
An Efficient Framework for Dynamic Reconfiguration of
Instruction-Set Customization

Huynh Phung Huynh, Joon Edward Sim, Tulika Mitra
Department of Computer Science
National University of Singapore
Republic of Singapore 117543

{huynhph1,esim,tulika}@comp.nus.edu.sg

ABSTRACT
We present an efficient framework for dynamic reconfiguration of
application-specific instruction-set customization. A key compo-
nent of this framework is an iterative algorithm for temporal and
spatial partitioning of the loop kernels. Our algorithm maximizes
the performance gain of an application while taking into consider-
ation the dynamic reconfiguration cost. It selects the appropriate
custom instruction-sets for the loops and maps them into appropri-
ate configurations. We model the temporal partitioning problem
as a k-way graph partitioning problem. A dynamic programming
based solution is used for the spatial partitioning. Comprehensive
experimental results indicate that our iterative algorithm is highly
scalable while producing optimal or near-optimal (99% of the op-
timal) performance gain.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; C.1.3 [Other Architecture Styles]: Adapt-
able architectures

General Terms
Algorithm, Performance, Design

Keywords
Customizable processors, instruction-set extensions, dynamic re-
configuration, temporal partitioning.

1. INTRODUCTION
Current generation embedded system designs are characterized

by the increasing demand on higher performance under stringent
time-to-market constraints. In this context, application-specific cus-
tomizable processor cores strike the right balance between perfor-
mance and design efforts. A customizable processor is, in general,
configurable w.r.t. the micro-architectural parameters. More im-
portantly, a customizable processor may support application-specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

extensions of the core instruction-set. Custom instructions encap-
sulate the frequently occurring computation patterns in an applica-
tion. They are implemented as custom functional units (CFU) in
the datapath of the existing processor core. CFUs improve perfor-
mance through parallelization and chaining of operations. Some
examples of commercial customizable processors include Lx [13],
ARCTM core [2], Xtensa [14] and Stretch S5 [3].

Memory

General RF 128-BIT WRF

ALU
FPU

ISEF
INSTRUCTION SET
EXTENSION FABRIC

Figure 1: Stretch S5530 datapath.

Due to the limited area available for the CFUs in the datapath
of the processor core, we may not be able to exploit all custom
instruction enhancements of an application. Moreover, it may not
be possible to increase the area allocated to the CFUs due to the
linear increase in the cost of the associated system. In this context,
runtime reconfiguration of the custom instruction-sets appears quite
promising. Adapting to this trend, commercial customizable pro-
cessors supporting dynamic reconfiguration have been proposed.

For example, Figure 1 shows the Stretch S5 engine [27] that
incorporates Tensilica Xtensa RISC processor [14] and the Stretch
Instruction Set Extension Fabric (ISEF). The ISEF is software-
configurable datapath based on programmable logic. It consists of
a plane of arithmetic/logic elements and a plane of multiplier ele-
ments embedded and interlinked in a programmable, hierarchical
routing fabric. This configurable fabric acts as a functional unit to
the processor. It is built into the processor’s datapath, and resides
alongside other traditional functional units such as the ALU and the
floating point unit. The programmer defined application specific
instructions (Extension Instructions) are implemented in this fabric.
The core processor issues the Extension Instructions to ISEF, which
performs the computation and returns the result. However, the
distinguishing aspect of ISEF is that it is run-time configurable and
reloadable. If the computation resource requirement of the custom
instructions exceeds the capacity of ISEF, then the instructions can
be partitioned into different configurations. When a user-defined
instruction is issued, the S5 hardware checks to make sure the

corresponding configuration is loaded into the ISEF. If the required
configuration is not present in the ISEF, it is automatically loaded
prior to the execution of the user-defined instruction. In summary,
the ISEF allows the system designers to define new instructions at
runtime and thus extend the processor’s instruction-set.

However currently it is the programmer’s responsibility to man-
ually choose and define the custom instructions and the configura-
tions for architectures such as Stretch. Choosing an appropriate set
of custom instructions for an application itself is a difficult prob-
lem. Significant research effort has been invested in developing
automated selection techniques for custom instructions. Runtime
reconfiguration has the additional complication of both temporal
and spatial partitioning of the set of custom instructions in the
reconfigurable fabric. In this paper, we develop a framework that
starts with an application specified in ANSI-C and automatically
selects appropriate custom instructions as well as clubs them into
one or more configurations. A key component of our framework
is an iterative algorithm for temporal partitioning of custom in-
structions based on k-way graph partitioning problem. A dynamic
programming based pseudo-polynomial algorithm is used for the
spatial partitioning of the custom instructions within a configu-
ration. To the best of our knowledge, this is the first work that
attempts automated custom instructions selection in the context of
instruction-set extensible processor platforms with dynamic recon-
figuration.

Even though most hardware-software partitioning solutions for
FPGAs work at a coarse-grained level (such as task level and func-
tion level) and explore task-level parallelism [8, 19], we focus on
hot loop kernels instead. This allows us to exploit instruction-level
parallelism to significantly accelerate compute-intensive loops with
custom instructions. Thus our framework first extracts a set of
compute-intensive candidate loop kernels from the application. For
each loop, we generate one or more custom instruction-set versions
differing in performance gain and area tradeoffs in addition to the
purely software version. The partitioning algorithm selects appro-
priate custom instruction-set versions for the loops implemented in
fabric and clubs them into suitable configurations to achieve the
highest performance gain.

Note that the reconfiguration cost model at task level [8, 19]
and data flow graph level [26] are simple because the underlying
directed acyclic graph representation ensures at most one reconfig-
uration between any two nodes. In contrast, our dynamic recon-
figuration cost model is complex as the number of reconfigurations
for one loop depends on temporal partitioning of all the other loops.
Furthermore, our methodology allows custom instruction-sets cor-
responding to more than one loop to be placed within a single con-
figuration. Thus spatial partitioning also plays a role in determining
the performance gain of the application. The only other loop-level
temporal partitioning work that we are aware of [23] considers one
loop per configuration.

