

Improving Rendering by Texture Map-Based Triangle Strips

Yu Yang, Tulika Mitra and Zhiyong Huang

Department of Computer Science, School of Computing
National University of Singapore, Singapore 117543

{yangyu, tulika, huangzy}@comp.nus.edu.sg

Abstract

Improving the rendering performance is a basic
problem for computer graphics system. In this paper, we
are aiming to investigate the impact on the rendering
performance of some geometry compression methods.
These compression methods are devised to optimize the
use of the vertex cache. We will study how it interacts
with the on-chip texture cache. Based on the study, one
simple method of improving rendering by texture map-
based triangle strips is proposed to balance the use of the
vertex and texture caches. We have conducted the
experiments to show the effectiveness of this method.

1. Introduction

The development of computer graphics applications is
quickly increasing and it is common to find systems
which will result in complex models of millions polygons
with texture mapping. In many cases, the full detailed
geometry and texture maps must be sent down to graphics
hardware for rendering. As the users demand ever larger
and more realistic 3D models, the transmission time,
rendering time and storage requirements grow rapidly.
Thus, real-time graphics hardware is increasingly facing a
memory bus bandwidth bottleneck in which a large
amount of data cannot be sent fast enough to the graphics
pipeline for rendering [1].

Limited memory bandwidth is a barrier to increasing
PC graphics performance. The memory interface gets
inundated with multiple, continuous, high bandwidth
demands such as pixel writes, pixel reads, display refresh,
AGP bus transactions, and texture reads. Unfortunately,
end users notice a slowdown in graphics performance
when one of their multiple demands gets bottlenecked by
the memory interface.

In this paper, we are aiming to investigate the impact
on the rendering performance of some geometry
compression methods that are devised to optimize the use
of the vertex cache. We will study how they interact with
the on-chip texture cache. Based on the study, one simple
method of improving rendering by texture map-based
triangle strips is proposed to balance the use of the vertex
and texture caches. We have conducted the experiments
to show the effectiveness of this method.

2. Background and Related Work

To reduce the bottleneck effect which appears as an
obstacle to the increasing needs for fast rendering, the
rendering process must be carefully examined. The
traditional OpenGL polygon-rendering pipeline consists
of geometry processing, rasterization and image
composite [2]. In the geometry processing stage, input
data will go through transformation, shading, primitive
assembly, visibly culling and projection. In this stage, the
information needs to be processed is the geometry data,
which includes the vertex position, face information, and
normal vectors. In the rasterization stage, the raster
images (e.g. texture, bump and environment maps) will
be transmitted from system memory to graphics processor,
with the use of a texture image cache to reduce the texture
image bandwidth. In the image composite stage, it will
process the z-buffer of each pixel and then write them to
memory.

2.1. Geometry Compression

One solution for reducing the bandwidth is to
compress the static geometry as an offline pre-process [3].
This strategy exploits the idea of using vertex cache. By
using a relative small size of cache to hold frequently
referenced vertices, savings are generated because to
render the same object, fewer vertices are needed to pass
through to the graphics subsystem.

Some basic and popular geometry compression
methods are taken for experiment. One is generalized
triangle strip; the other is generalized triangle mesh.
Triangle strip is a very special way of organizing triangles.

Considering the following triangulation shown in
Figure 1(a), to maximize the use of the available data
bandwidth, it is desirable to order the triangles so that
consecutive triangles share an edge. Using such an
ordering, only the incremental change of one vertex per
triangle need to be specified, potentially reducing the
rendering time by a factor of three by avoiding redundant
lighting and transformation computations. Besides, such
an approach also has obvious benefits in compression for
storing and transmitting models. To allow greater
freedom in the creation of triangle strips, a “swap”
command permits one to alter the FIFO queuing

discipline in a triangle strip as shown in Figure 1(b), the
triangle strip can extend further by taking the sequence of
(1 2 3 SWAP 4 5 6). The swap command gives greater
freedom in the creation of triangle strips at the cost of one
bit per vertex. This form of a triangle strip that includes
swap command is referred to as a generalized triangle
strip [4].

Figure 1. Triangle strips

The concept of a generalized triangle strip structure

allows for compact representation of geometry while
maintaining a linear data structure. By confining itself to
the linear strips, the generalized triangle strip leaves a
potential factor of two in the space occupied.

