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ABSTRACT
The performance of most embedded systems is critically depen-
dent on the memory hierarchy performance. In particular, higher
cache hit rate can provide significant performance boost to an em-
bedded application. Procedure placement is a popular technique
that aims to improve instruction cache hit rate by reducing conflicts
in the cache through compile/link time reordering of procedures.
However, existing procedure placement techniques make reorder-
ing decisions based on imprecise conflict information. This impre-
cision leads to limited and sometimes negative performance gain,
specially for set-associative caches. In this paper, we introduce in-
termediate blocks profile (IBP) to accurately but compactly model
cost-benefit of procedure placement for both direct mapped and set
associative caches. We propose an efficient algorithm that exploits
IBP to place procedures in memory such that cache conflicts are
minimized. Experimental results demonstrate that our approach
provides substantial improvement in cache performance over exist-
ing procedure placement techniques. Furthermore, we observe that
the code layout for a specific cache configuration is not portable
across different cache configurations. To solve this problem, we
propose an algorithm that exploits IBP to place procedures in mem-
ory such that the average cache miss rate across a set of cache con-
figurations is minimized.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache memories;
D.3.4 [Programming Languages]: Processors—Compilers

General Terms
Algorithms, Performance, Design
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Memory, Instruction Cache, Procedure Placement, Code Layout,
Cache Miss, Intermediate Blocks Profile
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1. INTRODUCTION
Cache memories are employed by most of modern processors to

hide the high latency to memory. Instruction cache plays a criti-
cal role in terms of both performance and energy consumption as
instructions are fetched almost every clock cycle. Thus, careful
tuning and optimization of instruction cache memory can lead to
significant performance gain. Profile based procedure placement
is proposed as one of the well-known instruction cache optimiza-
tion techniques, which aims to reorder the procedures in the com-
pile/link time such that cache conflict misses are eliminated during
run-time. State of the art of procedure placement techniques [8,
9] generate a specific code layout for a particular cache configura-
tion. All these techniques require the cache design parameters such
as cache line size and total cache size as inputs. This is because
the solutions are created by reasoning about where the procedures
should be placed in the cache, which inevitably requires the knowl-
edge of line size and cache size. Being aware of the underlying
cache parameters, these techniques are shown to be better than the
earlier works that neglect them [12, 18].

However, state of the art procedure placement techniques suf-
fer from some drawbacks. First, the cost and benefit of placing
a procedure are modelled approximately. The conflict metric (the
approximation of cache misses) is defined at granularity of proce-
dures. However, inside a procedure, there might be more than one
program path (i.e., a sequence of instructions). The conflict met-
ric of different paths in the same procedure may not be the same.
Thus, using the existing techniques, it is possible that the new code
layout generated is worse than the original code layout due to this
imprecise conflict information. Second, the techniques are mainly
designed for direct mapped caches and do not model set associa-
tive caches accurately. Due to the above two reasons, the existing
procedure placement techniques are not very effective for set asso-
ciative caches. To solve these two problems, we introduce interme-
diate blocks profile (IBP) to precisely model the cost and benefit of
procedure placement. IBP is significantly more compact compared
to memory traces. So, the cache performance evaluation using IBP
is much more efficient than cache simulation. Based on the precise
cache model using IBP, our procedure placement algorithm starts
from the original procedure ordering and selects the most beneficial
procedures along with their placements iteratively.

Moreover, we observe that the code layout generated for a spe-
cific cache configuration by utilizing its parameters (cache size,
associativity) may not be portable across platforms with varying
cache configurations. This problem exists for all procedure place-
ment techniques that rely on cache parameters [8, 9, 13, 10, 3].
Such portability issue is very important in situations where the
underlying hardware platform (cache configuration) is unknown.
This is common for embedded systems where the code becomes



available during deployment through either download or portal me-
dia [16]. In such situations, compiler/linker may not know the un-
derlying cache configurations and thus is unable to generate a code
layout appropriate for the particular cache configuration. More im-
portantly, the cache configurations across platforms could be dif-
ferent due to different versions of the processor or technology evo-
lution. Thus, the same executable (code layout) may have to run on
systems with different cache configurations.

For the portability problem, we concern ourselves with the sce-
nario where an application can be run on platforms with same in-
struction set architecture but different cache configurations. To
overcome the portability problems across platforms with varying
cache configurations, we propose a procedure placement algorithm
to generate a “neutral” code layout by using IBP and structural re-
lations among different cache configurations. The neutral code lay-
out performs well for a set of cache configurations on an average.