The remainder of this paper is structured as follows. Section
2 describes the system design flow. In Section 3, we present the
problem formulation and a motivating example. Section 4 details
our partitioning algorithm. Experimental setup and evaluation are
described in Section 5. The related works are discussed in Section
6. Finally, Section 7 concludes the paper.

2. SYSTEM DESIGN FLOW
Figure 2 shows the system design flow. The input to the design

flow is the C source code of the application we want to accelerate.
The output is the custom-instructions accelerated application with
synthesized datapath for each configuration.

Hot Loops Detection

Custom Instruction
Sets Generation Hot Loop Trace

Partitioning

Software Loops Datapath Synthesis

Bit Stream
for each Config

Figure 2: System design flow

Hot loops detection. Taking our cue from Amdahl’s law, we
focus on the loops that take up a significant portion of the appli-
cation’s total execution time. In particular, we define a loop with
execution time greater than a certain percentage (typically ≥ 1%)
of the application’s overall execution time to be a hot loop. The hot
loop detector identifies such loops through profiling. Although the
total number of loops in an application may be large, we consider
only the hot loops to reduce the computation cost of the partitioning
algorithm significantly. At the same time, the performance gain we
obtain is still comparable to the case where all the loops of the
application are considered. The cold loops may not increase the
performance gain due to the additional reconfiguration overhead.

Custom instruction-set versions generation. Multiple cus-
tom instruction-set (CIS) versions are generated for each hot loop
with a trade-off between hardware area and performance gain. A
CIS version consists of a set of custom instructions extracted from
the corresponding loop under an area constraint. Each CIS version
is characterized by its area and performance gain. In general, the
performance gain of a CIS version increases with larger area. To
generate the CIS versions for a loop, the first step [4, 5, 10, 11,
18] identifies a large set of candidate patterns from the loop. Given
this library of patterns, the second step selects a subset to maximize
performance gain under hardware area constraint [4, 10, 9, 11, 22].
As the area increases, a CIS version with higher performance gain
will be generated by selecting a larger subset. Moreover, different
CIS versions can be generated by loop transformations such as loop
unrolling, software pipelining, loop fusion, and others.

Loop Trace. The control flow among the hot loops is captured in
the form of a loop trace (execution sequence of the loops) obtained
through profiling. For typical embedded applications we have pro-
filed, the number of hot loops and the loop trace size are quite small.
For longer loop trace, we can use lossless compression techniques
(such as SEQUITUR algorithm [25]) to compactly maintain the
loop trace.

The hot loops with CIS versions and the loop trace are fed to
the partitioning algorithm that decides the appropriate CIS version
and configuration for each loop. The selected CIS versions to be
implemented in hardware are then input into the datapath synthesis

tool. It generates the bit stream corresponding to each configuration
(based on the result of temporal partitioning). These bitstreams are
used to configure the fabric at runtime. The remaining loops are
implemented in software on the core processor. Finally, the source
code is modified to exploit the new custom instructions.

3. PROBLEM DEFINITION
We now formally define the partitioning problem for dynamic

reconfiguration of instruction-set customization, which is the focus
of this paper.

The input to the partitioning step is the set of hot loops {li|i =
1...N}. Each loop is associated with multiple custom instruction-
set (CIS) versions with a trade-off between hardware area and per-
formance gain. Let li,j (for j = 1 . . . ni) be the jth CIS version
corresponding to loop li where ni is the number of CIS versions
of loop li. In addition, let gaini,j and areai,j denote the per-
formance gain and area requirement of li,j . We assume that li,1
corresponds to the software loop without any custom instructions,
i.e., areai,1 = 0 and gaini,1 = 0. For each loop li, only one of
its CIS versions will be selected for implementation. For example,
if li,1 is selected, loop li will be implemented in software without
any custom instruction enhancements.

The control flow among the loop kernels is input in the form of a
loop trace. Finally, MaxA represents the hardware area available
for each configuration and ρ represents the time required for a
single reconfiguration. We assume partial reconfiguration is not
supported, i.e., a configuration is completely replaced by another
configuration in the fabric. Hence both MaxA and ρ are constants.

We do not allow intra-loop reconfiguration to avoid high recon-
figuration cost. Thus the custom instructions corresponding to a
loop cannot straddle across configuration boundaries. In other words,
the selected CIS version of a loop is completely accommodated
within a configuration. Each configuration, however, consists of
CIS versions corresponding to one or more loops. Thus the prob-
lem boils down to

1. Temporal partitioning of the loops selected for hardware ac-
celeration with CIS into one or more configurations, and

2. Spatial partitioning of the loops within a configuration by
selecting appropriate CIS version for each loop

The performance gain of the application (PGA) is then defined as

PGA =

NX

i=1

niX
j=1

si,j × gaini,j

!
− r ∗ ρ (1)

niX
j=1

si,j ≤ 1 (2)

where r is the number of reconfigurations given the partitioning
and si,j is a binary variable equal to 1 if CIS version li,j is selected
and 0 otherwise.

Dynamic reconfiguration through temporal partitioning enlarges
the available area for the design by increasing the number of con-
figurations. Therefore, each loop can select better CIS version
to be implemented in hardware and better performance gain will
be achieved. However, this increase in number of configurations
may not result in better overall performance due to the reconfig-
uration cost. On the other hand, if we minimize the number of
configurations, the available area is quite restricted. Consequently,
each loop will select its CIS version with smaller area and the
performance gain of the application is much smaller, especially
when the reconfiguration cost is smaller.

Our objective is to maximize the performance gain by selecting
an appropriate CIS version for each loop and mapping it into an
appropriate configuration.

3.1 Motivating Example

Loop Version Area (#AU) Gain (K cycles)

loop1

1 0 0
2 257 111
3 301 160
4 1612 563

loop2

1 0 0
2 761 230
3 1041 387
4 1321 426
5 2004 556

loop3
1 0 0
2 967 493
3 1249 549

Table 1: CIS versions for 3 loops in our motivating example.

