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ABSTRACT
Extensible processors allow addition of application-specific
custom instructions to the core instruction set architecture.
However, it is computationally expensive to automatically
select the optimal set of custom instructions. Therefore,
heuristic techniques are often employed to quickly search the
design space. In this paper, we present an efficient algorithm
for exact enumeration of all possible candidate instructions
given the dataflow graph (DFG) corresponding to a code
fragment. Even though this is similar to the “subgraph enu-
meration” problem (which is exponential), we find that most
subgraphs are not feasible candidates for various reasons.
In fact, the number of candidates is quite small compared
to the size of the DFG. Compared to previous approaches,
our technique achieves orders of magnitude speedup in enu-
merating these candidate custom instructions for very large
DFGs.

Categories and Subject Descriptors: C.1.3 [Other
Architecture Styles]

General Terms: Algorithm, Performance, Design.

Keywords: ASIPs, customizable processors, instruction-
set extensions, subgraph enumeration algorithm

1. INTRODUCTION
The transition from desktop to embedded computing has

made it crucial to design high performance, low cost em-
bedded software/hardware systems within very short time-
to-market window. The conventional approach of designing
“hand-crafted” ASIC is too expensive and inflexible. On the
other hand, general purpose processors, while inexpensive,
are yet to meet the demanding performance requirement
and usually consume too much power. These factors have
resulted in the emergence of instruction-set extensible pro-
cessors [2, 11, 12, 15, 18] that consist of an existing processor
core extended with application-specific custom instructions.
These custom instructions execute on reconfigurable custom
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Figure 1: An example of custom instruction and
architecture.

functional units (CFU). Application-specific custom instruc-
tions help simple embedded processors to achieve consider-
able performance/energy efficiency. Moreover, the fact that
the same set of custom instructions can benefit different pro-
grams from an application domain illustrates the flexibility
of this approach [9, 11].

A custom instruction encapsulates the computation of
a frequently executed subgraph of the program’s dataflow
graph (DFG). A CFU is simply the hardwired datapath im-
plementation of a custom instruction. Figure 1 shows an
example of a dataflow subgraph, its corresponding custom
instruction, and the datapath of an extensible processor that
includes the CFUs. Optimized hardwired CFUs help to im-
prove performance through parallelism and chaining of oper-
ations. At the same time, custom instructions result in com-
pact code size as well as less number of instruction fetches
and decodes. Also the elimination of temporary registers
within a custom instruction reduces register pressure. All
these factors reduces the total power consumption. When
the same computation pattern appears elsewhere in the pro-
gram or even in other programs, it can be converted to the
same custom instruction and executed on the same CFU.

However, identifying the suitable set of subgraphs from a
program’s DFG to form a set of custom instructions that is
optimal in performance, power and hardware cost (i.e., area)
is not an easy problem. This problem involves two subprob-
lems: (1) custom instruction identification – enumerate a
set of candidate subgraphs from the program’s DFG and (2)
custom instruction selection – evaluate performance, power,
area of each candidate and then select an optimal subset of
them under various design constraints. In this paper, we fo-
cus on the first problem. Interested readers can refer to [3,
4, 9, 14, 17] for various solutions to the second problem.

Enumerating all possible subgraphs of a given graph is
intractable and computationally expensive. The number of
subgraphs or patterns for a DFG is, in general, exponential



in terms of the number of nodes in the DFG. However, some
of these patterns are infeasible due to various microarchi-
tectural constraints. Examples of such constraints include
maximum number of input and output operands (due to re-
strictions on the number of register ports), area, and delay
of each custom instruction. Moreover, a custom instruction
is infeasible if it cannot be executed atomically (named as
convexity constraint by [4] – see Section 3.1 for details).

Previous approaches either put very limiting constraints
on the number of operands [10, 16] or use heuristics [6, 9]
to explore the design space quickly. However, it has been
shown [4, 17] that these approaches can significantly restrict
the performance potential of using custom instructions. To
the best of our knowledge, [4] is the only work that exhaus-
tively enumerates all feasible patterns. The algorithm uses
an effective pruning strategy for various constraints. How-
ever, in the worst case, it will look at 2N patterns where
N is the number of nodes in the DFG. Therefore, the ex-
haustive enumeration algorithm in [4] has scalability issues
if the DFG is very large and/or the micro-architectural con-
straints are not very restrictive. Note that there exits a very
efficient algorithm [5] to enumerate all connected induced
subgraphs of a graph. However, the presence of microarchi-
tectural constraints necessitates the design of a customized
algorithm that can prune the design space containing infea-
sible subgraphs efficiently. It is not clear how [5] can be
extended to do so.

The contributions of our work are the following.

• We present an efficient algorithm to enumerate all fea-
sible patterns of a DFG under number of input/output
operands and convexity constraints. The algorithm ex-
ploits the structure of the DFG and prunes the design
space substantially based on the constraints. Exper-
imental results indicate that our algorithm achieves
orders of magnitude speedup over previous exact enu-
meration approach. Our algorithm is quite scalable
so that it can be applied on large DFGs with relaxed
micro-architectural constraints.

• Our experimental results confirm that the number of
feasible patterns is indeed very small compared to the
size of the DFG. Therefore, the set of patterns gener-
ated by our algorithm can be easily subjected to accu-
rate design space exploration for an optimal subset.

The rest of the paper is organized as follows. We discuss
related work in instruction-set extensible processors in Sec-
tion 2. We define the problem formally and describe our
algorithm in Section 3. Experimental results are presented
in Section 4 and concluding remarks appear in Section 5.
Finally, the proof of completeness of our algorithm appears
in Appendix.