In summary, in this paper, we introduce the intermediate blocks
profile (IBP) that allows us to model the cost and benefit of proce-
dure placement accurately and compactly for both direct mapped
and set associative caches. Based on IBP, we first propose a proce-
dure placement algorithm that places procedures in memory such
that cache conflicts are minimized for a specific cache configura-
tion. Experiments demonstrate that our code layout achieves more
cache miss reduction than the state of the art. To attack the porta-
bility problem, we propose another algorithm that generates a neu-
tral code layout for a set of different cache configurations and the
neutral code layout is shown to perform well across a set of cache
configurations on an average.

2. RELATED WORK
For embedded systems design, it is important to minimize cache

miss rate to improve performance as well as power consumption.
Various methods targeting improvement of instruction cache per-
formance through software solutions have been proposed such as
efficient cache design space exploration [14, 7, 19, 11], instruction
cache locking [1, 15] and code reorganization. In this paper, we
focus on code reorganization through procedure placement.

Procedure placement techniques to improve instruction cache
performance have been around for more than a decade. Earlier pro-
cedure placement techniques rely on procedure call graph to model
the conflicts among procedures, where the vertices are the proce-
dures and the edges are weighted by the number of calls between
two procedures [12, 18]. These approaches put conflicting proce-
dures next to each other to reduce cache conflicts. However, the
underlying cache parameters are not considered.

By taking cache parameters (line size, cache size) into account,
a better procedure placement is proposed in [10]. The algorithm
maintains the set of unavailable cache locations (colors) for each
procedure. The colors are used to guide procedure placement. Later
on, the technique is extended to model indirect procedure calls [13].
Gloy et al. in [8] build temporal relationship graph (i.e., which
procedures are referenced between two consecutive accesses to an-
other procedure). Based on temporal relationship graph and also
considering the cache parameters, they show better cache perfor-
mance improvement than [12, 18]. For all the above techniques [10,
13, 8], their conflict metric is just an approximation of conflict
misses and they are designed for direct mapped cache. Bartolini
and Prete propose a precise procedure placement technique [3] us-
ing detailed trace driven simulation to evaluate the effect of proce-
dure placements. In their work, the number of simulations required
increases linearly with the number of procedure and cache size.
However, detailed simulation could be extremely slow [21], even if
the trace is slightly compressed. Thus, simulation based approach

is not feasible for not so small applications, long trace, or large
cache size. On the contrary, our technique is based on the compact
intermediate block profile which models the cache accurately and
efficiently.

Existing procedure placement techniques allow gaps among pro-
cedures to improve cache performance. This leads to code size ex-
pansion. Although various simple heuristics have been proposed
to reduce the code size in [8, 13, 3], the code size still could ex-
pand significantly as shown in [9]. Thus, the cache performance is
improved at the cost of code size expansion. Such huge code size
expansion make these techniques unusable in the context of em-
bedded systems. Guillon et al. extend the technique in [8] to deal
with code size. They introduce a parameter to guide the tradeoff
between performance and code size. They also develop a poly-
nomial optimal algorithm to minimize code size. It is shown that
good performance is still achieved but with a small code size ex-
pansion [9]. However, the technique developed in [9] is mainly for
direct mapped cache and the cache miss is modelled using impre-
cise conflict information.

In this work, we introduce intermediate blocks profile to model
cache behavior. Previously, reuse distance has been proposed for
the same purpose [5, 6]. Reuse distance is defined as the number
of distinct data accesses between two consecutive references to the
same address and it accurately models cache behavior of a fully
associative cache. However, to precisely model the effect of proce-
dure placement, we need the content rather than the number (size)
of distinct data accesses between two consecutive references. IBP
records both the reuse content and their frequencies.

Code reordering can be done at granularity of basic block level
too [17, 20] with additional instruction (i.e., jump instructions) in-
sertion.

3. PROCEDURE PLACEMENT PROBLEM
In this section, we first introduce the cache terminology and then

formally define procedure placement problem.