For our motivating example, we consider an application with
three hot loops: loop1, loop2 and loop3. Table 1 shows the
performance/silicon area tradeoff of different custom instruction-
set versions for each loop. In particular, the table shows the hard-
ware requirement in terms of arithmetic units (AU) and correspond-
ing performance gain in terms of K cycles. For example, loop3
has three CIS versions. Version 1 of each loop is the software
version (without any custom instructions enhancements) with zero
area and performance gain. We need to select appropriate CIS
versions for the three loops under hardware area constraint for a
configuration of 2048 AUs. The cost for a single reconfiguration
is 15K cycles. The graph on the left-hand side of Figure 3 shows
control flow information among the loops for this example. The
actual input to our algorithm is the loop trace. We use the graph
here (derived from the loop trace) for illustration purposes. We will,
however, use a similar graph (called reconfiguration cost graph)
later in our temporal partitioning algorithm.

If the system does not support dynamic reconfiguration, the best
solution (solution (A) in Figure 3) under the hardware area con-
straint is the selection of version 3 of loop1, version 2 of loop2,
and version 2 of loop3. Total performance gain is 160 + 230 +
493 = 883K cycles and there is no reconfiguration cost.

However, in the presence of dynamic reconfiguration, we can
improve the solution. A trivial solution is to put each loop into
one configuration (solution (B) in Figure 3). We can then select
the CIS version of a loop with the largest area less than or equal
to the area of a configuration: version 4 for loop1, version 5 for
loop2 and version 3 for loop3. Total performance gain is 563+
556 + 549 = 1668K cycles and the total reconfiguration cost is
(20 + 11 + 9 + 9) × 15 = 735K cycles. Therefore the resulting
net performance gain after subtracting the reconfiguration cost is
1668 − 735 = 933K cycles. While the net performance gain is
better than the case when dynamic configuration is not supported,
it is not the optimal solution.

The optimal solution is to put loop2 and loop3 into one con-
figuration and loop1 into a different configuration (solution (C)
in Figure 3). CIS versions 4, 3, and 2 will be selected for loop1,
loop2, and loop3, respectively. The performance gain is 1443K
cycles while reconfiguration cost is (9 + 9) × 15 = 270K cycles.
Hence, the net performance gain is 1443− 270 = 1173K cycles.

l1,3

l2,2

l3,2

9

9

20 11

l1,4

l2,5

l3,3

9

9

20 11

l1,4

l2,3

l3,2

9

9

20 11

loop1

loop2

loop3

9

9

20 11

Partition soln. (A)
Gain: 883K
Reconfig cost: 0
Net Gain: 883K

Partition soln. (B)
Gain: 1668K
Reconfig cost:735K
Net Gain: 933K

Partition soln. (C)
Gain: 1443K
Reconfig cost:270K
Net Gain: 1173K

Figure 3: Some partitioning solutions for our motivating example.

4. PARTITIONING ALGORITHM
Finding the optimal combination of temporal and spatial parti-

tion is a difficult problem. Given N loops, the number of possible
configurations is 2N . However, the number of ways to partition
N loops into mutually-exclusive configurations corresponds to the
N + 1th Bell number. According to de Brujin [12], asymptotic
limits of Bell numbers is O(eN ln(N)).

Our partitioning algorithm needs to makes three choices: (1)
optimal number of configurations k, (2) temporal partitioning of
the loop kernels into k configurations, and (3) spatial partitioning of
the loop kernels in each configuration, i.e., choosing the appropriate
custom-instruction set (CIS) version for each loop kernel. Clearly,
these choices are inter-dependent. The selection of CIS versions
for the loops determines the partitioning solution and vice versa.

4.1 Overview

Algorithm 1: Iterative Partitioning Algorithm
Input: Set of hot loops with custom instruction-set versions: L

Loop Trace: T
Maximum Area of a configuration: MaxA
Reconfiguration Cost: ρ

Result: Partition with the best net performance gain
for k = 1 to |L| in steps of 1 do

C := global_spatial_partition(L, k ×MaxA);
P := temporal_partition_with_CIS(C, T, k);
P ′ := temporal_partition_wo_CIS(T, k);
soln := local_spatial_partition(L, P, MaxA);
soln′ := local_spatial_partition(L, P ′, MaxA);
if net_gain(soln′) > net_gain(soln) then soln := soln′;
if net_gain(soln) > net_gain(bestSoln) then bestSoln := soln;

end
return bestSoln;

We propose an iterative algorithm (Algorithm 1) for joint tem-
poral and spatial partitioning of the custom instruction-sets corre-
sponding to the hot loop kernels. The algorithm iterates from a con-

straint of having exactly 1 configuration (i.e., no reconfiguration) to
the upper bound of having |L| configurations where L is the set of
hot loops. The solutions (A) and (B) in our motivating example
(see Figure 3) represent the two extremes (k = 1 and k = |L|)
while the remaining iterations explore the rest of the design space.

For the iteration with k configurations, we would like to identify
the k-way partitioning solution with the optimal net performance
gain. Unfortunately, temporal and spatial partitioning are again
dependent on each other due to the reconfiguration cost. To break
this cycle, we apply a heuristic technique. The heuristic first as-
sumes that we have a continuous area of k × MaxA available to
us where MaxA is the maximum area for a configuration. The as-
sumption of continuous area allows us to tentatively select optimal
CIS versions for the loops in an ideal (but un-realizable) situation
where reconfiguration cost is zero. In reality, we have k distinct
configurations with MaxA area each. So we partition the loop ker-
nels with selected CIS versions into k configurations such that each
configuration has roughly MaxA area and the reconfiguration cost
is minimized. As we break up the continuous area into k distinct
areas, some configurations end up being bigger than MaxA, while
some other configurations are smaller than MaxA. To fix this,
we have a final patch-up stage that performs spatial partitioning
within each configuration to re-distribute MaxA space among the
constituent loop kernels.

Figure 4 illustrates the three phases of the iterative algorithm
corresponding to the iteration with number of configurations equals
to 2. The input is the three loops in the motivating example and
their CIS versions. For example, loop1 has 4 CIS versions l1,1,
l1,2, l1,3 and l1,4 in order of increasing area and performance gain.