2. RELATED WORK
Identifying optimal set of custom instructions has received

a lot of attention recently. As mentioned before, the process
consists of two steps: enumeration of patterns and selec-
tion of an optimal subset of these patterns. The first step
constructs a DFG for each basic block in the program and
enumerates the patterns from that DFG. The previous work
in pattern enumeration can be classified according to the re-
strictions imposed on the feasibility of patterns as follows.

Number of Operands.The maximum number of input
and output operands of custom instructions is typically con-
strained due to length of instruction encoding and/or ports
to register files. However, these restrictions can sometime
lead to very efficient enumeration algorithms. For exam-
ple, Pozzi et al. [16] has developed a greedy algorithm that
can identify the maximal Multiple Inputs Single Output
(MISO) patterns. The complexity of the algorithm is lin-
ear in the number of nodes in the DFG. J. Cong et al. [10]
enumerates all possible K-feasible MISO patterns (where
K is the input operands constraint) through a single pass
of the DFG. The problem of using Multiple Inputs Multi-
ple Outputs (MIMO) patterns is that there can potentially
be exponential number of them in terms of the number of
nodes in the DFG. Arnold et al. [3] uses an iterative tech-
nique that replaces the occurrences of previously identified
smaller patterns with single nodes to avoid the exponential
blowup. However, their algorithm does not enumerate all
possible patterns and is restricted to very small number of
input and output operands. Clark et al. [9] uses a heuris-
tic algorithm that starts with small MIMO patterns and
expands only the directions that can possibly lead to good
patterns. Baleani et al. [6] uses another heuristic algorithm
that adds nodes to the current pattern in topological order
till input or output constraint is violated; it then starts a
new pattern only with the node that caused the violation.
All the last three algorithms only generate a subset of the
candidate patterns that meet input, output, and convexity
constraints. Therefore, they may miss opportunities to pro-
duce the globally optimal set of custom instructions. Atasu’s
work [4] is the only known approach that exhaustively enu-
merates all possible patterns. It searches a full binary tree
and decides at each step whether or not to include a partic-
ular instruction in a pattern. The potentially exponential
search space is pruned based on violation of convexity and
input or output constraints. Even though the algorithm is
quite fast for small DFGs, it is not very scalable as DFG
size or number of input/output operands increases.

Connectivity.A candidate subgraph (pattern) may contain
one or more disjoint components. Including multiple compo-
nents in a subgraph increases the potential to exploit paral-
lelism and thus may provide better performance if the base
architecture does not support instruction-level parallelism
(ILP). On the other hand, doing so may not be beneficial for
an ILP processor that would have been able to exploit this
parallelism anyway. Also, including multiple disjoint com-
ponents in a single custom instruction may generate very
large patterns that have very little chance of reuse in a pro-
gram or across programs. [3, 6, 9, 10, 16] identify subgraphs
with only one component, while [4] and [7] combine disjoint
components together. In this paper, we only identify con-
nected custom instructions.

Overlap. As the final set of selected custom instructions
do not normally overlap in the DFG, [6, 16] do not consider
overlapped candidate patterns (e.g., patterns {1, 2, 3} and
{2, 4} in Figure 2 overlap at node 2, so only one of them
will be enumerated). However, other works enumerate over-
lapped patterns as they may be used to produce a better
optima, especially under tight area budget.
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Figure 2: An example dataflow graph and its regions

Order of pattern identification and selection.Most of
the previous works take a two step approach where the first
step identifies the set of candidate patterns and the second
step does the selection. However, some heuristic algorithms,
such as [9], combine the two steps. This way the likely bad
patterns are eliminated on-the-fly, thereby reducing the time
and storage complexity of the algorithm at the risk of miss-
ing the global optima.

Given a set of candidate patterns, various approaches have
been proposed to select the optimal subset under different
constraints. [4] proposes an optimal method to select N
patterns. Both ILP-based [14, 17] and heuristic-based meth-
ods [9, 17] have been proposed to select patterns under area
constraints. Finally, a dynamic programming approach has
been proposed in [3] to select the optimal subset if there is
no constraint on area or number of patterns.

We aim at enumerating all possible connected patterns
(may be overlapped) that meet the input, output and con-
vexity constraints. This gives the selection process an oppor-
tunity to find the globally optimal solution. As mentioned
before, Atasu et al. [4] is the only work that has a similar
goal. However, the scalability problem of [4] restricts its ap-
plicability to DFGs of large basic blocks. In contrast, our
approach is scalable both in terms of DFG size as well as
number of input/output operands.

3. TECHNIQUE
In this section, we describe our algorithm to generate all

feasible patterns of a dataflow graph (DFG) under microar-
chitectural constraints. First, we formally define the prob-
lem and describe the previous approach for exhaustive enu-
meration. Next, our algorithm is presented followed by a
discussion of optimizations employed in the implementation.

3.1 Problem Formulation
Given a program, custom instructions are identified using

the dataflow graphs corresponding to the basic blocks. A
DataFlow Graph (DFG) G(V,E) represents the compu-

tation flow of data within a basic block. The nodes V rep-
resent the operations and the edges E represent the depen-
dencies among the operations. G(V,E) is always a directed
acyclic graph (DAG). The architectural constraints may not
allow all types of operations to be included as part of a cus-
tom instruction. For example, memory access and control
transfer operations are typically not included. Therefore,
we partition the nodes of the DFG into valid and invalid
nodes. A node in the DFG, whose corresponding operation
can be included as part of custom instruction, is a valid
node; otherwise, it is an invalid node.

