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Abstract

Application-specific instruction-set extensions (custom instructions) help embedded processors

achieve higher performance. Most custom instructions offering significant performance benefit re-

quire multiple input operands. Unfortunately, RISC-style embedded processors are designed to sup-

port at most two input operands per instruction. This data bandwidth problem is due to the limited

number of read ports in the register file per instruction as well as the fixed-length instruction encod-

ing. We propose to overcome this restriction by exploiting the data forwarding feature present in

processor pipelines. With minimal modifications to the pipeline and the instruction encoding along

with cooperation from the compiler, we can supply up to two additional input operands per custom

instruction. Experimental results indicate that our approach achieves 87–100% of the ideal perfor-

mance limit for standard benchmark programs. Additionally, our scheme saves 25% energy on an

average by avoiding unnecessary accesses to the register file.

1 Introduction

Application-specific instruction-set extensions, also called custom instructions, extend the instruction-set

architecture of a base processor [6, 7, 9]. Processors that allow such extensibility have become popular

as they strike the right balance between challenging performance requirement and short time-to-market

constraints of embedded systems design. Custom instructions encapsulate the frequently occurring com-

putation patterns in an application. They are implemented as custom functional units (CFU) in the

datapath of an existing processor core. CFUs improve performance through parallelization and chaining

of operations. Thus custom instructions help simple embedded processors achieve considerable perfor-

mance and energy efficiency.
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Figure 1: Impact of limited input operands on performance speedup of custom instructions.

Commercial embedded processors supporting instruction-set extensibility, such as Altera Nios-II [6]

and Tensilica Xtensa [7], are all RISC-style cores with simple instructions and fixed-length instruction

encoding formats. However, custom instructions typically encapsulate quite complex computations. This

results in a fundamental mismatch between the base processor core and the new extensions both in

terms of ISA definition and micro-architecture. Simple RISC-style instructions use at most two register

input operands and one register output operand. As a result, at the micro-architectural level, the base

processor core supports two register read ports per instruction. Unfortunately, multiple studies [3, 14]

have shown that custom instructions generally require more than two input operands to achieve any

significant performance gain. Figure 1 plots the speedup due to custom instructions with at most2, 3,

and4 input operands, respectively1. Clearly, performance drops significantly as we restrict the number

of input operands per custom instruction.

In this paper, we present a novel scheme that exploits the forwarding logic in processor pipeline

to overcome the data bandwidth limit per custom instruction.Data forwarding, also known asregister

bypassing, is a standard architectural method to supply data to a functional unit from internal pipeline

buffers rather than from programmer-visible registers. In conventional processors, forwarding is used to

resolve data hazard between two in-flight instructions. We observe that, in many cases, at least some

of the input operands of a custom instruction are available from the data forwarding logic. Thus, we

leverage on the data forwarding logic to provide additional inputs to the custom instructions.

The key to exploiting such a scheme is of course a compile time check to determine if a specific

operand can indeed be obtained from the forwarding logic. However, in the presence of statically unpre-

dictable events, such as cache miss for a custom instruction, this cannot be guaranteed at compile time.

As the custom instruction gets delayed, the instruction supplying the operand may complete execution

1Details of the experimental setup are given in Section 5
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and leave the pipeline. Therefore, the operand is no longer available from the forwarding logic. To

circumvent this problem, we propose minimal changes in the pipeline control hardware to guarantee the

availability of the operand from the forwarding logic under such scenarios. At the same time, we ensure

that the changes do not have any negative impact on the instruction throughput of the pipeline.

Finally, we need to address the related problem of instruction encoding to support additional operands.

Assuming an instruction format similar to the Altera Nios-II processor [6], we show that minimal mod-

ification to the encoding scheme can support up to 64 custom instructions each having up to 4 input

operands.