The first phase global_spatial_partition partitions the area k ×
MaxA (where k is the number of configurations for that iteration)
among the loops by selecting the CIS versions such that the perfor-
mance gain is optimal. This phase disregards the reconfiguration
cost. It also assumes that a continuous hardware area of size k ×
MaxA is available for hardware acceleration of all the loops. We
have developed a Dynamic Programming algorithm for this phase.

Phase 3

Phase 2

l14
A = 1612

Phase 1

l33
A = 1249

l14
A = 1612

l33
A = 1249

l23
A = 1041

l23
A = 1041

2048 2048

l14
A = 1612

l23
A = 1041

l32
A = 967

Phase 3

Phase 2

l14
A = 1612

l23
A = 1041

l32
A = 967

{l2,l3}{l1}

{l1,l2,l3}

Figure 4: Three phases of iterative partitioning algorithm for number of configurations = 2

This phase may choose to select the software version for some
loops. For our running example, the first phase in Figure 4 chooses
CIS versions l1,4, l2,3, l3,3 when the area budget equals to the area
for 2 configurations.

After the first phase, we have the set of selected CIS versions C
for the hot loops. However, we cannot implement this solution
as (1) the reconfiguration cost has not been considered and (2)
the loops still need to be partitioned into different configurations.
In the second phase temporal_partition_with_CIS, we perform
temporal partitioning of the hot loops into k configurations such
that the reconfiguration cost is minimized. This phase returns the
partitioning solution P for the set of loops selected for custom
instructions enhancements from the first phase. In this phase we
also find an alternative partitioning solution P ′ for the original
set of hot loops, i.e., it disregards the results of the first phase.
This partitioning temporal_partition_wo_CIS only considers the
reconfiguration cost and ignores the CIS versions. Partition P gives
good results when performance gain of CIS versions is high relative
to the reconfiguration cost. On the other hand, partition P ′ gives
better results for the case when the reconfiguration cost is high rel-
ative to the performance gain. P and P ′ complement each other in
the search for the best partitioning solution. We model the temporal
partitioning as k-way weighted graph partitioning problem, which
is well studied [16, 17].

In Figure 4, the left hand side shows the partition P and the
right hand side shows the partition P ′. For P , the second phase
partitions the three loops with selected CIS versions into two con-
figurations: l1,4 in the first configuration and l2,3, l3,3 in the second
configuration. On the other hand, P ′ simply partitions the three
loops based on reconfiguration cost into two configurations. In this
example, P and P ′ return the same temporal partitioning. How-
ever, due to the reconfiguration cost, P and P ′ may be different.

We now have k configurations for each partitioning solution P
and P ′. The k-way weighted graph partitioning produces partitions
with roughly equal size. Therefore for partition P , the area require-
ment of some of the configurations may exceed the maximum area
MaxA. Partitioning solution P ′, on the other hand, does not select
any CIS version a-priori. Thus, for each configuration in P and P ′,
the third phase local_spatial_partition locally selects the CIS ver-
sions for the loops in that configuration to maximize performance
gain under area constraint MaxA. We again use dynamic program-
ming to perform optimal spatial partitioning for each configuration.

In Figure 4, for partition P , the area requirement of the second
configuration exceeds the maximum area budget. Hence phase

3 for this partition replaces CIS version l3,3 with l3,2. Phase 3
keeps the CIS version for loop l1 unchanged even though there is
additional area available (the green part) as l1,4 is the best version
for l1. However, in general, the additional area can lead to the
selection of better versions for some loops. Typically, the sum of
the performance gain of all the loops in phase 3 is at least 90%
of the performance gain of phase 1. The third phase of P ′ simply
selects CIS versions of the loops in each configuration for the first
time.

If the net performance gain of the current solution is better than
the best solution so far, we update the best solution. Then we start a
new iteration with k = k+1. The algorithm terminates when in the
current solution, each loop has been assigned its CIS version with
the best performance gain. In the worst case, the algorithm runs for
|L| iterations. With the motivating example, our algorithm returns
the optimal solution, which has two configurations (see Figure 4)
and the performance gain is 1173K cycles.

4.2 Spatial Partitioning
We propose a pseudo-polynomial time dynamic programming

algorithm to select the appropriate CIS versions for the loops such
that the performance gain is optimal under a hardware area budget.
This algorithm is employed in the first phase and the third phase of
our iterative solution with different parameters.

Let Gi(A) be the maximum performance gain of loops l1 . . . li
under an area budget A. Then Gi(A) can be defined recursively.

Gi(A) = max
j=1...ni

areai,j≤A

(gaini,j + Gi−1(A− areai,j)) (3)

That is, given an area A, we explore all possible CIS versions for li
and choose the one that results in maximum performance gain for
loops l1 . . . li. The base case for loop l1 is

G1(A) = max
j=1...n1

area1,j≤A

(gain1,j) (4)

The maximum performance gain for loops l1 . . . lN under area bud-
get AREA then corresponds to GN (AREA).

Algorithm 2 encodes this recursion as a bottom-up dynamical
programming algorithm. The step value ∆ determines the gran-
ularity of area. It is chosen based on the minimum area differ-
ence between two successive CIS versions for any loop. The time
complexity of this algorithm is O(N × Area

∆
× x) where x =

maxi=1...N(ni).

Algorithm 2: Spatial Paritioning
Input: Set of interesting loops l1, l1, . . . , lN with CIS versions;

Area constraint: AREA
Result: Maximum performance gain
for A = 0 to AREA in steps of ∆ do

G1(A)← max j=1...n1
area1,j≤A

(gain1,j)

end
for A = 0 to AREA in steps of ∆ do

for i=2 to N do
Gi(A)← max j=1...ni

areai,j≤A

“
gaini,j + Gi−1(b

A−areai,j
∆ c ×∆)

”
end
return GN(AREA);

4.3 Temporal Partitioning
We map our temporal partitioning problem to k-way weighted

graph partitioning problem. The k-way weighted graph partitioning
problem is defined as follows: Given an undirected graph G =
(V, E) with weights both on the vertices and the edges, partition
V into k subsets V1, V2, . . . Vk such that Vi

T
Vj = ∅ for i 6= j,S

i Vi = V , the sum of the vertex-weights in each subset is roughly
equal and the sum of the edge-weights whose incident vertices
belong to different subsets (edge-cut weights) is minimized.