Note that our algorithm is not restricted to generating
patterns only within a basic block. In fact, our previous
work [17] explores patterns across basic block boundaries
and shows significant improvement in performance. In that
case, we construct DFGs corresponding to a sequence of
basic blocks ignoring the control flow instructions. Once
the patterns are selected, it is left to the compiler to exploit
patterns crossing basic block boundaries through formation
of superblocks, hyperblocks and/or loop unrolling.

The DFG is partitioned into multiple regions. Given a
DFG G(V,E), we define a region R(V’,E’) as a maximal
subgraph of G s.t. (1) V’ contains only valid nodes, (2) there
exists an undirected path between any pair of nodes in V’,
and (3) there does not exist any edge between a node in V’
and a valid node in (V - V’). Invalid nodes do not belong
to any region. We apply custom instruction identification
algorithm individually on each region. Figure 2 shows a
DFG divided into two regions by a memory load operation
(assuming memory load is an invalid operation).

Given a DFG, a pattern is a subgraph that belongs to a
region in the DFG. A pattern is a possible candidate for
custom instructions. A region is a trivial pattern. For
convenience, we represent a pattern simply by its set of
nodes P. The subgraph corresponding to a pattern can be
re-constructed by simply taking the induced subgraph of P
(i.e., all the edges in the DFG that connect any two nodes in
P). In addition, each pattern has incoming edges and outgo-
ing edges corresponding to the input and output operands
of the pattern, respectively. The set of nodes in P connected
to input operands of P are called input nodes, defined as
IN(P). Similarly, the set of nodes in P connected to output
operands of P are called output nodes, defined as OUT(P).

A pattern P is convex if there exists no path in the DFG
from a node m ∈ P to another node n ∈ P, which contains
a node p /∈ P. For example, {1, 2, 3} is a convex pattern in
Figure 2. Feasible patterns should be convex as non-convex
patterns cannot be executed atomically. For example, in
Figure 2, the pattern P1 with nodes {1, 3, 5} is non-convex.
Similarly, the pattern P2 with nodes {2, 3, 6} is also non-
convex. However, note that the non-convexity of P1 and P2
arises due to different reasons. P1 is non-convex because we
cannot include the invalid node corresponding to the mem-
ory load operation in the pattern. On the other hand, P2
is non-convex because we choose not to include node 4 in
the pattern. We call the first case external non-convexity
and the second one internal non-convexity. A non-convex
pattern P is external non-convex if their exists a path
from a node m ∈ P to another node n ∈ P, which contains
an invalid node p /∈ P. Otherwise, the non-convex pattern
is internal non-convex.

In addition, restrictions on instruction length and number
of ports to the register file can put constraints on the max-



imum number of allowed input and output operands for a
pattern. For example, if a custom instruction is allowed to
have only one output operand, then the pattern {1, 2, 3} is
infeasible.

Problem Definition.Given the DFG corresponding to a
code fragment, our problem is to enumerate all feasible pat-
terns (i.e., patterns that satisfy convexity and input, output
constraints) for that code fragment. However, the goal is
to avoid duplication of work, that is, minimize the number
of times a pattern is enumerated. Ideally, we would like to
enumerate a pattern exactly once. Note that this problem
is similar but not exactly the same as the subgraph enumer-
ation problem within each region. There are two important
differences.

• The internal and external non-convexity as well as in-
put and output constraints disallow many subgraphs
as candidate custom instructions. Therefore, it is pos-
sible to develop efficient algorithms that can enumer-
ate the patterns by exploiting this condition.

• As the dataflow graph is a DAG, its structure can
be exploited to avoid enumerating a pattern multiple
times.

3.2 Previous Algorithm
To the best of our knowledge, [4] is the only previous

work that exhaustively enumerates all feasible patterns of a
DFG. We will refer to this algorithm as exhaustive in the
rest of the paper. In this section, we briefly describe the
exhaustive algorithm as we use it as the baseline algorithm
for comparison purposes.

The exhaustive algorithm first assigns labels 0 . . .N− 1
to the instructions (nodes) of the DFG in reverse topolog-
ically sorted order, where N is the number of instructions
in the DFG. (Note that in Figure 2, the instructions are la-
beled differently, i.e., in topologically sorted order.) It then
searches an abstract binary tree containing N+1 levels and
2N+1 − 1 nodes to generate feasible patterns. The root node
at level 0 represents the empty pattern. The two children of
the root represent the presence and absence of instruction 0,
i.e., an empty pattern and a pattern containing instruction
0, respectively. The nodes at level i (0 < i ≤ N) represent
all possible patterns with instructions 0 . . . i− 1. Basically,
the search tree visits the instructions in reverse topologi-
cal order and explores the patterns corresponding to pres-
ence/absence of each instruction. Clearly, the search space
is exponential. However, the algorithm uses a clever strat-
egy to prune the design space. If the pattern corresponding
to a node S in the abstract search tree violates either the
output constraint or the convexity constraint, then there is
no need to explore the subtree of S. As the instructions in
the DFG are visited in reverse topologically sorted order, all
the patterns corresponding to the nodes in the subtree of S
are guaranteed to violate output or convexity constraint.