2 Related Work

Significant research effort has been invested in issues related to instruction-set extensions for the past

few years. Most of this effort has concentrated on the so called “design space exploration” problem

to choose an appropriate set of custom instructions for an application [1, 3, 14, 15]. The first step of

this exploration process identifies a large set of candidate patterns from the program’s dataflow graph

and their frequencies via profiling. Given this library of patterns, the second step selects a subset to

maximize the performance under constraints on the number of allowed custom instructions and/or the

area budget.

Limited data bandwidth is one of the key problems in the implementation of custom instructions.

This problem arises because custom instructions normally require more than two input operands whereas

the register file provides only two read ports per instruction. Increasing the number of read ports to the

register file is not an attractive option as the area and power consumption grow cubically with the number

of ports.

The Nios-II processor [6] solves this problem by allowing the custom functional unit (CFU) to

read/update either the architectural register file or an internal register file. However, additional cycles are

wasted to move the operands between the architectural register file and the internal register file through

explicit MOVinstructions. Similarly, the MicroBlaze processor [9] from Xilinx provides dedicated Fast

Simplex Link (FSL) channels to move operands to the CFU. It providesput andget instructions to

transfer operands between the architectural register file and the CFU through FSL channels.

Cong et al. [4, 5] eliminate these explicit transfer of operands with the help of a shadow register file

associated with the CFU. Shadow register file is similar to the internal register file of Nios-II in that they

both provide input operands to the CFUs. However, the major difference is that the shadow registers are
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updated by normal instructions during the write back stage. An additional bit in the instruction encoding

decides whether the instruction should write to the shadow register file in addition to the architectural

register.

Pozzi et al. [12] suggest an orthogonal approach to relax the register file port constraints. Their

technique exploits the fact that for a CFU with pipelined datapath, all the operands may not be required

in the first clock cycle. Therefore, the register accesses by the CFU datapath can be distributed over

multiple cycles. This approach will have limited performance benefit if most custom instructions with

multiple operands require single-cycle datapath.

Though the previous works [4, 5, 12] improve the data bandwidth, they do not address the related

problems of encoding multiple operands in a fixed-length instruction format and data hazards.

• Fixed-length and fixed-position encoding employed in RISC processors do not provide enough

space to encode the additional operands of the custom instructions. Previous works do not discuss

the issue of encoding operands for custom instructions. For example, the work by Pozzi et al. [12]

still requires a register identifier corresponding to each input operand of a custom instruction.

Similarly, the work based on shadow register files requires either the shadow register identifier or

an architectural register identifier for each input operand of a custom instruction.

• Data hazards occur in a pipeline when the dependent instruction reads the register before the source

instruction writes into it. These are resolved by employing data forwarding as discussed in Section

1. For a multiple-operand custom instruction, data hazards can occur on any of the input operands.

It is not clear how data hazards are handled for the additional operands in case of multi-cycle

register reads [12] or shadow registers [5].

Our work addresses both of these important issues. In addition, our method avoids unnecessary register

accesses and thereby saves energy (see Section 5).

3 Proposed Architecture

Our proposed architecture exploits data forwarding logic in the processor pipeline to supply additional

operands per custom instruction. In addition, we require minimal modification of the instruction en-

coding to specify the additional operands per custom instruction. In this section, we describe these

modifications in the processor pipeline and the instruction encoding. We assume a RISC-style in-order

pipeline that is prevalent in embedded processor architectures with extensibility feature. For illustration
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Figure 2: Illustration of data forwarding for a sequence of instructions.

purposes, we use a simple MIPS-like 5-stage pipeline. However, our technique can be easily applied to

other in-order pipelines. We begin with a brief review of the data forwarding logic as it is central to our

discussion.