We generate a Reconfiguration Cost Graph (RCG) from the
loop trace for k-way weighted graph partitioning. After the first
phase, we have tentatively selected CIS versions for the loops. Each
vertex in the RCG represents a hot loop selected for hardware ac-
celeration in the first phase. In other words, we do not consider
the loops for which the first phase selects software-only version.
Given a vertex v associated with loop l, we assign the area of the
CIS version selected for l as the weight of the vertex v. When CIS
versions from the first phase are ignored, the RCG includes all the
loops and we assume unit hardware cost for each vertex.

The edge weight between vertex v (corresponding to loop l) and
v′ (corresponding to loop l′) is defined as the reconfiguration cost
between loop l and loop l′ if they are mapped to two different
configurations. The edge between v and v′ exists if and only if
control can flow from loop l to l′ or l′ to l without passing through
any other hot loops. The weight on the edge between v and v′

represents the number of times control flows directly from loop
l to l′ and l′ to l multiplied by the single reconfiguration cost ρ.
This weight can be derived from the loop trace as follows. If we
eliminate the software-only loops from the loop trace, then the
weight is the the number of times the string ll′ and l′l appear in
the loop trace multiplied by ρ. The time complexity of creating
RCG is linear in the size of the hot loop trace.

Figure 5 shows an example of RCG generation from the loop
trace. It shows a loop trace ABCBCBA of three hot loops A, B,
C. The reconfiguration cost ρ is assumed to be 1 time unit. If all
the loops are selected to be placed in hardware, then there are 2 re-
configuration points between loops A and B if they are partitioned
into different configurations. Similarly, there are 4 reconfiguration
points between loops B and C if they are partitioned into differ-
ent configurations. However, there are no reconfiguration points
between loops A and C directly as the control transfers between
them always pass through B. However, if we choose to implement
B in software in the first phase, then B is eliminated from the RCG.
In this case, there are 2 reconfiguration points between loops A and
C if they are partitioned into different configurations.

The objective now is to partition the RCG into k configurations
such that the configurations have roughly equal area (or the config-
urations have roughly equal number of loops when area is ignored)

ABCBCBA

All loops
in HW

Only
loops A,C
in HW 2

A

C

A

B

C
4

2

Figure 5: Reconfiguration cost graph from loop trace

and the reconfiguration cost (edge-cut weights) is minimized. If
the configurations have roughly equal area, then the loops have
higher probability of retaining the optimal CIS versions selected
in the first phase regardless of the third phase. As a result, total
performance gain (excluding reconfiguration cost) after the third
phase is near the optimal performance gain in the first phase. The
rationale behind having roughly equal number of loops in each
configuration when CIS versions are ignored (by assigning unit
cost to each vertex in the RCG), is to create a balanced temporal
partition. It ensures that equal number of loops compete for each
configuration space during subsequent spatial partitioning.

We use multilevel k-way partitioning scheme by Karypis and
Kumar [17]. The multilevel partitioning scheme consists of three
phases: coarsening phase, partitioning phase and uncoarsening phase.
During coarsening phase, a sequence of smaller graphs Gi = (Vi, Ei),
each with fewer vertices, is constructed from the original graph
G0 = (V0, E0) such that |Vi| < |Vi−1|. The coarsening phase
ends when the coarsest graph Gm has a small number of vertices or
the reduction in the size of successively coarser graph becomes too
small. Then, the partitioning phase computes a k-way partitioning
Pm of the coarse graph Gm = (Vm, Em) such that each partition
contains roughly |V0|/k vertex weight of the original graph. The
k-way partitioning of Gm is computed using multilevel bisection
algorithm [16]. During the uncoarsening phase, the partitioning
Pm of the coarser graph Gm is projected back to the original graph
by going through the graphs G(m−1), G(m−2), ..., G1. At each
intermediate level, the partitioning is refined based on Kernighan-
Lin [20] partitioning algorithm and their variants.

5. EXPERIMENTAL EVALUATION
We have developed two algorithms, exhaustive search and greedy

search, for the purpose of evaluating our proposed methodology.
The results of the two algorithms are compared with our proposed
methodology in two different sets of experiments. In the first set of
experiments, we run the three algorithms using synthetic input to
evaluate the scalability and efficiency of the algorithms. We gener-
ate input data with 5 to 100 hot loops for this set of experiments. In
the second set of experiments, we conduct a case study of the JPEG
application with custom instructions implemented on a commercial
platform Stretch 5 [27] that supports runtime reconfiguration.

Exhaustive Search. The exhaustive search algorithm computes
the optimal results by evaluating all possible temporal and spatial
partitioning. We use the algorithm described in Kreher and Stin-
son [21] to enumerate all possible partitions. We then find the
optimal implementation of each configuration in the partition by
choosing CIS versions of the constituent loops through our spatial
partitioning algorithm. The net gain of each enumerated partition is
then estimated by a brute force computation of the reconfiguration
cost by traversing the loop trace. The partition with the maximum
net performance gain is then the optimal solution. Our experiments
show that the exhaustive search algorithm cannot scale with in-
creasing number of hot loops.

Algorithm 3: Greedy Search Algorithm
Input: Set of hot loops with custom instructions: L

Loop Trace: T
Maximum Area of a configuration: MaxA
Reconfiguration Cost: ρ

Result: Partitioning solution
current := new_configuration();
continue := true;
while continue = true do

C := compute_reconfig_cost_for_unselected_loops(L);
li,j :=
select_most_profitable_feasible_CIS(C, L, T, MaxA, solution);
if li,j is not found then

if current is not empty then
update solution by adding current;
current := new_configuration();

else
continue := false;

end
else

update current with li,j ;
remove from L all CIS versions of loop li;

end
end
return solution

Greedy Search. The greedy search algorithm (see Algorithm 3)
constructs a solution by building one configuration at a time until
no more CIS version can be added without causing a degradation
in performance. The input is the set of hot loops with custom
instruction-set versions L, loop trace T , area constraint MaxA,
and single reconfiguration cost ρ. A solution consists of one or
more configurations. The algorithm begins with an empty solution
and an empty current configuration.