Note that the original exhaustive algorithm as described
in [4] enumerates both connected and disconnected patterns.
Therefore it works on the entire DFG as opposed to individ-
ual regions in a DFG. For comparison purposes, we invoke
the exhaustive algorithm for each region separately. Also,
for each generated pattern, we do an additional check to
see if it is connected. We perform a depth first search of
the pattern subgraph starting with the most recently added

node. If the depth first search reaches all the nodes, then
the pattern is connected. Experimental results indicate that
the overhead for this additional check is minimal.

3.3 Our Algorithm
Our algorithm generates all possible connected feasible

patterns of a DFG. It first partitions the DFG into regions
and finds patterns within each region. We will refer to our
algorithm as union algorithm for reasons that will become
clear later. Note that, in the worst case, number of feasible
patterns of a DFG is exponential in terms of the number of
nodes of the DFG. Therefore, the overall complexity of union
algorithm is also exponential. However, experimental results
indicate that, in practice, union algorithm achieves orders
of magnitude speedup over exhaustive algorithm while pro-
ducing the same set of patterns.

To present an overview of the algorithm, we first need to
define the notion of cones. An upward cone of node v is a
pattern P containing v such that for any other node u ∈ P,
there exists a path from u to v in P. Informally, an upward
cone of v is a pattern with v as the only sink node. Similarly,
a downward cone of node v is a pattern with v as the only
source node. In Figure 2, pattern {0, 1, 2, 3} is an upward
cone at node 3, while pattern {2, 3, 4} is a downward cone
at node 2.

The algorithm consists of two phases. In the first phase,
we traverse the nodes of each region in topologically sorted
order and calculate the set of possible convex upward cones
at each node. Note that the upward cones for different nodes
in a region may overlap (i.e., two cones may share nodes)
but they are always unique (i.e., a cone is present only once).
Similarly, we traverse the nodes of each region in reverse
topologically sorted order to calculate the set of possible
convex downward cones at each node. However, there exist
feasible patterns that cannot be represented as upward or
downward cone of a node. For example, the feasible pattern
{1, 2, 3, 4} cannot be represented as upward or downward
cone of any of its constituent nodes. We enumerate these
patterns in the second phase of the algorithm as union of
two or more upward and downward cones. For example, the
pattern {1, 2, 3, 4} can be obtained from the union of upward
cone {1, 2, 3} of node 3 and downward cone {2, 4} of node
2. The next two subsections present in detail the first and
second phase of the algorithm, respectively.

3.3.1 First Phase: Enumeration of Upward and Down-
ward Cones

Algorithm 1 details the generation of upward cones for
a region R. As mentioned before, the algorithm traverses
the nodes of a region in topologically sorted order (nodes
0 to 10 in Figure 2). We define UC SET(v) as the set of
upward cones for node v satisfying both the input operands
and convexity constraints. Recall that each upward cone
(pattern) in the set UC SET(v), in turn, is again represented
as a set of nodes. Given a node v, let v1, . . . , vk be its
predecessors in the region. As we are traversing the nodes
in topologically sorted order, the set of upward cones of vi

(1 ≤ i ≤ k) is known when v is visited. Therefore, we can
compute all possible upward cones of v. For example, the
set of upward cones of node 1 and 2 (in Figure 2) are {{1}}
and {{2}, {0, 2}}, respectively. Therefore, the set of upward
cones computed for node 3 is { {3}, {1,3}, {2,3}, {0,2,3},
{1,2,3}, {0,1,2,3} }.



1 for all nodes v of R in topologically sorted order do
2 UC SET(v) := {v};
3 Let v1, . . . , vk be the predecessors of v;
4 for i = 1 to k do

5 for j= 1 to

(
k
i

)
combinations do

6 Let vx1 , . . . , vxi be the predecessors selected in
the jth combination;

7 tmp := UC SET(vx1)× . . .×UC SET(vxi);
8 for each t ∈ tmp do
9 Let t = {uc1, . . . ,uci};

10 uc := uc1 ∪ . . . ∪ uci ∪ {v};
11 if CONVEX(uc) ∧ IN CHECK(uc) then
12 UC SET(v) := UC SET(v) ∪ {uc};

end
end

end
end

Algorithm 1: Enumeration of upward cones of region R.

This step may generate some upward cones (e.g., {2, 3, 6}
at node 6 in Figure 2) that do not satisfy convexity and/or
input operands constraint. The algorithm eliminates such
upward cones in line 11. We prove in the Appendix that such
elimination is safe, i.e., Algorithm 1 still produces all upward
cones satisfying input and convexity constraints. Note that
the algorithm does not eliminate any upward cone that does
not satisfy output constraint.

Moreover, an upward cone uc that violates input and/or
convexity constraint can still be used to compose a feasible
pattern p. As we generate all possible patterns as union of
one or more cones, we have to make sure that the pattern p
can still be generated even if we eliminate the upward cone
uc. The proof is given in the appendix.

The generation of downward cones is similar to Algorithm
1. However, in this case, the traversal is in reverse topologi-
cal order. Also the cones violating convexity and/or output
constraints are eliminated.

3.3.2 Second Phase: Enumeration of All Feasible
Patterns

As mentioned before, the second phase computes all the
feasible patterns as union of one or more upward and down-
ward cones. It traverses the nodes in a region R in reverse
topological order. It maintains the following invariant: when
the traversal of a node v is completed, all the feasible patterns
involving v have been enumerated. Therefore, node v need
not be considered further and can be deleted along with the
constituent cones involving v. Algorithm 2 details the steps.