Figure 2. Generalized triangle mesh

While the geometry in Figure 2 can be represented by

one triangle strip, many of the interior vertices appear
twice in the strip. This is inherent in any approach
wishing to avoid references to the old data. A generalized
technique is employed to address this problem. The old
vertices are explicitly pushed into a queue, and then
implicitly referenced from the queue in the future when
the old vertex is desired again. This queue is referred to
as the mesh buffer. The combination of generalized
triangle strips and mesh buffer references is referred to as
a generalized triangle mesh [3].

2.2. Texture Mapping

Texture mapping can substantially enhance the

realism and visual complexity of computer generated
imagery [5]. Two characteristics of texture mapping are:
(1) texture images often require large amounts of memory,
and (2) it requires many calculations and texture lookups.
These characteristics cause it to be the main performance
bottleneck in graphics pipeline. For each screen pixel that
is textured, the calculations consist of generating texture
addresses, filtering multiple texture samples to avoid
aliasing artifacts, and modulating the texture color with
pixel color. Since the number of pixels that are texture
mapped can be quite large (typically tens to hundreds of
millions per second), and each one requires multiple
texture lookups (usually 8), the memory bandwidth
requirements to texture memory can be very large

(typically several gigabytes per second). In addition, to
achieve the high clock rates required in graphics pipeline,
low latency access to texture memory is needed.

For example, the approximate bandwidth requirement
for a professional application running full-screen at a
resolution of 1,280×1,024, and drawing a complex
trilinear-textured scene filling the graphics window is
1,280 × 1,024 × (16 bytes + 32 bytes) × 60 fps × 3 =
11.32 GB/sec. Assuming that 3 out of every 4 texel
fetches can be satisfied from the texture cache, the bytes
transferred from memory to GPU arising from texture
fetches would be reduced by about 75%. This may appear
somewhat aggressive. However, considering that the
neighboring pixels can easily share a significant number
of the same texels and a texture surface also typically
covers a reasonable screen area in terms of pixels, if the
texture cache is large enough, texel reuse will be
significantly increased. Its impact on the bandwidth
requirement is significant. Using the above illustration,
the bytes transferred from memory become: 1,280 ×
1,024 × (16 bytes + 8 bytes) × 60 fps × 3 = 5.66 GB/sec.
The bandwidth requirement is reduced to nearly a third
and goes from being beyond the limit of traditional
memory controller architectures to something actually
achievable.

One proposed approach is to use an SRAM cache with
each fragment (screen pixel) generator [6]. The premise is
that there is a substantial amount of locality of reference
in texture mapped scene. By using the small size of
SRAM texture cache, lower latency of access to texture
memory and higher bandwidth can be achieved. There are
three factors important to texture cache behavior (1) the
representation of texture images in memory, (2) the cache
organization, and (3) the rasterization order on screen.

2.3. The Problem of Geometry Compression

Different triangles traverse orders will definitely
affect the access patterns of the texture images. In Figure
3 for example, because each triangle in geometry will be
mapped to a certain part of the texture images, the
traversal order of T1-T2-T3-T4 will generate different
access sequence to the texture images compared to that of
T1-T2-T4-T3. The texture cache is used to store a small
amount of texture image data for further references. If the
triangle traverse orders are rather random, it may generate
a large amount of cache misses and thereby worsen the
rendering performance.

Figure 3. Traverse orders for triangles

The triangle traversal orders are determined by the
geometry compression scheme because these compression
schemes exploit a special way of arranging triangles to be
sent for rendering. This order is important to different
caches used on the graphics chip, so the compression
scheme should be aware of the utilization of those caches.

The geometry compression schemes usually ignore
the importance of the texture cache; they focus only on
the vertex cache. For example, if a triangle strip happens
to be mapped to different texture images or many distant
parts of one image, the triangle rendering order will not
give a good rendering performance.

There are four types of locality in texture mapping: (1)
Intra-triangle locality. Pixels within a triangle naturally
share blocks of texture. (2) Intra-object locality. Graphics
objects generally comprise multiple triangles. Triangles
within an object naturally share blocks of texture. (3)
Intra-frame locality. Objects within a frame may share
textures, especially as hardware becomes more common
that supports multiple textures applied to the same object.
(4) Inter-frame locality. Generally the viewpoint moves
only incrementally between frames. Texture blocks
employed in one frame are likely used again in the next
one. The texture cache implemented in software
environment is designed primarily for the intra-triangle
working set, but can be expected to absorb some of the
intra-object working set as well.