In each iteration, we pre-compute a reconfiguration cost array
C. For any unselected loop li, the array C gives the expected addi-
tional reconfiguration cost if li is added to the current configuration.
Given C, the current solution and the current configuration, we can
now compute the expected performance gain of each CIS version
if we add it to the current configuration. For CIS version li,j ,
this expected performance gain is estimated by subtracting from
gaini,j , the additional reconfiguration cost for loop li (available
from array C). We now select the CIS version with the maximum
expected positive performance gain that can be added to the current
configuration without violating the area constraint. The selected
CIS version is then added to the current configuration. All the other
CIS versions of the same loop are subsequently removed from the
set L.

In the event that no CIS version can selected, there are two pos-
sibilities. The first possibility is that no more loops can be added
to the current configuration without violating the area constraint
(current configuration is not empty in Algorithm 3). In this case,
we update the solution with the current configuration and re-start

the process of selecting CIS versions with an empty configura-
tion. The second possibility is that no more loops can be added
to the current solution without decreasing its net performance gain
(current configuration is empty, i.e., we are trying to select the
CIS version under maximum area constraint). In this case, the
algorithm stops and returns the solution built so far.

5.1 Efficiency and Scalability of Algorithms
For this experiment, we generate synthetic inputs with number

of hot loops ranging from 5 to 100. The number of CIS versions
for each loop is generated randomly and ranges between 1 to 10.
The performance gain of each CIS version ranges between 1000 to
10, 000 time units. The hardware area is between 1 to 100 units.
The performance gain increases with hardware area for each loop.

The reconfiguration costs between two loops, if they are assigned
to different configurations, are generated randomly. They are in the
range 0 to maxCost where maxCost is approximately 40-50% of
the average performance gain of all the CIS versions of all the loopsPN

i=1
Pni

j=1 gaini,jPN
i=1 ni

. The value of maxCost ensures that the recon-
figuration cost is neither too high nor too low. Both the extremes
reduce the search space considerably. If the reconfiguration cost is
too high, we should only consider partitions with a small number
of configurations. If the reconfiguration cost is too low, then the
solution is to simply select the CIS version with the highest speedup
for each loop and construct as many configurations as required. The
hardware area constraint MaxA is approximately 20-30% of the
sum of the average area requirements of the CIS versions of all the

loops
PN

i=1

Pni
j=1 areai,j

ni
. This ensures that all the loops with their

CIS versions cannot fit under the area constraint.

Running time (sec)
Number of Exhaustive Greedy Iterative
Hot Loops search search partitioning
5 0.26 0.01 0.07
6 1.34 0.02 0.07
7 7.84 0.01 0.07
8 43.91 0.01 0.09
9 283.22 0.04 0.07
10 1788.20 0.01 0.11
11 12604.33 0.01 0.13
12 86338.37 0.01 0.15
20 N.A. 0.02 0.48
40 N.A. 0.04 4.30
60 N.A. 0.07 18.25
80 N.A. 0.11 55.61
100 N.A. 0.16 118.76

Table 2: Running time of the algorithms for synthetic input.

Table 2 shows the running times of the three algorithms for syn-
thetic input with different number of hot loops. The running time of
the exhaustive search algorithm, while relatively small with smaller
number of loops, increases by almost an order of magnitude each
time one more loop is considered. The results of exhaustive search
for more than 12 loops cannot be obtained even after waiting for
a day. On the other hand, although iterative partitioning algorithm
is slower than greedy search in general, its running time is quite
acceptable (less than 2 minutes). This demonstrates the scalability
of our approach. Moreover, iterative partitioning generates much
better quality solutions compared to greedy search as presented in
the following.

0

5

10

15

20

25

30

35

40

45

5 6 7 8 9 10 11 12
Number of hot loops

Pe
rf

or
m

an
ce

 g
ai

n
(K

 c
yc

le
s)

Exhaustive Search
Iterative Partitioning
Greedy Search

2.09

1.50
1.40 1.42 1.41 1.44

1.37
1.29

1.38
1.26

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90 100
Number of hot loops

 P
er

fo
rm

an
ce

 G
ai

n
re

la
tiv

e
to

 g
re

ed
y

se
ar

ch

(a) Comparison of the performance gain of the algorithms (b) Relative performance gain of iterative partitioning
for input with 5-12 hot loops compared to greedy search

Figure 6: Experiment results for synthetic benchmarks

Figure 6(a) and 6(b) compare the quality of the solutions re-
turned by the three different algorithms with number of hot loops
varying from 5 to 12. Figure 6(a) shows that the performance gain
obtained using our approach is close to the optimal gain obtained
with exhaustive search while greedy search falls far behind.

Figure 6(b) presents the comparison between the performance
gain of iterative partitioning and greedy search for input with more
than 12 hot loops (where exhaustive search fails to produce results).
The iterative algorithm consistently outperforms greedy search by
a factor of 1.26 to 2.09.

5.2 Case Study of JPEG

Loop ID #AU #MU Gain
(K cycles)

0 2249 4096 32

1
1612 2880 563

257 704 111
389 2176 254

2

2004 6272 556
1041 2048 387
1321 2592 426

761 1504 230

3 207 0 493
424 2 549

4 2515 1536 1094

5 1530 3584 1669
1300 3584 1643

6
981 4480 1095
491 2240 739
393 1792 590

7 1059 2880 511
8 1089 2880 91

9 1764 1280 194
1114 768 188

Table 3: CIS versions for JPEG. The area requirements are in
terms of arithmetic units (AU) and multiplier units (MU).

