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Abstract 
 

Improving the rendering performance is a basic 
problem for computer graphics system.  In this paper, we 
are aiming to investigate the impact on the rendering 
performance of some geometry compression methods. 
These compression methods are devised to optimize the 
use of the vertex cache. We will study how it interacts 
with the on-chip texture cache. Based on the study, one 
simple method of improving rendering by texture map-
based triangle strips is proposed to balance the use of the 
vertex and texture caches. We have conducted the 
experiments to show the effectiveness of this method. 
 
1. Introduction 
 

The development of computer graphics applications is 
quickly increasing and it is common to find systems 
which will result in complex models of millions polygons 
with texture mapping. In many cases, the full detailed 
geometry and texture maps must be sent down to graphics 
hardware for rendering. As the users demand ever larger 
and more realistic 3D models, the transmission time, 
rendering time and storage requirements grow rapidly. 
Thus, real-time graphics hardware is increasingly facing a 
memory bus bandwidth bottleneck in which a large 
amount of data cannot be sent fast enough to the graphics 
pipeline for rendering [1].  

Limited memory bandwidth is a barrier to increasing 
PC graphics performance. The memory interface gets 
inundated with multiple, continuous, high bandwidth 
demands such as pixel writes, pixel reads, display refresh, 
AGP bus transactions, and texture reads. Unfortunately, 
end users notice a slowdown in graphics performance 
when one of their multiple demands gets bottlenecked by 
the memory interface. 

In this paper, we are aiming to investigate the impact 
on the rendering performance of some geometry 
compression methods that are devised to optimize the use 
of the vertex cache. We will study how they interact with 
the on-chip texture cache. Based on the study, one simple 
method of improving rendering by texture map-based 
triangle strips is proposed to balance the use of the vertex 
and texture caches. We have conducted the experiments 
to show the effectiveness of this method. 

 
2. Background and Related Work 
 

To reduce the bottleneck effect which appears as an 
obstacle to the increasing needs for fast rendering, the 
rendering process must be carefully examined. The 
traditional OpenGL polygon-rendering pipeline consists 
of geometry processing, rasterization and image 
composite [2]. In the geometry processing stage, input 
data will go through transformation, shading, primitive 
assembly, visibly culling and projection. In this stage, the 
information needs to be processed is the geometry data, 
which includes the vertex position, face information, and 
normal vectors. In the rasterization stage, the raster 
images (e.g. texture, bump and environment maps) will 
be transmitted from system memory to graphics processor, 
with the use of a texture image cache to reduce the texture 
image bandwidth. In the image composite stage, it will 
process the z-buffer of each pixel and then write them to 
memory.  
  
2.1. Geometry Compression 
 

One solution for reducing the bandwidth is to 
compress the static geometry as an offline pre-process [3]. 
This strategy exploits the idea of using vertex cache. By 
using a relative small size of cache to hold frequently 
referenced vertices, savings are generated because to 
render the same object, fewer vertices are needed to pass 
through to the graphics subsystem.  

Some basic and popular geometry compression 
methods are taken for experiment. One is generalized 
triangle strip; the other is generalized triangle mesh. 
Triangle strip is a very special way of organizing triangles.  

Considering the following triangulation shown in 
Figure 1(a), to maximize the use of the available data 
bandwidth, it is desirable to order the triangles so that 
consecutive triangles share an edge. Using such an 
ordering, only the incremental change of one vertex per 
triangle need to be specified, potentially reducing the 
rendering time by a factor of three by avoiding redundant 
lighting and transformation computations. Besides, such 
an approach also has obvious benefits in compression for 
storing and transmitting models. To allow greater 
freedom in the creation of triangle strips, a “swap” 
command permits one to alter the FIFO queuing 



 

discipline in a triangle strip as shown in Figure 1(b), the 
triangle strip can extend further by taking the sequence of 
(1 2 3 SWAP 4 5 6). The swap command gives greater 
freedom in the creation of triangle strips at the cost of one 
bit per vertex. This form of a triangle strip that includes 
swap command is referred to as a generalized triangle 
strip [4].  