Different triangle traverse orders result in different
cache hit ratio. Normal sequence of rendering just follows
the face sequence of an object. This sequence is fairly
random. It has not taken any of cache consideration into
account. Thus it has a relatively lower hit rate. While the
triangle strip or generalized triangle mesh explore the
triangles in a way that the triangles within a strip are
adjacent, the access to their corresponding textures will
most probably hit the textures left in the cache, which
have just been accessed.

3. Texture Map-based Triangle Strips and

Implementation

Based on the above analysis, we present a simple
solution by introducing the texture maps into the meshes:
the texture map-based triangle strips (Figure 4).

Figure 4. A texture map-based triangle strip

The idea is simple. It introduces one level above any
existing geometry compression scheme. Now, the
triangles are not processed in one list. First, they will be
organized in groups by the texture maps applied to them.
In each group, the triangles that are texture mapped by
only one image are ordered by a data representation of the
geometry compression scheme, e.g., the triangle strips.
This way, we can balance the use of the texture caching
and vertex caching.

We have implemented the method using C++ and
OpenGL and running the experiments on a Pentium IV
PC machine with 256MB memory and 1.6GB harddisk.

First, we implemented a 3-D polygonal graphics
pipeline. This is responsible for geometry, clipping, and
lighting of vertices, rasterization, shading, texture
mapping and Z-buffering. The pipeline is similar to the
one described in [6]. Specifically, the texture mapping
implementation is based on mipmap method [12] using
OpenGL [8]. Since the pipeline is implemented in
software, it is easy to experiment with different
rasterization order of triangles. Second, we implemented
a function to trace the Open GL calls that are made by a
graphics application running in real-time. This was done
using the Mesa (http://www.mesa3d.org/), an open source
3-D graphics library with an API which is similar to that
of OpenGL. It is easy to explore into all graphics
application function calls and discover the process of how
rendering is taking place. Third, we implemented a trace-
driven cache simulator that can model different cache
sizes and queuing disciplines. Whenever the software
based fragment generator accesses texels from the
memory, all the accessing records will be kept and later
passed to the cache simulator. The cache simulator runs
after the graphics pipeline.

4. Experiment Study

First, the geometry compression is carried out on the
3D objects as an offline pre-process. Next, the visiting
order of triangles is extracted from the compressed
geometry data for future analysis of the traversal order
effects. Then the compressed data are sent to the 3-D
graphics pipeline of the simulation environment discussed
above. When the object is rendered on the screen, each
generation of screen pixel needs to lookup in the texture
space for RGBA values and interpolates them. The
modified graphics library will generate the texel-pixel
mapping and produce a list of texture address
corresponding to each screen pixel. Finally this mapping
will be passed to the third component which is the cache
simulator. Since the cache simulator is software based,
the cache hit ratio can be easily examined under different
cache sizes and queuing disciplines.

Texture
Component

Texture
Component

Texture
Component

Strip

Strip

Strip Strip

StripStrip

4.1. Texel-Pixel Mapping

By observing the texel-pixel mapping, we can extract
the texture access pattern of the rendering process. We
want to study how different visiting orders of triangles
will affect the texture and pixel access.

Looking into the source code of Mesa, the
rasterization procedure is conducted like this: first, do a
scan conversion over the screen space, for each pixel that
is visible, a function call will calculate its RGBA value.
This value comes from the interpolation of several texels’
RGBA values. The code is modified so that each time a
screen pixel is scanned and displayed, a pair of texel-
pixel mapping is written to an external file. Here is one
example of this kind of pair:

Texel s = 0.534613 t = 0.213296,
Texel s = 0.534663 t = 0.218398,
Pixel x = 326 y = 215,

which means that to render the pixel located at the
coordinate of (326,215), texel (s,t) = (0.534613,0.213296)
and (0.534633,0.218398) will be referenced for their
color values. The texel coordinates here do not mean
there is a exact map in the texture place. It still needs
texel interpolation. Thus for each coordinate there may
still have several more texel lookups. Assuming that there
is a texture map, 800 pixels wide (east to west) by 600
pixels tall (north to south), to look up a value in the map,
the longitude is scaled to the range 0 to 1 in step of 800
and the latitude to the range 0 to 600. the integer parts of
these numbers, call them Iu and Iv, give the coordinates of
the upper left of the 2 × 2 pixel region that must be
fetched for interpolation. The interpolation amount comes
from the fractional parts of the scaled u and v values.