We present a case study of the JPEG image compression algo-
rithm. In this study, we envision a scenario in which an image is
decoded and then encoded subsequently. The hot loops are profiled
and the loop trace is generated using an in-house tool based on

OpenImpact[1], an open source compiler. The profiling works in
two phases. The timing information of each loop is collected by
inserting appropriate time stamps at the entry and exit points of the
loops. After the first pass, loops which take up more than 1% of
the computation time can be detected. During the second pass, the
compiler inserts appropriate code to capture the entry point of the
hot loops. The resulting application, when executed, generates a
trace of the hot loops.

Our loop profiler is able to identify more than 15 hot loops. For
our experimental purposes, we have selected 10 loops for which
custom instruction versions are manually generated for the Stretch
S5 platform [27]. The profiler in Stretch IDE can then provide
us the performance gain and hardware area of the CIS versions of
each loop. Table 3 shows the various CIS versions for each loop
and their respective area requirements and performance gain. It is
worth noting that the performance gain of the CIS versions do not
commensurate with area increase in general. For example, loop 0
takes up 2249 arithmetic units and 4096 multiplier units but only
gives 32K cycles of performance gain. In contrast, the CIS versions
of loop 3 use far less area but give much better performance. This is
because the parallelism that can be exploited varies from one loop
to another.

The configuration time of the whole fabric of Stretch develop-
ment board, which includes 4096 4-bit arithmetic units (AUs) and
8192 4-bit × 8-bit multiplier units (MUs) is approximately 100µs.
Given that the CPU runs at 300MHz, the configuration time trans-
lates to roughly 30K CPU cycles. We define one hardware area
unit to be a tuple of 400 AUs and 800 AUs. Since the configuration
time is proportional to the size of the fabric, configuration time
of one hardware area unit is approximately 3K CPU cycles. By
scaling the configuration time according to the fabric size, we can
easily compute the configuration time for any fabric size.

It is possible to fit CIS versions of all the hot loops from our
JPEG application in a suitably-sized fabric For our experimental
purposes, we assume that the hardware area constraint varies from
one hardware area unit to 20-30% of the sum of maximum hard-
ware area for all the loops (5 − 15 hardware units for JPEG appli-
cation). This will lead to the necessity of dynamic reconfiguration.
We run all the three algorithms (Exhaustive search, Greedy search
and Iterative partitioning) under these different area constraints.
Our profiling data indicates that the application takes up around
20 million cycles on Stretch CPU without custom instructions en-
hancements. It should be noted, however, that the speedup we

obtain for a particular application depends on the quality of the
custom instructions generated in the first place. Our focus in this
experiment is to evaluate our proposed algorithm in comparison
with Greedy search and Exhaustive search. That is, we are only
concerned about comparing the performance gain obtained using
the different algorithms starting with the same set of CIS versions.
Our results show that the our proposed algorithm is always opti-
mal or near-optimal and produces much better results than Greedy
search most of the time.

In Figure 7(a), we evaluate the performance gain possible if dy-
namic reconfiguration is exploited. We compare the performance
gain obtained using Iterative partitioning and Greedy search with
the case when no reconfiguration is allowed. Clearly, Iterative
partitioning and Greedy search can choose to use more than one
configuration. However, the algorithm for no reconfiguration case
is restricted to a single configuration and hence only performs spa-
tial partitioning. For each hardware area unit, the left most column
represents the performance gain obtained by our algorithm while
the central and the rightmost column represent the performance
gain under Greedy search and the single configuration, respectively.

If we compare the results of our algorithm with that of only one
configuration, the advantage of exploiting dynamic reconfiguration
decreases as the hardware area increases. This is to be expected, as
more custom instructions can fit into the larger area to gain suitable
speedup, thus reducing the need to virtualize hardware through run-
time reconfiguration. On the other hand, the graph demonstrates
that our algorithm increases the performance gain over and above
single configuration by at least 34% and as much as 78%.

However, the true strength of our algorithm is not demonstrated
by comparing results with no reconfiguration case. The Greedy
search algorithm demonstrates that a simple heuristic fails to achieve
substantial performance gain over no reconfiguration case. The
Greedy search algorithm fails to capitalize dynamic reconfiguration
as much as our algorithm. Often the Greedy search performs as
good as the single configuration, and in some cases, even worse. On
the other hand, our proposed methodology always performs better
than the Greedy search, being at least 14% and as much as 91%
better than Greedy search.

Figure 7(b) measures how closely our proposed methodology ap-
proximates the optimal results obtained through Exhaustive search.
The graph shows that our algorithm returns solution that coincides
with the optimal solution most of the time, while falling short of
the optimal by at most 1%.

6. RELATED WORKS
Custom instruction selection for an application usually consists

of two steps [28]. The initial step identifies a large set of candidate
patterns from the program’s dataflow graph and their frequencies
via profiling [4, 5, 10, 11, 18]. Given this library of patterns, the
second step selects a subset to maximize the performance under
different design constraints. Various approaches proposed for this
step include dynamic programming [4], 0-1 Knapsack [11], greedy
heuristic [9, 10], and ILP [22]. However, none of these approaches
targets applications exploiting dynamic reconfiguration of custom
functional units.

The major part of the research on temporal partitioning comes
from the reconfigurable computing community. Usually, the par-
titioning is done at the task-level [6, 19, 8] while there could be
some exceptions. Li et al. [23] partition at the loop level while
Purna and Bhatia [26] perform partitions on the data flow graph.
Moreover, some approaches do not consider software versions of
the tasks. For example, Kaul et al. [19] propose a method in which
a task graph is temporally partitioned, with the aim of minimiz-

ing overall latency. When directed acyclic task graphs are used
as input, computing reconfiguration costs becomes simple. For
example, Banerjee’s work [6] is able to reduce the partitioning
problem as a scheduling problem because task graphs are used as
input. In contrast, it is non-trivial to obtain the reconfiguration cost
at the granularity of loops. It should be noted that while Purna and
Bhatia’s work [26] partitions at the finer granularity of functions
and operators, their work uses directed acyclic data flow graph as
input as well.

