) will be tested for pareto-optimal points. Since
Zhang-Vahid method may not return the accurate point A (best energy) and B (best performance)
as shown in Table III, their method may miss some of the actual pareto-optimal points with inter-
esting design tradeoffs. Moreover, let us suppose all the cache configurations in the design space
exhibit different performance and energy tradeoffs. In other words, all the cache configurations are
on the pareto-optimal curve. Then, Zhang and Vahid method basically needs simulations of all the
cache configurations, which is extremely slow as shown previously. However, our technique has
been shown to be very accurate and fast.

7. CONCLUSION & FUTURE WORK
In this paper, we present a fast and accurate design space exploration technique for instruction
caches using an analytical approach. We first introduce probabilistic cache states to represent the
cache contents for multiple paths and derive probabilistic cache states at all program points through
static analysis. Then, to explore design spaces with multiple configurations efficiently, we extend
probabilistic cache states to probabilistic GBT that exploits inclusion property among related cache
configurations. We also define appropriate operators for probabilistic GBTs, and discuss optimiza-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

Optimal

Ours

Zhang-Vahid

Fig. 14. Energy consumption comparison.
tions to improve their space and time efficiency. Our experimental results indicate that our method
achieves significant speedup compared to the fastest trace-driven cache simulator (Cheetah) while
maintaining high accuracy. We also show that through our analysis, we can efficiently evaluate the
design tradeoff (performance vs energy) for different cache configurations. Compared to a state-of-
the-art cache exploration technique, our approach achieves significant speedup and energy saving.

Our analytical model has been shown to be accurate and efficient for instructions caches. As
future work, we will quantitatively evaluate our technique on data caches.

8. ACKNOWLEDGMENTS
This work was partially supported by Singapore Ministry of Education Academic Research Fund
Tier 2 MOE2009-T2-1-033. We would like to thanks Mihai Pricopi for his help with SPEC bench-
marks.

REFERENCES
ARNOLD, R., MUELLER, F., WHALLEY, D., AND HARMON, M. 1994. Bounding worst-case instruction cache performance.

In Real-Time Systems Symposium. 172–181.
AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system modeling. IEEE

Computer 35, 2, 59 – 67.
BALL, T. 1994. Efficiently counting program events with support for on-line queries. ACM Transactions on Programming

Languages and Systems 16, 5, 1399–1410.
BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: a framework for architectural-level power analysis and

optimizations. In Proceedings of the 27th annual international symposium on Computer architecture. ISCA ’00. 83–94.
EDLER, J. AND HILL, M. D. Dinero IV trace-driven uniprocessor cache simulator. http://www.cs.wisc.edu/

˜markhill/DineroIV/.
GHOSH, A. AND GIVARGIS, T. 2004. Cache optimization for embedded processor cores: An analytical approach. ACM

Trans. Des. Autom. Electron. Syst. 9, 4, 419–440.
GORDON-ROSS, A. ET AL. 2007. A one-shot configurable-cache tuner for improved energy and performance. In Proceed-

ings of the conference on Design, automation and test in Europe. DATE ’07. 755–760.
GUILLON, C. ET AL. 2004. Procedure placement using temporal-ordering information: dealing with code size expansion.

In Proceedings of the 2004 international conference on Compilers, architecture, and synthesis for embedded systems.
CASES ’04. 268–279.

GUTHAUS, M. R. ET AL. 2001. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings
of the Workload Characterization, 2001. 3–14.

HAQUE, M. S., JANAPSATYA, A., AND PARAMESWARAN, S. 2009. Susesim: a fast simulation strategy to find optimal l1
cache configuration for embedded systems. In Proceedings of the 7th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis. CODES+ISSS ’09. 295–304.

HILL, M. D. AND SMITH, A. J. 1989. Evaluating associativity in cpu caches. IEEE Transactions on Computers 38, 12,
1612–1630.

LI, X. F. ET AL. 2004. Design space exploration of caches using compressed traces. In Proceedings of the 18th annual
international conference on Supercomputing. ICS ’04. 116–125.

LI, Y. ET AL. 2000. Hardware-software co-design of embedded reconfigurable architectures. In Proceedings of the 37th
Annual Design Automation Conference. DAC ’00. 507–512.

LIANG, Y. AND MITRA, T. 2008a. In Proceedings of the 45th annual Design Automation Conference. DAC ’08. 319–324.
LIANG, Y. AND MITRA, T. 2008b. In Proceedings of the 6th IEEE/ACM international conference on Hardware/Software

codesign and system synthesis. CODES+ISSS ’08. 103–108.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

LIANG, Y. AND MITRA, T. 2010a. In Proceedings of the 47th Design Automation Conference. DAC ’10. 344–349.
LIANG, Y. AND MITRA, T. 2010b. Improved procedure placement for set associative caches. In Proceedings of the 2010

international conference on Compilers, architectures and synthesis for embedded systems. CASES ’10. 147–156.
MATTSON, R. L. ET AL. 1970. Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2, 78–117.
MICROBLAZE PROCESSOR. Xilinx, Microblze processor.http://www.xilinx.com/tools/microblaze.htm.
MONTANARO, J. ET AL. 1997. A 160-mhz, 32-b, 0.5-w cmos risc microprocessor. Digital Tech. J. 9, 1.
NIOS PROCESSOR. Altera, Nois Embedded Processor System.http://www.altera.com/devices/processor/

nios2/ni2-index.html.
STEVEN, J. E. W. AND NORMAN, P. J. 1996. Cacti: An enhanced cache access and cycle time model. IEEE Journal of

Solid-State Circuits 31, 677–688.
SUGUMAR, R. A. AND ABRAHAM, S. G. 1995. Set-associative cache simulation using generalized binomial trees. ACM

Transactions on Computer Systems 13, 1.
TENSILICA, XTENSA PROCESSOR. http://www.tensilica.com.
UHLIG, R. A. AND MUDGE, T. N. 1997. Trace-driven memory simulation: a survey. ACM Comput. Surv. 29, 2, 128–170.
WANG, W. H. AND BAER, J. L. 1991. Efficient trace-driven simulation methods for cache performance analysis. ACM

Trans. Comput. Syst. 9, 3, 222–241.
WU, Z. AND WOLF, W. 1999. In Proceedings of the seventh international workshop on Hardware/software codesign.

CODES ’99. 95–99.
ZHANG, C. AND VAHID, F. 2003. Cache configuratoin exploration on prototying platforms. In 14th IEEE International

Workshop on Rapid System Prototyping. 164–.
ZHANG, C., VAHID, F., AND NAJJAR, W. 2003. A highly configurable cache architecture for embedded systems. SIGARCH

Comput. Archit. News 31, 2, 136–146.
ZITZLER, E., DEB, K., AND THIELE, L. 2000. Comparison of multiobjective evolutionary algorithms: Empirical results.

Evol. Comput. 8, 2, 173–195.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