4.2. Geometry Compression

The geometry compression methods are generalized
triangle strip and generalized triangle mesh. For
generalized triangle strip, the optimized algorithm by
Evans et al. is adapted [4]. The compression result is very
impressive. The following table shows the number of
vertex count for each swap and vertex sent to the renderer.

Data
File

Plane Skyscraper Foot Triceratops Porsche

Vert.
No.

1,508 2,022 2,154 2,832 5,247

Tris.
No.

2,992 3,692 4,202 5,660 10,425

Cost 3,509 4,616 5,102 6,911 12,367
Table 1. The cost of triangle strip algorithms

The algorithm ideally will result in a cost of one

vertex per triangle. However, in experiment, a cost of
around 1.1 to 1.25 vertex per triangle is achieved. For the
generalized triangle mesh, the implementation from Chow

is adapted [9]. By increasing the buffer size from a
capacity of 2 vertices to 16 vertices, the cost will go down
to a theoretical minimum of 0.5 vertex per triangle. In
practice the result turns out to be an average of 0.67
vertex per triangle with an average of 43% vertex reuse.
The comparison of the cost per triangle between two
algorithms is illustrated in Figure 5.

Figure 5. Comparison between two algorithms in term

of vertex to triangle ratio

4.3. Texture Cache Size

Working set size is a measure of the amount of data
that is actively in use at a particular time. Most
applications have a hierarchy of working sets [10].
Suppose the screen resolution is R and the depth
complexity is d which represent the average number of
pixels that are rendered for each pixel location. Thus, the
number of pixel Npix generated during rasterization is Npix
= R * d. In this experiment, the MIP level is chosen to be
1:1, so Npix = Ntex. The working size W is given by Ntex *
texel size.

The following figure shows how the cache behaves as
the cache size changes.

Figure 6. Texture cache miss rate under different

cache size

The triangles in a generalized mesh appear close to
each other and grow in a patch pattern because the
implementation uses a progressive growth method [9].

A larger buffer size implies that more of the textures
that are previously transmitted will be re-used. But there
is also a cost-efficient issue to be considered.
Implementing very large texture cache on graphics chip is
much more expensive than memory on board. Taking this
into consideration, a texture cache size which results in
about 75% hit ratio is adapted in NVIDIA’s graphics card
design [11].

4.4. Cache Queuing Disciplines

Experiment studies were carried out on two types of
queuing disciplines for maintaining the buffer:

(1) First-in, first-out (FIFO) - this implies that there is no

rearrangement of the textures in the buffer. FIFO is
the easiest to implement in hardware, and would thus
be preferable if the performance is comparable.

(2) Least recently used (LRU) – LRU dynamically

rearranges the texture in the buffer, by loading a
texture that was used most recently into the spot in
the buffer that holds the most recently admitted
texture. The least recently used texture is eliminated
when a new texture is added to the queue. LRU
provides the benefit that popular textures are held in
the buffer in the hope that they will likely be used in
the near future.

The results of running test on two queuing disciplines

with different cache size are presented in Figure 7.

Figure 7. Texture cache miss rate under LRU and

FIFO

The above figure shows the cost of the LRU and FIFO
queuing disciplines versus different cache size. As can be
seen the advantages to be gained from larger buffer sizes
starts diminishing beyond a buffer size of about 16KB.
For buffer sizes less than 16KB, LRU performs better
than FIFO scheme by a factor of about 5%.

4.5. Triangle Strip vs. Texture-Based Method

We carried out the follow-up experiment on the
texture cache size range from 1KB to 64KB using LRU
replacement policy. We compared our proposed
algorithm and the triangle strip algorithm. We omit the
generalized triangle mesh algorithm because it is just a
special type of triangle strip and they will have similar
result.

In the comparative study, we looked into two types of
objects. One type of objects is constructed with one
connected component, like the Stanford bunny. The other
type of objects is constructed with some separated
components. For example, the foot object we used in the
experiment, the skeletons and bones of the foot are
naturally separated.