We first define a few terms. The maximal upward cone
of a node v in a DAG R, MAX UC(v, R), is the maximal
upward cone of v s.t. for any upward cone Q of v in R,
MAX UC(v,R) ⊇ Q. For example, {0, 1, 2, 3} is the maxi-
mal upward cone of node 3. The upward cones of node v,
UC SET(v), can only be extended along the output nodes of
the maximal upward cone of v, that is, OUT(MAX UC(v,
R)) (lines 4–6 in Algorithm 2). The reasoning for this is that
any output node of an upward cone in UC SET(v) must also
be the output node of MAX UC(v,R). Suppose u (u6=v) is
an output node of an upward cone Q in UC SET(v) as gen-
erated by Algorithm 1. As Q is convex, all the paths from
u to v must be included in Q. Clearly, u must also have at
least one edge to a node x outside Q (otherwise u cannot be

1 begin
2 for all nodes v of R in reverse topological order do
3 PATTERNS(v) := UC SET(v);
4 ext := OUT(MAX UC(v, R));
5 if ext 6= φ then
6 PATTERNS(v) := UNION(PATTERNS(v),

ext, down);
7 remove v from R;

end
end

UNION(core, ext, direction)
begin

8 new core := core;
9 Let ext = {v1, . . . , vk};

10 for i = 1 to k do

11 for j = 1 to

(
k
i

)
combinations of ext do

12 Let V = {vx1 , . . . , vxi} be the jth combination
of extension points;

13 P := { p | p∈core
∧

p⊇V
∧

p∩(ext-V)=φ};
14 if direction = down then

15 tmp:=DC SET(vx1)× . . .×DC SET(vxi)×P;
else

16 tmp:=UC SET(vx1)× . . .×UC SET(vxi)×P;
end

17 tmp core := φ;
18 for each t ∈ tmp do
19 Let t = {pat1, . . . ,pati+1};
20 pat := pat1 ∪ . . . ∪ pati+1;
21 if (direction = down)

∧
CONVEX(pat)

∧
OUT CHECK(pat) then

22 tmp core := tmp core ∪ {pat};
23 if (direction = up)

∧
CONVEX(pat)

∧
IN CHECK(pat) then

24 tmp core := tmp core ∪ {pat};
end

25 if direction = down then
26 tmp ext :=

⋃
vxi∈V IN(MAX UC(vxi ,R));

else
27 tmp ext:=

⋃
vxi∈V OUT(MAX DC(vxi ,R));

end
28 tmp ext := REMOVE EXT(tmp ext ∩

{vertices present in new core});
29 if tmp ext 6= φ then
30 new core := new core ∪ UNION(tmp core,

tmp ext, !direction);
else

31 new core := new core ∪ tmp core;
end

end
end

32 new core := { p | p ∈ new core
∧

IN CHECK(p)
∧

OUT CHECK(p) };
33 return new core;

end

Algorithm 2: Generation of feasible patterns of region R.



an output node of Q). Now there cannot exist any path from
x to v (otherwise Q will be non-convex). As MAX UC(v, R)
only contains nodes that have paths to v, x is not included
in MAX UC(v, R). Therefore, u is also an output node of
MAX UC(v, R). The terminology and reasoning for down-
ward cones are similar. Given a pattern, the nodes along
which it is extended are called the extension points.

The patterns are enumerated using the UNION function.
This is a recursive function that takes in three arguments:
(1) core, a set of generated patterns, (2) ext, the nodes to
be used as starting points for extension, and (3) direction

of extension, which can take in values up and down. The
algorithm combines patterns in the core with the patterns
in the cones of the extension points. Given a combination of
extension points {vx1 , . . . , vxi} (lines 10–13), we only select
the patterns P in the core that satisfy the following con-
straints: (1) the pattern contains all the extension points
{vx1 , . . . , vxi} and (2) the pattern does not contain any other
extension points (as those patterns will be considered any-
way in connection with other extension points combinations
and will result in redundancy).

The cones for the extension points are chosen as upward
or downward cones depending on the direction (lines 14–16).
Next, some infeasible patterns are eliminated at lines 21–24.
We prove that these eliminations are safe in the Appendix.
Finally, the patterns generated might be extended further.
This is achieved by computing the extension points of the
newly generated patterns (lines 25–28) and calling UNION
function again (lines 29–30). The recursion ends when either
no new pattern is generated or there are no new extension
points. The final set of generated patterns are subjected to
input, and output check.

The function REMOVE EXT eliminates extension points
that cannot produce new patterns. The conditions under
which an extension can be eliminated if direction is down

are explained below. That is, we want to combine down-
ward cones of the extension points. The explanation for the
reverse direction is similar.

• If the direction is downwards, the extension points are
chosen as output nodes of the current core. However,
if none of the outgoing edges of an extension point
leads to a node in the region that does not belong
to the current core, then the extension point can be
eliminated.

• Given two extension points u and v, if MAX DC(u,
R) ⊆ MAX DC(v, R), then u can be eliminated from
further consideration.

• If an extension point has already been considered be-
fore, it can be eliminated.

Figure 3 (a) illustrates the algorithm with an example.
Assume that we are currently visiting node 8 in the DFG.
The maximal upward cone of 8 contains three output nodes:
1, 2, and 8. Among them, it is only possible to extend along
nodes 1 and 2. These nodes result in three possible com-
binations: {1}, {2}, and {1, 2}. For the first combination,
we take cross product of all cones in UC SET(8) (contain-
ing node 1 but not 2) with DC SET(1). This step does
not introduce any new extension points. However, the sec-
ond combination generates a new extension point 10 and
UNION is called again. Figure 3 (b) illustrates the function
call graph generated for node 8.
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Figure 3: Illustration of pattern generation.