 
Figure 1. Triangle strips 

 
The concept of a generalized triangle strip structure 

allows for compact representation of geometry while 
maintaining a linear data structure. By confining itself to 
the linear strips, the generalized triangle strip leaves a 
potential factor of two in the space occupied.  

 
Figure 2. Generalized triangle mesh 

 
While the geometry in Figure 2 can be represented by 

one triangle strip, many of the interior vertices appear 
twice in the strip. This is inherent in any approach 
wishing to avoid references to the old data. A generalized 
technique is employed to address this problem. The old 
vertices are explicitly pushed into a queue, and then 
implicitly referenced from the queue in the future when 
the old vertex is desired again. This queue is referred to 
as the mesh buffer. The combination of generalized 
triangle strips and mesh buffer references is referred to as 
a generalized triangle mesh [3]. 
 
2.2. Texture Mapping 

 
Texture mapping can substantially enhance the 

realism and visual complexity of computer generated 
imagery [5]. Two characteristics of texture mapping are: 
(1) texture images often require large amounts of memory, 
and (2) it requires many calculations and texture lookups. 
These characteristics cause it to be the main performance 
bottleneck in graphics pipeline. For each screen pixel that 
is textured, the calculations consist of generating texture 
addresses, filtering multiple texture samples to avoid 
aliasing artifacts, and modulating the texture color with 
pixel color. Since the number of pixels that are texture 
mapped can be quite large (typically tens to hundreds of 
millions per second), and each one requires multiple 
texture lookups (usually 8), the memory bandwidth 
requirements to texture memory can be very large 

(typically several gigabytes per second). In addition, to 
achieve the high clock rates required in graphics pipeline, 
low latency access to texture memory is needed. 

For example, the approximate bandwidth requirement 
for a professional application running full-screen at a 
resolution of 1,280×1,024, and drawing a complex 
trilinear-textured scene filling the graphics window is 
1,280 × 1,024 × (16 bytes + 32 bytes) × 60 fps × 3 = 
11.32 GB/sec. Assuming that 3 out of every 4 texel 
fetches can be satisfied from the texture cache, the bytes 
transferred from memory to GPU arising from texture 
fetches would be reduced by about 75%. This may appear 
somewhat aggressive. However, considering that the 
neighboring pixels can easily share a significant number 
of the same texels and a texture surface also typically 
covers a reasonable screen area in terms of pixels, if the 
texture cache is large enough, texel reuse will be 
significantly increased. Its impact on the bandwidth 
requirement is significant. Using the above illustration, 
the bytes transferred from memory become: 1,280 × 
1,024 × (16 bytes + 8 bytes) × 60 fps × 3 = 5.66 GB/sec. 
The bandwidth requirement is reduced to nearly a third 
and goes from being beyond the limit of traditional 
memory controller architectures to something actually 
achievable. 

One proposed approach is to use an SRAM cache with 
each fragment (screen pixel) generator [6]. The premise is 
that there is a substantial amount of locality of reference 
in texture mapped scene. By using the small size of 
SRAM texture cache, lower latency of access to texture 
memory and higher bandwidth can be achieved. There are 
three factors important to texture cache behavior (1) the 
representation of texture images in memory, (2) the cache 
organization, and (3) the rasterization order on screen.  
 
2.3. The Problem of Geometry Compression 
 

Different triangles traverse orders will definitely 
affect the access patterns of the texture images. In Figure 
3 for example, because each triangle in geometry will be 
mapped to a certain part of the texture images, the 
traversal order of T1-T2-T3-T4 will generate different 
access sequence to the texture images compared to that of 
T1-T2-T4-T3. The texture cache is used to store a small 
amount of texture image data for further references. If the 
triangle traverse orders are rather random, it may generate 
a large amount of cache misses and thereby worsen the 
rendering performance. 

 
 
 
 
 

Figure 3. Traverse orders for triangles 



 

The triangle traversal orders are determined by the 
geometry compression scheme because these compression 
schemes exploit a special way of arranging triangles to be 
sent for rendering. This order is important to different 
caches used on the graphics chip, so the compression 
scheme should be aware of the utilization of those caches. 