3.1 Data Forwarding

We will illustrate our technique through a simple, 5-stage, MIPS-style pipeline shown in Figure 3. The

five pipeline stages are: instruction fetch (IF ), instruction decode/register read (ID ), execute (EX), mem-

ory access (MEM) and write-back (WB). Data forwardingor register bypassingis a common technique

used to reduce the impact of data hazards in pipelines. Consider the execution of the sequence of in-

structions shown in Figure 2 in a MIPS pipeline (the first register identifier of each instruction specifies

the destination operand and the other two specify the source operands). There is a dependency between

theADDinstruction and theSUBinstruction through registerR1. TheADDinstruction writes the result

into the register file in clock cycle 5. However, theSUBinstruction reads the register file in clock cycle

3 and hence would read a wrong value. This is known as data hazard in the pipeline. To prevent data

hazard, we can stall the pipeline for two clock cycles till theADDinstruction writes registerR1. This

would result in significant performance degradation. A more efficient method is to forward the result of

theADDinstruction to the input of the functional unit before it has been written to the register file. This

is based on the observation that theSUBinstruction requires the input only in clock cycle 4 and theADD

instruction produces the result at the end of clock cycle 3. Thus, forwarding avoids pipeline stalls due to

data hazards.

Figure 3 shows the pipeline with the data forwarding logic highlighted. Forwarding paths are pro-

vided from theEX stage (the latchEX/MEM) and theMEMstage (the latchMEM/WB) to the functional

units. Multiplexers are placed before the functional unit to select the operand either from the register file

or from the forwarding paths. Note that there is no forwarding path from the output of theWBstage. The
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Figure 3:Data forwarding in a pipeline.

hazards in this stage are handled by ensuring that the register writes happen in the first half of a clock

cycle and the register reads happen in the second half of a clock cycle. Interested readers can refer to

[11] for further details.

We observe that in most cases, the operands of custom instructions are available from the forwarding

paths. In Figure 2, the custom instructionCUSTreads both its input operands from the forwarding path.

Hence, the forwarding path can be used as a proxy to cover up for the lack of number of read ports in the

register file. The two latches (EX/MEMandMEM/WB) can provide up to two additional input operands

for a custom instruction (the other two come from the register file). Note that in a conventional pipeline,

an instruction reads from the register file in theID stage even if it later uses the data from the forwarding

logic. In contrast, we do not allow a custom instruction to read from the register file if the corresponding

operand will be supplied from the forwarding path. The challenge now is to identify at compile time

which operands will be available from the forwarding logic, encoding that information in the instruction,

and ensuring that the operand is available even in the presence of unpredictable events (e.g., instruction

cache miss).

3.2 Instruction Encoding

We now describe the instruction encoding in the presence of custom instructions that exploit forwarding

logic to obtain up to two additional input operands. The basic idea behind our encoding isnot to affect

the decoding of normal instructions. We also try to minimize the number of bits required to encode

the operand information. We illustrate our encoding with the instruction format of Nios-II processor.

However, the general idea is applicable to any RISC-style instruction format.

The original encoding in Figure 4 is the format for custom instructions in Nios-II. It consists of a

6-bit opcode fieldOP, which is fixed at 0x32 for all custom instructions. The 11-bit opcode extension

field OPXis used to distinguish different custom instructions. 3-bits from theOPXfield is used in Nios-II
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Figure 4: Encoding format of custom instructions.

to indicate whether each source/destination register refers to the architectural or the internal register file

(see Section 2). The rest of the 15-bits are used to specify the two source and one destination operands.

As we do not want to affect the encoding of normal instructions, all the information about the

operands of the custom instructions are encoded as part of the 11-bit opcode extension fieldOPX. Each

operand of a CFU can come either from the two register ports or from one of the two forwarding paths.

However, the number of input operands of a custom instruction need not be encoded as the datapath of

the CFU can ignore the extra inputs. For example, a 3-input custom operation would ignore the fourth

operand.