Figure 8 shows an example of texture mapping on the
Stanford bunny model. The original model (Figure 8 (a))
is mapped with a texture map of four colors (Figure 8 (b)).
The rendering result is shown in wireframe and smooth
shading respectively (Figure 8(c)). The performance
study result using the texture cache miss rate as the metric
is shown in Figure 9. We compared the proposed method,
where the triangle strips are organized in four bins
respective to the four colors in the texture map, with the
strip compression method, where the triangle strips are
organized as only one sequence. We can see the cache
miss rate of the proposed method, indicated by “texture”
in the figure, is lower than the strip compression method,
indicated by “strip” in the figure, due to balance the use
of the texture and vertex caches of the proposed method.

 (a) Original model (b) Texture map

(c) Texture mapping result in wireframe and smooth

shading
Figure 8. Texture mapping on Stanford bunny

Figure 9. Texture cache miss rate of bunny object

Similarly, we have conducted another experiment on a
foot model (Figure 10) and the performance study result
using the texture cache miss rate is shown in Figure 11.

Figure 10. The foot skeleton

Figure 11. Texture cache miss rate of foot object

From the above results, we can see that for the

Stanford bunny like models, the proposed method has
about 10%~15% less texture cache miss rate than the
triangle strip algorithm. For the foot like models, it has
about 100%~300% less. To gain this better performance
in texture caching performance, we need to pay a cost of
a lower vertex caching performance. For the first type of
models, the proposed method has about 1% more in the
vertex caching cost than the triangle strip algorithm. For
the second type of models, it has about 10% more. Since
the texture information contributes a higher weight to the
traffic transferred on the memory interface, overall the
proposed method is still better than the triangle strip
algorithm.

5. Conclusion and Future Work

We have studied the rendering performance of two
geometry compression methods in texture mapping. The
analysis and experiment results showed that the
compression methods alone are not optimal. A simple
method of improving rendering by texture map-based
triangle strips was proposed and implemented.

Texture cache is very useful in reducing the memory
bandwidth and improves rendering performance. Besides
the rasterization order, there are two more factors that will
affect the texture cache behavior for us to explore in
future:

(1) The cache organization. Study the effect by adapting

a single texture cache and two level caching
strategies.

(2) The representation of texture in storage place. Study

what kind of addressing scheme will be most
effective for fetching of textures.

6. References

[1] Sun Microsystems, Inc. The UPA Bus Interconnect. “Ultra1 –

Creator3D Architectural Technical Whitepaper”,
www.sun.com/desktop/whitepaper/Ultra1, 1996.

[2] J. Foley, A. van Dam, S. Feiner, J. Hughes. “Computer Graphics
Principles and Practice”, Second Edition, Addison-Wesley
Publishing Company, Inc, 1990.

[3] M. Deering. “Geometry Compression”, SIGGRAPH’95, August 1995,
pages 13-20.

[4] F. Evans, S. Skiena, A. Vashney. “An Optimizing Triangle Stripes
for Fast Rendering”, Proc. Visualization ’96, 1996, pages 319-326.

[5] P. S. Heckbert. “Fundamentals of Texture Mapping and Image
Warping”, University of California at Berkeley, June 1989, pages
321-326.

[6] K. Akeley. “Reality Engine Graphics”, SIGGRPH’93, September
1993, pages 109-116.

[7] J. F. Blinn. “The Truth about Texture Mapping”, IEEE Computer
Graphics and Applications, March 1990, pages 78-83.

[8] M. Segal, and K. Akeley. “The OpenGL Graphics System: A
Specification”, Version 1.2.1, Silicon Graphics, Inc., April 1999.

[9] M. Chow, “Optimized geometry compression for real-time
rendering”, Proc. Visualization’97, 1997, pages 415-421.

[10] E. Rothberg, J. P. Singh, and A. Gupta. “Working Sets, Cache Sizes,
and Node Granularity Issues for Large-Scale Multiprocessors”,
Proceedings of the 20th Annual International Symposium on
Computer Architecture, May 1993, pages 14-26.

[11] NVIDIA® Corporation. “Lightspeed Memory Architecture II Tech
Brief”, http://www.nvidia.com/ view.asp?PAGE=geforce4, April
2002.

[12] L. Williams. “Pyramidal Parametrics”, Proceedings of
SIGGRAPH ’83. July 1983, pages 1-11.