The geometry compression schemes usually ignore 
the importance of the texture cache; they focus only on 
the vertex cache. For example, if a triangle strip happens 
to be mapped to different texture images or many distant 
parts of one image, the triangle rendering order will not 
give a good rendering performance. 

There are four types of locality in texture mapping: (1) 
Intra-triangle locality. Pixels within a triangle naturally 
share blocks of texture. (2) Intra-object locality. Graphics 
objects generally comprise multiple triangles. Triangles 
within an object naturally share blocks of texture. (3) 
Intra-frame locality. Objects within a frame may share 
textures, especially as hardware becomes more common 
that supports multiple textures applied to the same object. 
(4) Inter-frame locality. Generally the viewpoint moves 
only incrementally between frames. Texture blocks 
employed in one frame are likely used again in the next 
one. The texture cache implemented in software 
environment is designed primarily for the intra-triangle 
working set, but can be expected to absorb some of the 
intra-object working set as well. 

Different triangle traverse orders result in different 
cache hit ratio. Normal sequence of rendering just follows 
the face sequence of an object. This sequence is fairly 
random. It has not taken any of cache consideration into 
account. Thus it has a relatively lower hit rate. While the 
triangle strip or generalized triangle mesh explore the 
triangles in a way that the triangles within a strip are 
adjacent, the access to their corresponding textures will 
most probably hit the textures left in the cache, which 
have just been accessed. 
 
3. Texture Map-based Triangle Strips and 

Implementation 
 

Based on the above analysis, we present a simple 
solution by introducing the texture maps into the meshes: 
the texture map-based triangle strips (Figure 4).  

 

 
Figure 4. A texture map-based triangle strip 

 

The idea is simple. It introduces one level above any 
existing geometry compression scheme. Now, the 
triangles are not processed in one list. First, they will be 
organized in groups by the texture maps applied to them. 
In each group, the triangles that are texture mapped by 
only one image are ordered by a data representation of the 
geometry compression scheme, e.g., the triangle strips. 
This way, we can balance the use of the texture caching 
and vertex caching. 

We have implemented the method using C++ and 
OpenGL and running the experiments on a Pentium IV 
PC machine with 256MB memory and 1.6GB harddisk.  

First, we implemented a 3-D polygonal graphics 
pipeline. This is responsible for geometry, clipping, and 
lighting of vertices, rasterization, shading, texture 
mapping and Z-buffering. The pipeline is similar to the 
one described in [6]. Specifically, the texture mapping 
implementation is based on mipmap method [12] using 
OpenGL [8]. Since the pipeline is implemented in 
software, it is easy to experiment with different 
rasterization order of triangles. Second, we implemented 
a function to trace the Open GL calls that are made by a 
graphics application running in real-time. This was done 
using the Mesa (http://www.mesa3d.org/), an open source 
3-D graphics library with an API which is similar to that 
of OpenGL. It is easy to explore into all graphics 
application function calls and discover the process of how 
rendering is taking place. Third, we implemented a trace-
driven cache simulator that can model different cache 
sizes and queuing disciplines. Whenever the software 
based fragment generator accesses texels from the 
memory, all the accessing records will be kept and later 
passed to the cache simulator. The cache simulator runs 
after the graphics pipeline. 
 
4. Experiment Study 
 

First, the geometry compression is carried out on the 
3D objects as an offline pre-process. Next, the visiting 
order of triangles is extracted from the compressed 
geometry data for future analysis of the traversal order 
effects. Then the compressed data are sent to the 3-D 
graphics pipeline of the simulation environment discussed 
above. When the object is rendered on the screen, each 
generation of screen pixel needs to lookup in the texture 
space for RGBA values and interpolates them. The 
modified graphics library will generate the texel-pixel 
mapping and produce a list of texture address 
corresponding to each screen pixel. Finally this mapping 
will be passed to the third component which is the cache 
simulator. Since the cache simulator is software based, 
the cache hit ratio can be easily examined under different 
cache sizes and queuing disciplines. 
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4.1. Texel-Pixel Mapping 
 

By observing the texel-pixel mapping, we can extract 
the texture access pattern of the rendering process. We 
want to study how different visiting orders of triangles 
will affect the texture and pixel access. 