Cache Terminology. A cache memory is defined in terms of four
major parameters: block or line size L, number of sets N , associa-
tivity A, and replacement policy. The block or line size determines
the unit of transfer between the main memory and the cache. A
cache is divided intoN sets. Each cache set, in turn, is divided into
A cache blocks, where A is the associativity of the cache. N , L
and A are power of 2. For a direct-mapped cache A = 1, for a set-
associative cache A > 1, and for a fully associative cache N = 1.
In other words, a direct-mapped cache has only one cache block per
set, whereas a fully-associative cache has only one cache set. Now
the cache size is defined as (N × A × L). For a set-associative or
fully-associative cache, the replacement policy (e.g., LRU, FIFO,
etc.) defines the block to be evicted when a cache set is full. In this
work, we consider Least Recently Used (LRU) replacement policy
where the block replaced is the one that has been unused for the
longest time.

We use memory block to refer to block (line) sized block in the
memory. Given a memory address m, its corresponding memory
block and the cache set where the memory block is mapped to are

memory_block(m) = bm/Lc (1)

cache_set(m) = bm/Lc modulo N (2)

Thus, given a memory address or memory block, it is mapped to
only one cache set. Figure 1 shows an example of memory address
mapping. In the example, line size is considered to be two bytes



Memory reference : m0 (0000),  m1 (0100),  m2 (0110),  m3 (1110)

2-set 
m0, m10 m00

4-set 

m2, m31 1
m12
2 3m2, m33

Figure 1: Memory address mapping. The address is byte address and
line size is assumed to be 2 bytes (last bit).

(last bit). Memory address m1 is mapped to set 2 in a 4-set cache,
but mapped to set 0 in a 2-set cache.

Given a procedure p, its starting memory line can be defined as
K×N+s, where 0 ≤ s < N andK ≥ 0. For procedure p, s is its
starting cache set number when mapped to cache and s affects the
cache conflicts between p and other procedures; K determines its
location in memory and K does not affect the cache conflicts but
memory size. Thus, procedure placement technique involves two
phases: cache placement and memory placement. Cache place-
ment phase determines s for each procedure to minimize conflicts;
memory placement determines K for each procedure and aims to
minimize the code size. In this paper, we propose a new procedure
placement algorithm using IBP for cache placement phase. As for
memory placement, Guillon et al. [9] provides an optimal solution
for memory placement problem and we employ their technique to
minimize the code size.

4. INTERMEDIATE BLOCKS PROFILE
Let P be the set of procedures of the program. Given a pro-

cedure p ∈ P , we use pstart to denote its starting address in the
original code layout, pset to denote its starting cache set number
(0 ≤ pset < N ) and psize to denote its size in bytes. For a pro-
cedure p ∈ P , pset may be changed by procedure placement to
improve the cache performance. However, procedure placement
reorders instructions at the granularity of procedures. Thus, the
instructions inside a procedure are still contiguous even if the pro-
cedure’s location is changed. Thus, given an instruction, its relative
offset to the staring address of the procedure is never changed dur-
ing procedure placement.

DEFINITION 1 (Procedure Block). Given a memory address
m, its procedure block is defined as a tuple 〈p, l〉 where m belongs
to procedure p and l = bm−pstart

L
c.

Now, let T be the memory trace (sequence of memory refer-
ences) generated by executing a program on the target architecture.
This trace is generated using the original code layout. We transform
the memory trace T to its corresponding procedure block trace T ′
by representing each memory reference in T using its correspond-
ing procedure block. The trace T ′ remains the same during pro-
cedure placement while trace T is not. Furthermore, for caches
with different size and associativity, but with same line size, their
procedure block traces are the same.

Let B be the set of procedure blocks of the program. Given a
procedure block b ∈ B, let us define the jth reference of b in the
trace T ′ as b[j].

DEFINITION 2 (Conflict). Given two procedure blocks b and
b′, let b be 〈p, l〉 and b′ be 〈p′, l′〉

conflict(b, b′) =

 1 if ∃k ∈ Z s.t.
l + pset − l′ − p′set = k ×N

0 otherwise

In other words, conflict(b, b′) returns 1 if b and b′ are mapped
to the same cache set; otherwise, it returns 0.

DEFINITION 3 (Procedure Block Interval). A procedure block
interval is a tuple 〈p, s, e〉. It represents a sequence of contiguous
procedure blocks which belong to the same procedure {〈p, l〉 : s ≤
l ≤ e}.