Among the four input operands, at most two operands are specified using the forwarding path. There

areC4
2 = 6 possibilities for the choice of these two operands among the four input operands. In addition,

for each of the operands from the forwarding path, we need to specify whether it comes from theEX/MEM

latch or theMEM/WBlatch. There are a total of four possibilities in this case and hence the total number

of possibilities that need to be encoded is 24, i.e., we require 5 bits to encode the information. The

modified encoding in Figure 4 shows the new instruction format with the operand information. 5 bits

from theOPXfield are used to encode the operand information (OPDfield). The remaining 6 bits (COP

field) can be used to specify the custom function to be performed. Thus there can be 64 distinct custom

instructions each having up to four input operands. Note that decoding the operand information is done

in parallel to the instruction decoding in theID stage of the pipeline and hence would not affect the cycle

time.

3.3 Predictable Forwarding

The key to exploiting forwarding for custom instructions is to determine at compile time (i.e., statically)

whether an operand can be obtained from the forwarding path. In Figure 3 there are two forwarding

paths. Let us assume a sequence of instructions〈I1, I2, . . . In〉. An operand of instructionIi is available

from the forwarding path only if instructionIi−1 or Ii−2 produces the operand. For example in Figure
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2, the operands of the custom instructionCUSTare available from the forwarding paths as they are

produced by the two immediate predecessors (SUBandORinstructions).

However this property does not hold when there are multi-cycle operations and also in the event

of instruction cache misses. This is because these events introduce bubbles in the pipeline and hence

affect forwarding between dependent instructions. Figure 5(A) illustrates the problem in the event of

an instruction cache miss. TheOR instruction misses in the instruction cache and hence the custom

instructionCUSTcannot obtain the result of theSUBinstruction (registerR4) from the forwarding path.

This is not a problem for conventional pipeline because normal instructions will simply read the result

from the register file (it was relying on data forwarding only when the result has not yet been written to

the register). Unfortunately, the custom instructionhas toread the data from the forwarding path, i.e., it

does not have the fall back option of reading from the register file. Similarly, multi-cycle operations can

affect the forwarding path in the pipeline. Figure 6(A) shows the pipeline behavior when a multi-cycle

instructionMULTis executed in the pipeline.

Data cache misses and branch mispredictions occur in theMEMstage and hence only the instruction

in the WBstage will not be able to forward the result. As we do not assume any forwarding from the

WBstage anyway (it is taken care of by split register read/write as discussed in Section 3.1), branch

misprediction and data cache misses do not affect our forwarding path.

We suggest a simple change in the pipeline control logic to guarantee forwarding between instruction

Ii−1/Ii−2 and instructionIi in the event of instruction cache misses and multi-cycle operations. Events

such as cache misses create bubbles in the pipeline draining out instructions in later stages of the pipeline.

This affects forwarding. This can be clearly seen by comparing Figure 2 with Figure 5(A). In Figure

2, theSUBinstruction is in the pipeline when the custom instruction enters theEX stage. However in

Figure 5(A), due to the instruction cache miss theSUBinstruction leaves the pipeline before the custom

instruction enters theEXstage. Therefore the value cannot be forwarded; instead it should be read from

the register file in theID stage.

The key insight is to stall the instructions in the later stages of the pipeline (after the event) rather

than allowing them to progress. That is, instead of introducingNOPs into the pipeline (as shown in Figure

5(A)), we retain the contents of the later stages for the duration of the I-cache miss. This way when the

normal flow resumes, the pipeline looks like as if the event did not happen at all. This scenario is shown

in Figure 5(B). Similarly, for multi-cycle operations the effect on the pipeline execution is shown in

Figure 6(B). Note that stalling the pipeline stages as opposed to introducing bubbles (NOPs) does not
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cause any additional performance degradation in terms of instruction throughput.

To achieve this, we simply need stall signal for each pipeline latch. When the stall signal is set,

the latch holds its current value. A stall unit is responsible for stalling the pipeline during cache misses

and multi-cycle operations. To ensure forwarding, the stall signals for latches in the later stages of the

pipeline must be set (ID/EX , EX/MEMandMEM/WB) for the duration of the cache miss. In a similar

fashion, the stall signals for theEX/MEMandMEM/WBlatch must be set for the duration of the multi-

cycle operation.