Looking into the source code of Mesa, the 
rasterization procedure is conducted like this: first, do a 
scan conversion over the screen space, for each pixel that 
is visible, a function call will calculate its RGBA value. 
This value comes from the interpolation of several texels’ 
RGBA values. The code is modified so that each time a 
screen pixel is scanned and displayed, a pair of texel-
pixel mapping is written to an external file. Here is one 
example of this kind of pair:  

Texel s = 0.534613 t = 0.213296, 
Texel s = 0.534663 t = 0.218398, 
Pixel x = 326 y = 215, 

which means that to render the pixel located at the 
coordinate of (326,215), texel (s,t) = (0.534613,0.213296) 
and (0.534633,0.218398) will be referenced for their 
color values. The texel coordinates here do not mean 
there is a exact map in the texture place. It still needs 
texel interpolation. Thus for each coordinate there may 
still have several more texel lookups. Assuming that there 
is a texture map, 800 pixels wide (east to west) by 600 
pixels tall (north to south), to look up a value in the map, 
the longitude is scaled to the range 0 to 1 in step of 800 
and the latitude to the range 0 to 600. the integer parts of 
these numbers, call them Iu and Iv, give the coordinates of 
the upper left of the 2 × 2 pixel region that must be 
fetched for interpolation. The interpolation amount comes 
from the fractional parts of the scaled u and v values.  
 
4.2. Geometry Compression 
 

The geometry compression methods are generalized 
triangle strip and generalized triangle mesh. For 
generalized triangle strip, the optimized algorithm by 
Evans et al. is adapted [4]. The compression result is very 
impressive. The following table shows the number of 
vertex count for each swap and vertex sent to the renderer. 

 
Data 
File 

Plane Skyscraper Foot Triceratops Porsche

Vert.  
No.  

1,508 2,022 2,154 2,832 5,247

Tris. 
No. 

2,992 3,692 4,202 5,660 10,425

Cost 3,509 4,616 5,102 6,911 12,367
Table 1. The cost of triangle strip algorithms 

 
The algorithm ideally will result in a cost of one 

vertex per triangle. However, in experiment, a cost of 
around 1.1 to 1.25 vertex per triangle is achieved. For the 
generalized triangle mesh, the implementation from Chow 

is adapted [9]. By increasing the buffer size from a 
capacity of 2 vertices to 16 vertices, the cost will go down 
to a theoretical minimum of 0.5 vertex per triangle. In 
practice the result turns out to be an average of 0.67 
vertex per triangle with an average of 43% vertex reuse. 
The comparison of the cost per triangle between two 
algorithms is illustrated in Figure 5. 

 

 
Figure 5. Comparison between two algorithms in term 

of vertex to triangle ratio 
 

4.3. Texture Cache Size 
 

Working set size is a measure of the amount of data 
that is actively in use at a particular time. Most 
applications have a hierarchy of working sets [10]. 
Suppose the screen resolution is R and the depth 
complexity is d which represent the average number of 
pixels that are rendered for each pixel location. Thus, the 
number of pixel Npix generated during rasterization is Npix 
= R * d. In this experiment, the MIP level is chosen to be 
1:1, so Npix = Ntex. The working size W is given by Ntex * 
texel size.  

The following figure shows how the cache behaves as 
the cache size changes.  

 

 
Figure 6. Texture cache miss rate under different 

cache size 
 



 

The triangles in a generalized mesh appear close to 
each other and grow in a patch pattern because the 
implementation uses a progressive growth method [9].  

A larger buffer size implies that more of the textures 
that are previously transmitted will be re-used. But there 
is also a cost-efficient issue to be considered. 
Implementing very large texture cache on graphics chip is 
much more expensive than memory on board. Taking this 
into consideration, a texture cache size which results in 
about 75% hit ratio is adapted in NVIDIA’s graphics card 
design [11]. 
 
4.4. Cache Queuing Disciplines 
 

Experiment studies were carried out on two types of 
queuing disciplines for maintaining the buffer: 

 
(1) First-in, first-out (FIFO) - this implies that there is no 

rearrangement of the textures in the buffer. FIFO is 
the easiest to implement in hardware, and would thus 
be preferable if the performance is comparable. 