Bondalapati and Prasanna [7] focus on mapping the statements
within a loop into configurations to obtain a configuration sequence
that gives the least execution time. While dynamic reconfiguration
is used as well, their work focuses on intra-loop selection of con-
figurations, i.e., their work operates on one loop only. Our work is
different because not only do we consider multiple possible custom
instructions set versions per loop, our algorithm allows for multi-
ple loops within a configuration and some loops may remain in
software. As such, our work is different from projects that explore
the design space for individual loops such as [7].

Hardnett et al. [15] form a framework in which the dynamically
reconfigurable architectural design space may be explored for spe-
cific applications. In particular, the register allocation problem
is adapted to assign reconfigurable units to different custom in-
structions. An instruction scheduling algorithm for the custom in-
structions is implemented to minimize overall latency. While their
architecture employs dynamically reconfigurable functional units,
our work is differentiated from theirs in two specific areas. First,
their custom instructions do not share the same functional unit, i.e.,
no spatial partitioning is required. Secondly, their work does not
address the problem of reconfiguration cost directly. Rather, cus-
tom instructions are de-selected to relieve resource pressure rather
than optimizing overall performance.

The work most related to our work is probably that of Li et
al. [23] in which the Nimble compiler is implemented. Their work
focuses on selecting loops from an application for hardware imple-
mentation while aiming to reduce dynamic reconfiguration over-
head. Their work only considers a single loop in one configuration
and they did not consider global reconfiguration cost when select-
ing loops to put in hardware.

7. CONCLUSIONS
We have presented an algorithm to exploit dynamically config-

urable custom functional units for optimal performance gain. Given
an input application, the algorithm selects and partitions the custom
instructions corresponding to the loop kernels into different config-
urations that are reconfigured at run-time. The experimental results
show that our algorithm is highly scalable while producing optimal
or near-optimal performance gain.

The work can be extended by considering configuration prefetch-
ing and partial reconfiguration. Previous work [24] have indicated
that how early a configuration can be prefetched depends on sev-
eral factors, including the relationship between the configurations
and the placement of the prefetch instruction. Closely related to
configuration prefetching is partial reconfiguration, which allows
execution and reconfiguration of the fabric in parallel. In the future,
we plan to extend our framework to handle these non-trivial issues.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments and suggestions, which helped us to improve the paper. This
work was partially supported by NUS research project R252-000-
292-112 and A*Star SERC EHS-II project R-252-000-258-305.

0

1

2

3

4

5

6

7

5 6 7 8 9 10 11 12 13 14 15
Hardware Unit Area (400 Aus, 800MUs per unit area)

Pe
rf

or
m

an
ce

 g
ai

n
(M

 c
yc

le
s)

Iterative Partitioning
Greedy Search
1 Configuration

0

1

2

3

4

5

6

7

5 6 7 8 9 10 11 12 13 14 15
Hardware Area (400 AUs, 800 MUs per unit area)

Pe
rf

or
m

an
ce

 G
ai

n
 (

M
 c

yc
le

s)

Exhaustive Search
Iterative Partitioning

(a) Comparison of Iterative partitioning, Greedy search, (b) Comparison of Exhaustive search and Iterative partitioning.
and the solution with no reconfiguration (1 configuration).

Figure 7: Experiment results for the case study of JPEG application.

9. REFERENCES
[1] OpenIMPACT Compiler.

http://www.gelato.uiuc.edu/.
[2] ARC International. Customizing a soft microprocessor core.
[3] J. M. Arnold. S5: The architecture and development flow of

a software configurable processor. In FPT, 2005.
[4] M. Arnold and H. Corporaal. Designing domain-specific

processors. In CODES, 2001.
[5] K. Atasu, L. Pozzi, and P. Ienne. Automatic

application-specific instruction-set extensions under
microarchitectural constraints. In DAC, 2003.

[6] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Physically-aware
HW-SW partitioning for reconfigurable architectures with
partial dynamic reconfiguration. In DAC, 2005.

[7] K. Bondalapati and V. K. Prasanna. Mapping loops onto
reconfigurable architectures. In FPL, 1998.

[8] K. S. Chatha and R. Vemuri. Hardware-software codesign
for dynamically reconfigurable architectures. In FPL, 1999.

[9] N. Cheung, S. Parameswaran, and J. Henkel. Inside:
Instruction selection/identification & design exploration for
extensible processors. In ICCAD, 2002.

[10] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In MICRO,
2003.

[11] J. Cong et al. Application-specific instruction generation for
configurable processor architectures. In FPGA, 2004.

[12] N. G. de Bruijin. Asymptotic Methods in Analysis. Dover
Publications, 1981.

[13] P. Faraboschi et al. Lx: A technology platform for
customizable VLIW embedded processing. In ISCA, 2000.

[14] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2), 2000.

[15] C. Hardnett, K. V. Palem, and Y. Chobe. Compiler
optimization of embedded applications for an adaptive soc
architecture. In CASES, 2006.

[16] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[17] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

[18] R. Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM TODAES, 7(4), 2002.

[19] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss. An
automated temporal partitioning and loop fission approach
for FPGA based reconfigurable synthesis of DSP
applications. In DAC, 1999.

[20] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. In The Bell System Technical
Journal, volume 49(2), pages 291–307, 1970.

[21] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms
Generation, Enumeration and Search. CRC Press Inc, 1998.

[22] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding
for automatic instruction set design of configurable asips. In
ICCAD, 2002.

[23] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In DAC, 2000.

[24] Z. Li and S. Hauck. Configuration prefetching techniques for
partial reconfigurable coprocessor with relocation and
defragmentation. In FPGA, 2002.

[25] C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time algorithm.
Journal Of Artificial Intelligence Research, 7:67–82, 1997.

[26] K. M. G. Purna and D. Bhatia. Temporal partitioning and
scheduling data flow graphs for reconfigurable computers.
IEEE Transactions on Computers, 48(6):579–590, 1999.

[27] Stretch Inc. Stretch S5530 software configurable processor.
[28] N. Topham. Challenges to automatic customization. In

P. Ienne and R. Leupers, editors, Customizable Embedded
Processors. Morgan Kauffman, 2006.