4 Compilation Toolchain

As mentioned before, our technique requires cooperation from the compiler. We need to determine at

compile time whether a specific operand can be forwarded and encode the custom instruction accord-

ingly. In addition, the compiler can schedule the instructions appropriately so as to maximize the oppor-

tunity of forwarding. We now describe how these concerns are addressed in the compilation toolchain

for custom instruction selection and exploitation.

The relevant portion of the compilation toolchain is shown in Figure 7. Pattern identification is per-

formed at the intermediate representation (IR) level just prior to register allocation and after the schedul-

ing of the intermediate instructions. We use the pattern identification scheme discussed in [15] that

involves construction of the data dependency graphs for each basic block followed by identification of

all possible patterns that satisfy the given constraints. In our case, we impose a constraint that the pat-

terns should have at most 4 input operands and one output operand. This is followed by the selection of

a subset of patterns to be implement as custom instructions. We now describe the pattern selection phase

in detail.
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4.1 Pattern Selection

We use a heuristic pattern selection method. Given the set of identified patterns, we first club together

identical subgraphs using the algorithm presented in [10]. All the identical subgraphs map to a single

custom instruction and are called the instances of a pattern. Associated with each pattern instance, we

have an execution count (obtained through profiling) and the speedup. A greedy heuristic method is

employed for pattern selection [14]. It attempts to cover each original instruction in the code with zero

or one custom instructions using a priority function given by

Priorityi.j = speedupi.j × frequencyi.j

wherePriorityi.j , speedupi.j , andfrequencyi.j are the priority, performance speedup and execution

frequency of thejth instance of patterni. The pattern instances are chosen starting with the highest

priority one.

In our forwarding-based approach, the performance speedup of a pattern instance depends on how

many of its input operands can be forwarded. Suppose we have a 4-input custom instruction. Two of its

operands can be obtained from the forwarding path and two are read from the register file. Then we can

easily encode that custom instruction. However, if we cannot obtain any operand from the forwarding

path, then we need to add additionalMOVinstructions in the code. Let us suppose the custom instruction

needs three input operandsR2, R3, R4 . R2, R3 can be read from the register file. ForR4, we insert

a redundant instructionMOV R4, R4just before the custom instruction. This ensures that the operand

R4 can be obtained from the forwarding path. The latency of aMOVinstruction is one clock cycle.

Accordingly, we update the performance speedup of all the custom instruction instances. Notice that

this is a conservative estimate; aMOVinstruction might not be required after the instruction scheduling

discussed in the next subsection.

4.2 Instruction Scheduling

The speedup of a custom instruction depends heavily on the final instruction scheduling (after register

allocation) due to the forwarding constraint. Given a basic block with custom instructions, we have

formulated the problem of finding the optimal schedule with forwarding as an integer linear programming

(ILP) problem. Note that we are considering an in-order pipeline and we do not modify the register

allocation.

Let B be a basic block consisting of both normal instructions and custom instructions. If a custom

instructionC is dependent on another instructionI for one of its operands, then the distance betweenC
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andI determines whether the operand can be obtained from the forwarding paths. If more than two input

operands of custom instructionC are not available from the forwarding paths, then we need to introduce

redundantMOVinstructions as discussed in the previous subsection. These additionalMOVinstructions

increase the execution time and hence we would like to eliminate as manyMOVinstructions as possible.

The optimal schedule is an ordering of the instructions inB that results in the minimal number ofMOV

instructions.