 
(2) Least recently used (LRU) – LRU dynamically 

rearranges the texture in the buffer, by loading a 
texture that was used most recently into the spot in 
the buffer that holds the most recently admitted 
texture. The least recently used texture is eliminated 
when a new texture is added to the queue. LRU 
provides the benefit that popular textures are held in 
the buffer in the hope that they will likely be used in 
the near future. 

 
The results of running test on two queuing disciplines 

with different cache size are presented in Figure 7. 

 
Figure 7.  Texture cache miss rate under LRU and 

FIFO 
 

The above figure shows the cost of the LRU and FIFO 
queuing disciplines versus different cache size. As can be 
seen the advantages to be gained from larger buffer sizes 
starts diminishing beyond a buffer size of about 16KB. 
For buffer sizes less than 16KB, LRU performs better 
than FIFO scheme by a factor of about 5%. 
 
 

4.5. Triangle Strip vs. Texture-Based Method 
 

We carried out the follow-up experiment on the 
texture cache size range from 1KB to 64KB using LRU 
replacement policy. We compared our proposed 
algorithm and the triangle strip algorithm. We omit the 
generalized triangle mesh algorithm because it is just a 
special type of triangle strip and they will have similar 
result. 

In the comparative study, we looked into two types of 
objects. One type of objects is constructed with one 
connected component, like the Stanford bunny. The other 
type of objects is constructed with some separated 
components. For example, the foot object we used in the 
experiment, the skeletons and bones of the foot are 
naturally separated. 

Figure 8 shows an example of texture mapping on the 
Stanford bunny model. The original model (Figure 8 (a)) 
is mapped with a texture map of four colors (Figure 8 (b)). 
The rendering result is shown in wireframe and smooth 
shading respectively (Figure 8(c)). The performance 
study result using the texture cache miss rate as the metric 
is shown in Figure 9. We compared the proposed method, 
where the triangle strips are organized in four bins 
respective to the four colors in the texture map, with the 
strip compression method, where the triangle strips are 
organized as only one sequence. We can see the cache 
miss rate of the proposed method, indicated by “texture” 
in the figure, is lower than the strip compression method, 
indicated by “strip” in the figure, due to balance the use 
of the texture and vertex caches of the proposed method. 
 

 
 (a) Original model   (b) Texture map 

 

  
(c) Texture mapping result in wireframe and smooth 

shading 
Figure 8. Texture mapping on Stanford bunny 

 



 

 
 

Figure 9. Texture cache miss rate of bunny object 
 

Similarly, we have conducted another experiment on a 
foot model (Figure 10) and the performance study result 
using the texture cache miss rate is shown in Figure 11. 

 
 
 
 
 
 

Figure 10. The foot skeleton 
 

 
Figure 11. Texture cache miss rate of foot object 

 
From the above results, we can see that for the 

Stanford bunny like models, the proposed method has 
about 10%~15% less texture cache miss rate than the 
triangle strip algorithm. For the foot like models, it has 
about 100%~300% less. To gain this better performance 
in texture caching performance, we need to pay a cost of 
a lower vertex caching performance. For the first type of 
models, the proposed method has about 1% more in the 
vertex caching cost than the triangle strip algorithm. For 
the second type of models, it has about 10% more. Since 
the texture information contributes a higher weight to the 
traffic transferred on the memory interface, overall the 
proposed method is still better than the triangle strip 
algorithm. 
 
 
 

5. Conclusion and Future Work 
 

We have studied the rendering performance of two 
geometry compression methods in texture mapping. The 
analysis and experiment results showed that the 
compression methods alone are not optimal. A simple 
method of improving rendering by texture map-based 
triangle strips was proposed and implemented. 

Texture cache is very useful in reducing the memory 
bandwidth and improves rendering performance. Besides 
the rasterization order, there are two more factors that will 
affect the texture cache behavior for us to explore in 
future: 

 
(1) The cache organization. Study the effect by adapting 

a single texture cache and two level caching 
strategies. 

 
(2) The representation of texture in storage place. Study 

what kind of addressing scheme will be most 
effective for fetching of textures. 
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