Figure 3 (c) illustrates the procedure with a concrete pat-
tern {0, 1, 2, 4, 5, 8} in the UC SET(8) and the combination
{1, 2}. We first extend the pattern by taking the downward
cones at 1 and 2. The intermediate pattern produced is
extended with the upward cones at node 10.

3.4 Optimizations
The basic idea of the algorithm is described in the previous

section. In this section, we describe the data structures and
some optimizations employed in the implementation.

Data structures.We use fixed-length bit vectors to rep-
resent each pattern. The length of the bit vectors for a
particular region is equal to the number of nodes in that
region. Given the bit vector of a pattern, each bit simply
indicates the presence and absence of a node in that pat-
tern. Bit vector representation provides a very natural and
efficient means to combine two or more patterns (as in line
20 of Algorithm 2 through bit-wise OR operation).

Note that we need to remove duplicates while constructing
a set of patterns. This step requires both efficient search as
well as insertion that cannot be achieved either with sorted
array or linked list. We maintain a set of patterns as a 2-3
Tree [1]. The patterns in a 2-3 tree are ordered by the value
of their bit-vectors; every query or insertion of a pattern
can be achieved within O(log2(n)) time, where n is the total
number of patterns present in the 2-3 tree. A pattern is
inserted in the 2-3 tree only if it is not present already.



Checking for convexity constraints.As discussed before,
a non-convex pattern can have external or internal non-
convexity. In order to check for internal non-convexity of
a pattern P, we consider all immediate successors from the
nodes in OUT(P). If, for one such immediate successor u /∈ P,
there exists a path to a node v ∈ P, then P fails the non-
convexity constraint.

Most of the convexity violations in our problem arise due
to violation of external non-convexity. We have developed
an efficient method to check for this violation. The method
involves a pre-processing step. Given a region R, we first
identify special pairs of nodes, called boundary pairs. Two
nodes u and v in R are called a boundary pair if there exists
a path 〈u, x1, . . . xn, v〉 in the DFG s.t. x1, . . . xn do not
belong to R. For example in Figure 2, 〈1, 5〉 and 〈2, 10〉 are
boundary pairs. Clearly, if 〈u, v〉 is a boundary pair, then
u and v cannot coexist in any convex pattern. Moreover
for any node x ∈ MAX UC(u,R), it cannot coexist with any
node y ∈ MAX DC(v,R) in a convex pattern and vice versa.
Therefore, given a node v in a region R, we compute the set
of nodes in R that cannot coexist with v in a convex pattern
due to external non-convexity. We call them v’s external
conflicting set. For example, in Figure 2, the external
conflicting set of node 10 is {0, 1, 2}.

During the generation of patterns, we need to make sure
that a pattern containing node v does not include any node
from v’s external conflicting set. If a pattern P is generated
by combining patterns P1, . . . ,Pn, then we check that the
union of the external conflicting sets of P1, . . . ,Pn does not
share any common node with P.

Checking for Input/Output constraints.Given a pattern
P generated by combining patterns P1, . . . ,Pn, IN(P) ⊆
IN(P1) ∪ . . . ∪ IN(Pn) (similarly for OUT(P)). Therefore,
in order to check for violation of input/output constraints
in a pattern, we will need to look at the input/output nodes
of the constituent patterns. For this purpose, we maintain
the set of input/output nodes with each pattern.

4. EXPERIMENTAL EVALUATION
In this section, we compare the performance of our union

algorithm (see Section 3.3) against the exhaustive algorithm
proposed in [4]. The algorithm in [4] allows multiple dis-
jointed components within a pattern. We have constrained
it to generate only connected patterns (see Section 3.2). To
the best of our knowledge, the algorithm in [4] is the only
known approach to enumerate all feasible patterns under
input, output, and convexity constraints.

4.1 Experiment Setup
Table 1 shows the characteristics of the benchmarks used

in our experiments. They are all from MiBench [13], a free,
commercially representative embedded benchmark suite. In
the benchmarks, rijdael, blowfish, andsha are encryption
algorithms, cjpeg is an encoding algorithm and bitcnts is
simply a computationally intensive application. We choose
one frequently executed basic block from each benchmark.
The regions for the basic block are also shown in Table 1.
For example, the chosen basic block in rijdael consists of
six regions with 562, 68, 4, 4, 4, 4 nodes, respectively. As
can be seen from Table 1, the first four benchmarks have
very large basic blocks, each containing large regions. For
the first three benchmarks, the time spent in executing the

chosen basic block alone is around 50% of the total execution
time. This justifies the effort in selecting patterns from these
large basic blocks. The basic block chosen for sha(unroll)

contains the fully unrolled version (80 times) of the block
transform function. The major computations in cjpeg and
bitcnts are distributed among several basic blocks. We
choose the ones with big regions as they may be the bot-
tleneck of the pattern enumeration algorithm. We compare
the efficiency of our algorithm (called union) against the
algorithm in [4] (called exhaustive) for each of these basic
blocks.

The benchmarks are compiled and evaluated under Sim-
pleScalar tool set using SimpleScalar ported gcc-2.7.2.3 with
-O3 optimization [8]. We have run all the experiments on
a 3.0GHz Pentium 4 machine with 1GB memory. We have
measured the time taken by the enumeration algorithms us-
ing the Pentium time-stamp cycle counter.