For a basic blockB, let I1 . . . IN andC1 . . . CM be the normal instructions and custom instructions,

respectively. Letinput(Ci) be the number ofuniqueinput operands for custom instructionCi. For exam-

ple, a custom instructionCUST R1, R2, R3, R2, R4 has 3 unique input operands corresponding

to registersR2, R3, R4 (the output operand isR1). LetMC1
i . . .MC

input(Ci)
i represent theMOVinstruc-

tions associated with the unique input operands of custom instructionCi. Finally, letD1
i . . . D

input(Ci)
i

represent the instructions that produce the corresponding input operands ofCi. That is,Ci is dependent

onD1
i . . . D

input(Ci)
i .

The total number of instructions in basic blockB can be bounded by

Smax = N + M +
M∑

i=1

input(Ci) (1)

A map function maps each instruction to a unique identifier between1 andSmax.

Scheduling Constraints We introduce binary variablesXi,j (1 ≤ i ≤ Smax, 1 ≤ j ≤ Smax) to

represent the instruction ordering where

Xi,j =





1 if instruction with identifieri occupies thejth position

0 otherwise

Notice that the instruction schedule considers all instructions, i.e., normal instructions, custom instruc-

tions as well asMOVinstructions. Each normal/custom instruction can occupy exactly one position.

Smax∑

j=1

Xmap(Ii),j = 1 ∀i (1 ≤ i ≤ N) (2)

Smax∑

j=1

Xmap(Ci),j = 1 ∀i (1 ≤ i ≤ M) (3)

However, theMOVinstructions may or may not be scheduled depending on the forwarding; therefore

Smax∑

j=1

Xmap(MCk
i ),j ≤ 1 ∀i, k (1 ≤ i ≤ M, 1 ≤ k ≤ input(Ci)) (4)

12



Moreover, each position can have at most one instruction.

Smax∑

i=1

Xi,j ≤ 1 ∀j (1 ≤ j ≤ Smax) (5)

Before we introduce additional constraints, let us define two new functions:position(i) denoting the

position of the instruction with identifieri anddistance(i′, i) denoting the distance between instructions

with identifiersi′ andi.

position(i) =
Smax∑

j=1

j ×Xi,j

distance(i′, i) = position(i)− position(i′)

Dependency Constraints: A Read-after-Write dependency occurs betweeni′ andi (RAW(i′,i)) if in-

structioni reads a result written by instructioni′. As a result of this data dependency, instructioni must

be scheduled after instructioni′. This is expressed by the following constraint

position(i) > position(i′) for all RAW(i′,i) (6)

A Write-after-Write(WAW) dependency occurs between two instructionsi′ andi (WAW(i′,i)) if i and

i′ write to the same register andi occurs afteri′ in program order. Similarly, a Write-after-Read(WAR)

dependency occurs between instructionsi′ andi (WAR(i′,i)) if i writes into a register thati′ reads andi

occurs afteri′ in program order. As our instruction scheduling is performed after register allocation as

shown in Figure 7, WAW and WAR dependencies need to be taken into account. These are expressed by

the following constraints

position(i) > position(i′) for all WAW(i′,i), WAR(i′,i) (7)

We do not consider theMOVinstructions for WAW and WAR dependencies.MOVinstructions do not alter

the register values and hence cannot create WAW and WAR dependencies for other instructions. RAW

dependencies between aMOVinstruction and other instructions are handled later in the formulation.

Forwarding Constraints We express the condition under which a specificMOVinstruction must be

scheduled. A custom instructionmay require a specificMOVinstruction if the corresponding input

operand cannot be forwarded. LetMCk
i be thekth MOVinstruction corresponding to custom instruction

Ci. Now theMOVinstructionMCk
i can be eliminated if the instructionDk

i producing the corresponding

operand is at most 2 instructions away fromCi. Let F k
i be a binary variable denoting ifMOVinstruction

13



MCk
i can be eliminated (i.e., the operand can be forwarded). The dependency constraints ensure that

distance(Dk
i , Ci) > 0. Therefore,

F k
i =





1 if distance(Dk
i , Ci) ≤ 2

0 otherwise
(8)

This constraint can be linearized as follows

distance(Dk
i , Ci) +∞F k

i > 2

distance(Dk
i , Ci)−∞(1− F k

i ) ≤ 2

Let Sk
i be a binary variable denoting if aMOVinstruction is scheduled. Clearly,

Sk
i ≤ 1− F k

i (9)

Sk
i =

Smax∑

j=1

Xmap(MCk
i ),j (10)

If more than two input operands of custom instructionC are not available from the forwarding paths,

then we need to introduce redundantMOVinstructions. Therefore,

input(Ci)∑

k=1

Sk
i = max


0, input(Ci)− 2−

input(Ci)∑

k=1

F k
i


 (11)

This can be linearized as
input(Ci)∑

k=1

Sk
i ≥ 0 (12)

input(Ci)∑

k=1

Sk
i ≥ input(Ci)− 2−

input(Ci)∑

k=1

F k
i (13)

Scheduling Constraints forMOVinstructions A MOVinstruction must be scheduled before the corre-

sponding custom instruction. This is ensured by the constraint

distance(MCk
i , Ci) ≥ 1 (14)

Note that the above constraint is trivially satisfied for theMOVinstructions that need not be scheduled.

Moreover, aMOVinstruction must be scheduled at most 2 instructions away from the the corresponding

custom instruction.

distance(MCk
i , Ci) ≤ 2 if Sk

i = 1 (15)
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This can be linearized as

distance(MCk
i , Ci)−∞(1− Sk

i ) ≤ 2

Finally, we should ensure that aMOVinstruction is scheduled after the instruction that produces the

corresponding input operand. That is,

distance(Dk
i , MCk

i ) ≥ 1 if Sk
i = 1 (16)

This can be linearized as

distance(Dk
i ,MCk

i ) +∞(1− Sk
i ) ≥ 1

Objective Function Our objective is to assign values to theXi,j variables such that the total number

of scheduledMOVinstructions is minimized. That is,

minimize
M∑

i=1

input(Ci)∑

k=1

Sk
i (17)

Thus we have formulated the problem of finding the optimal schedule as a integer linear programming

problem. Note that the ILP formulation determines the optimal ordering of instructions within a basic

block assuming that operands across basic blocks cannot be forwarded. In general the source operands

for a custom instruction can come from preceding basic blocks and satisfy forwarding constraint. Hence

in the compiler flow shown in Figure 7, we perform another check for the forwarding constraints after

instruction scheduling.

5 Experimental Evaluation

In this section we discuss the experimental evaluation of our proposed architecture.

5.1 Setup

Table 1 shows the characteristics of the benchmark programs selected mostly from MiBench [8]. We use

SimpleScalar tool set [2] for the experiments. The programs are compiled using gcc 2.7.2.3 with -O3

optimization.

Given an application, we first exhaustively enumerate all possible patterns and their instances [15].

We impose a constraint of maximum 4 input operands and 1 output operand for any pattern. Table

1 shows the number of patterns and pattern instances generated for each benchmark. The execution
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Benchmark Source Patterns Instances

Rijndael MiBench 17 1790

Sha MiBench 11 33

Blowfish MiBench 13 197

Djpeg MiBench 34 133

Compress GothenBurg 11 26

Ndes FSU 13 39

Bitcnts MiBench 11 28

Dijkstra MiBench 4 5

Table 1: Characteristics of benchmark programs.

Benchmark Ideal Forwarding MOV

Rijndael 64.03% 63.85% 45.44%

Sha 46.82% 40.77% 20.94%

Blowfish 35.56% 35.56% 24.38%

Djpeg 17.42% 17.36% 15.43%

Compress 26.85% 26.85% 21.77%

Ndes 25.62% 22.37% 15.55%

Bitcnts 20.67% 20.67% 18.58%

Dijkstra 28.99% 28.99% 19.12%

Table 2: Speedup under different architectures.

frequencies of the pattern instances are obtained through profiling. The hardware latencies and area

of custom instructions (patterns) are obtained using Synopsys synthesis tool. Finally, the number of

execution cycles of a custom instruction is computed by normalizing its latency (rounded up to an integer)

against that of a multiply accumulate (MAC) operation, which we assume takes exactly one cycle. We

do not include floating-point operations, memory accesses, and branches in custom instructions as they

introduce non-deterministic behavior. The set of patterns identified is provided as input to the selection

phase which outputs the set of custom instructions selected.