4.2 Experiment Results
Table 2 compares the two algorithms for all the bench-

marks under different input/output constraints. The col-
umn No. of Valid Patterns shows the number of feasi-
ble patterns generated for each basic block. Two algorithms
produce the same sets of feasible patterns for each bench-
mark. Compared to the size of the basic blocks, the number
of feasible patterns is quite small. Therefore, it is possible
for the later custom instruction selection procedure to work
on the entire set of feasible patterns and produce an optimal
subset as custom instructions.

The Search Space column shows the number of patterns
subjected to different constraint checks by the two algo-
rithms. In general, as union algorithm produces patterns by
extending existing ones with neighbors, it is far more effec-
tive in pruning the infeasible patterns. The results indicate
that our algorithm scales well with increasing DFG size and
increasing number of input, output constraints. Note that
for a given benchmark and output constraint, the search
spaces of exhaustive algorithm are the same irrespective of
the number of input. This is because the exhaustive algo-
rithm does not prune the search space based on the num-
ber of input constraint. However, the number of input con-
straint is considered as one of our pruning strategy; so the
efficiency of our algorithm is more evident especially under
small value of input constraint.

The last but one column provides the speedup in execution
time of our enumeration algorithm compared to the exhaus-
tive approach. The speedup varies from modest to extremely
high. The last column presents the actual execution time of
our algorithm. For rijdael, union algorithm reduces the
computation time from thousands of seconds to less than
one second. For blowfish, even though it contains large
regions, the computation within a region is clustered such
that there exists non-convexity among nodes from different
clusters. This feature is exploited by both the algorithms to
prune efficiently. For sha and cjpeg, our algorithm is very
efficient when the number of input is small. However, recall
that our algorithm may produce the same pattern multiple
times. The amount of redundancy increases with increasing
pattern size and number of input constraints. Therefore, the
speedup of our algorithm is less evident under larger value
of input constraint. As bitcnts and sha (loop) contain
small DFGs, both algorithms perform very efficiently.



Benchmark Category BB Size of % of Total
Size Regions Execution Time

rijdael Security 894 {562, 68, 4, 4, 4, 4} 61.19%
blowfish Security 334 {133, 120, 2} 46.10%

sha(unroll) Security 1468 {1367} 53.65%
cjpeg Consumer 154 {92, 40} 6.97%

sha(loop) Security 22 {11, 3, 2} 16.53%
bitcnts Automotive 36 {27} 6.20%

Table 1: Benchmark Characteristics. The size of basic block and region are given in terms of number of
nodes (instructions).

Benchmark
No. of No. of Search Space Search Space No. of ExecTimeexhaust

ExecTimeunion

Absolute Time
Input Output Exhaustive Union Valid Patterns Union (seconds)

Rijdael

3 1 336607 1924 438 36.2 0.014
3 2 39691113 8325 620 1924.2 0.030
3 3 2190185753 26472 620 46560.5 0.066
4 1 336607 2424 676 29.7 0.017
4 2 39691113 16267 1178 1267 0.045
4 3 2190185753 66442 1496 19931.1 0.154
5 1 336607 2884 716 25.2 0.020
5 2 39691113 20879 1680 1025.3 0.056
5 3 2190185753 73608 2904 15884.8 0.192

Blowfish

3 1 350120 823 177 4.1 0.0016
3 2 339058 8938 252 11.1 0.0056
3 3 1718557 9299 252 35.8 0.0084
4 1 350120 1163 279 3.0 0.0022
4 2 339058 9450 554 9.1 0.0066
4 3 1718557 10714 704 26.0 0.0116
5 1 350120 1527 307 2.4 0.0027
5 2 339058 10098 894 8.0 0.0077
5 3 1718557 12864 1594 18.3 0.0164

Sha(unroll)

3 1 12983317 12256 1222 500.9 0.06
3 2 714743500 686033 2270 766.6 2.10
3 3 16326817016 7220211 2987 1513.2 23.37
4 1 12983317 36059 2343 206.1 0.14
4 2 714743500 5054356 5019 138.3 11.68
4 3 16326817016 983219339 7951 11.3 3122.47
5 1 12983317 91072 3997 83.1 0.36
5 2 714743500 8120906 8717 51.6 31.30
5 3 16326817016 1973510852 16180 2.7 12917.43

Cjpeg

3 1 22659 995 159 5.3 0.001
3 2 3369446 129114 233 5.2 0.133
3 3 433196214 130978 233 502.5 0.197
4 1 22659 2092 298 2.8 0.002
4 2 3369446 137989 458 4.8 0.136
4 3 433196214 145613 578 479.8 0.207
5 1 22659 4347 379 1.3 0.003
5 2 3369446 552169 726 2.2 3.135
5 3 433196214 15292783 1003 10.3 9.640

Bitcnts

3 1 5463 137 23 17.3 1.3E-4
3 2 36237 171 31 57.4 2.5E-4
3 3 57021 172 31 89.6 2.5E-4
4 1 5463 290 44 9.0 2.2E-4
4 2 36237 419 80 34.0 4.2E-4
4 3 57021 422 81 49.7 4.4E-4
5 1 5463 637 65 4.3 4.7E-4
5 2 36237 1184 169 16.2 9.1E-4
5 3 57021 1191 172 24.3 9.4E-4

Sha(loop)

3 1 325 55 14 2.0 6.2E-5
3 2 374 55 15 1.7 8.5E-5
3 3 386 55 15 1.8 8.4E-5
4 1 325 79 27 1.6 7.7E-5
4 2 374 79 28 1.4 1.2E-4
4 3 386 79 28 1.6 1.1E-4
5 1 325 95 44 1.4 9.8E-5
5 2 374 95 45 1.1 1.4E-4
5 3 386 95 45 1.2 1.4E-4