The speedup of an application using custom instructions is defined as follows

Speedup = (
Cycleorig

Cycleex
− 1) ∗ 100
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whereCycleorig is the number of cycles when the benchmark executes without custom instructions and

Cycleex is the number of cycles when custom instructions are added. For the speedup calculations we

assume a single issue in-order processor with 100% data cache hit rate.

5.2 Results

We compare the speedup of each benchmark for three different architectures. The first architecture

is “ideal” as it has support for four read ports in the register file and enough space to encode these

operands in the instruction format. This architecture is able to provide the highest speedup with custom

instructions. The second architecture is based on our idea of exploiting data “forwarding”. In this case,

we may need additionalMOVinstructions when more than two operands must be read from the register

file. The final architecture “MOV” is based on Nios-II where customMOVinstructions are used to transfer

data from the architectural register file to internal register files (see Section 2).

Table 2 shows the speedup obtained for the three different architectures. The normalized speedup

for“forwarding” and “MOV” with respect to the “ideal” case is shown in Figure 8. The performance

of forwarding is very close to the ideal performance limit (96% on an average). This is because for

the majority of the selected patterns, at least two operands can be obtained through forwarding; thus

MOVinstructions are inserted rarely. This can be seen from Table 3, about 90-100% of selected pattern

instances satisfy the forwarding requirements. The case where custom move instructions are inserted

(“MOV”) achieves only 70% of the performance limit. Thus our technique which uses forwarding to

supply additional operands can overcome the limitations in number of register ports and instruction

encoding without affecting performance.

In addition, our technique reduces the energy consumption in the register file. As data forward-

ing is predictable in our approach (refer Section 3.3), register file reads can be avoided for forwarded

operands. Table 4 presents the register file energy consumption for the three different architectures. The

first column is the ideal case where there are four read ports in the register file. The second column is the

case where there are two read ports and customMOVinstructions are inserted. The third column is our

forwarding-based approach that avoids redundant register file accesses. The energy values presented here

are obtained using CACTI 3.2 [13] for 130 nm technology. It is clear from Table 4 that increasing the

number of ports of the register file is not an attractive option as it almost doubles the energy consumption.

By comparing the second and third column, it can be seen that forwarding results in significant savings

in the energy consumption of the register file (25% on an average).
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Figure 8: Comparison of the three architectures.

Benchmark Instances Forwarded Percentage

Instances

Rijndael 1790 1786 99.77

Sha 33 30 90.90

Blowfish 197 197 100

Djpeg 133 131 100

Compress 26 26 100

Ndes 39 35 89.74

Bitcnts 28 28 100

Dijkstra 5 5 100

Table 3: Percentage of custom instructions that can take advantage of forwarding.
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Benchmark Energy(µJ)

Ideal MOV Forwarding

Rijndael 31,462 16,393 12,373

Sha 15,180 7,909 6,587

Blowfish 30,653 15,972 12,951

Djpeg 3,721 1,939 1,411

Compress 4 2 2

Ndes 46 24 17

Bitcnts 41,689 21,722 15,915

Dijkstra 49,078 25,573 16,811

Table 4: Register file energy consumption under different architectures

6 Conclusion and Future Work

In this paper we have shown how data forwarding can be exploited to implement multiple-input single-

output (MISO) custom instructions on a processor with limited number of register ports. Our technique

overcomes the restrictions imposed by limited register ports and instruction encoding achieving almost

ideal speedup. In the future, we plan to address restrictions on the number of output operands.
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