Table 2: Comparison of Enumeration Algorithms



5. CONCLUSION
Enumerating all feasible candidate patterns under vari-

ous architectural constraints is a key step is selecting the
optimal set of custom instructions. In this paper, we have
introduced an efficient algorithm to solve this problem and
discussed its implementation issues. Compared with a re-
cently proposed approach targeting the same problem, our
algorithm achieves orders of magnitude speedup. This gives
us the opportunity to explore large DFGs. We believe that it
is important to explore large DFGs as compilers for ILP pro-
cessors now routinely employ if-conversion, loop unrolling
and region formation to work on bigger DFGs. We are cur-
rently integrating our algorithm in the compilation frame-
work of a real extensible processor – Altera NIOS.
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Appendix

Lemma 1. Given a region R, Algorithm 1 generates all
the upward cones satisfying convexity and input operands
constraints.

Proof: Let the nodes of R in topologically sorted order
be v0, . . . vn−1. The proof is by induction on n. For the
base case, node v0 has only one upward cone {v0} which is
generated in line 2 of Algorithm 1. We assume that the con-
straints on number of input and output operands are 2 and
1, respectively, so that cone {v0} satisfies all the constraints.

For the induction step, let us consider an upward cone
C at node vx (1 ≤ x ≤ n− 1) satisfying convexity and in-
put operands constraints. We prove that C can be gener-
ated from its predecessors’ UC SETs. Let {vx1, . . . , vxk} be
the predecessor nodes of vx and let Pi = MAX UC(vxi,C).
Clearly,

C =

k⋃
i=1

Pi ∪ {v}

Therefore, we need to show that

Pi ∈ UC SET(vxi) ∀i = 1, . . . , k

The above is true iff Pi is convex and satisfies input con-
straints. As IN(Pi) ⊆ IN(C) and C satisfies input constraints,
Pi also satisfies input constraints. We prove by contradic-
tion that Pi is convex. Let us assume that Pi is non-convex.
Then, there exists at least a pair of nodes m,n ∈ Pi s.t. there
exists a path from m to n that contains a node y /∈ Pi. As
Pi is the maximal upward cone of node vxi in C, if y /∈ Pi,
then y /∈ C. Therefore, C is also non-convex, which is a
contradiction. 2

Lemma 2. Given a region R, Algorithm 2 generates all
the feasible patterns in R.

Proof: We prove that given any feasible pattern P in R,
P can be generated by Algorithm 2. Let P = {v1, . . . , vn}.
We also assume that the nodes of P have been visited in the
order v1, . . . , vn in Algorithm 2 (reverse topological order).
Clearly, P has been generated by v1 as a node is removed
from R after it has been visited.



The algorithm starts with the UC SET(v1). We will show
that (P0 = MAX UC(v1,P)) ∈ UC SET(v1) and P can be
generated by starting with the cone P0. Now, UC SET(v1)
contains P0 iff P0 is convex and satisfies input constraints.
Note that IN(P0) ⊆ IN(P) as P0 is a maximal upward cone
in P. Therefore, if P satisfies input constraints, then P0

should satisfy input constraints as well. We prove by contra-
diction that P0 cannot contain non-convexity. Let us assume
that P0 is non-convex. Then, there exists at least a pair of
nodes m,n ∈ P0 s.t. there is path from m to n that contains
a node y /∈ P0. As P0 is a maximal upward cone in P, if
y /∈ P0, then y /∈ P. Therefore, P is also non-convex, which
is a contradiction.

Now, we prove that P can be generated from P0 by re-
cursively combining the current pattern with the maximal
upward/downward cones of its extension points. Let the in-
termediate patterns generated be P0, . . . ,PM s.t. PM = P.
The recursion depth M is bounded by the number of ver-
tices n in P. Clearly, the proof is trivial if no patterns or
cones were eliminated through convexity, input, and output
checks. We prove that it is safe to eliminate patterns or
cones by induction on M. We have already proved the base
case M = 0.

For the induction step, let us assume (without loss of gen-
eralization) that Pi+1, i = 1, . . . ,M− 1 is generated by com-
bining Pi with the maximal downward cones of Pi’s exten-
sion points. Let {e1, . . . , ek} be the set of extension points of
Pi. The algorithm combines DC SET(e1), . . . ,DC SET(en)
with Pi. Using similar reasoning as in the previous para-
graph, we can prove that MAX DC(ej,P) ∈ DC SET(ej) for
all j = 1, . . . , k. Therefore, the algorithm can generate the
pattern

Pi+1 = Pi

⋃
MAX DC(e1,P)

⋃
. . .
⋃

MAX DC(ek,P)

. We need to prove that Pi+1 is convex and satisfies output
constraints as it will be eliminated otherwise.

By definition, all the nodes in OUT(Pi+1) belong to OUT(P)
as we have included the maximal downward cones of Pi’s ex-
tension points (OUT(Pi)) in Pi+1. Therefore, as P satisfies
output constraints Pi+1 should satisfy output constraints.
We prove by contradiction that Pi+1 is convex. Let us as-
sume that Pi+1 is non-convex. Then, there exists at least a
pair of nodes m,n ∈ Pi+1 s.t. there is path from m to n that
contains a node y /∈ Pi+1. By definition, the predecessor of
y in the path is an extension point of Pi+1 and its maxi-
mal downward cone in P is included in Pi+1. Therefore, if
y /∈ Pi+1, then y /∈ P and P is non-convex. 2