Given two procedure block intervals which belong to the same
procedure 〈p, s1, e1〉 and 〈p, s2, e2〉, they can be merged to a bigger
procedure block interval 〈p, s1, e2〉 if s2 = e1 + 1 or 〈p, s2, e1〉 if
s1 = e2 + 1.

DEFINITION 4 (Intermediate Blocks Set (IBS)). Given a pro-
cedure block reference b[j](j > 1) in the trace where b ∈ B,
let Sbetween be the set of unique procedure blocks referenced be-
tween b[j − 1] and b[j] in T ′. If there is no such reference, then
Sbetween = φ. Let procedure block b be 〈p, l〉 and Sother be
{〈p′, l′〉 : 〈p′, l′〉 ∈ Sbetween ∧ p′ 6= p}. Then, the intermedi-
ate blocks set (IBS) of procedure block reference b[j], IBSb[j] is
defined as a tuple 〈S,C〉, where

• S = the smallest set of procedure block intervals
representing Sother

• C =
∑

b′∈Sbetween\Sother

conflict(b′, b)

More clearly, IBSb[j] has two parts. The first part is the set of
unique procedure blocks from other procedures referenced between
b[j − 1] and b[j](Sother) in procedure block interval format. The
second part is the number of conflicts encountered from the proce-
dure blocks in between which are from procedure p itself. Given
two procedure blocks belonging to the same procedure, their con-
flict (Definition 2) is not affected by procedure placement because
their relative offset are not changed by procedure placement.

For different references of the same procedure block, they may
have the same intermediate blocks set. More importantly, for inter-
mediate blocks set 〈S,C〉 which does not interact with other pro-
cedures (i.e., S = φ), it is not affected by procedure placement.
Let

IBSb = {〈S,C〉 : ∃j > 1 s.t. 〈S,C〉 = IBSb[j] ∧ S 6= φ}

DEFINITION 5 (Intermediate Blocks Profile). The intermedi-
ate blocks profile IBPb of a procedure block b is defined as a set
of 2-tuples {〈s, f(s)〉} where s ∈ IBSb and f(s) denotes the fre-
quency of the intermediate blocks set s of procedure block b in the
trace.

In Figure 2, we show an example of procedure block trace and
its corresponding intermediate blocks profile. More concretely, for
the second reference of procedure block 〈P0, 0〉, its intermediate
blocks set is 〈{P1, 0, 2}, 0〉 because 3 procedure blocks 〈P1, 0〉,
〈P1, 1〉 and 〈P1, 2〉 from P1 are accessed in between and there is
no procedure blocks from P0 which conflict with 〈P0, 0〉 are ac-
cessed in between (i.e., 〈P0, 1〉 does not conflict with 〈P0, 0〉). For
the second reference of procedure block 〈P1, 0〉, its intermediate
blocks set is 〈{P0, 0, 0}, 1〉 because one procedure block 〈P0, 0〉
from P0 is accessed in between and there is one procedure block
from P1(〈P1, 2〉) which conflicts with 〈P0, 0〉 is accessed in be-
tween. 〈P1, 0〉 conflicts with 〈P1, 2〉 because line gap between
them is 2 and the number of cache sets is 2 in the example.

Now, given a procedure block b and one of its intermediate blocks
set, its cache behavior under least recently used replacement policy
can be determined as follows:



ddaddress 
0001 0010 0011 0100 00100000trace(byte) 0000

< P 1 > < P 0 > < P 1 > < P 2 > < P 0>< P 0 >procedure < P 0>< P0 ,1 > < P1 ,0 > < P1 , 1 > < P1 , 2 > < P0,  0>< P0 , 0 >p
block trace < P1,  0>block trace

Procedure Attributes

Procedures Start Address (byte) Size (byte)

P 0000 2P0 0000 2
P1 0010 3P1 0010 3

Procedure block Intermediate Blocks ProfileProcedure block Intermediate Blocks Profile
< P0, 0 > {  < s, f (s) = 1 > }, where s = < { < P1, 0, 2 > },  0 >
< P 0 > { < s f(s) = 1 > } where s = < { < P 0 0 > } 1 >< P1, 0 > {  < s, f(s) = 1 > }, where s = < { < P0, 0, 0 > },  1 >

Figure 2: Procedure block trace and intermediate blocks profile.
Block (line) size is assumed to be 1 byte. The number of cache sets
is assumed to be 2.

DEFINITION 6 (Cache Hit). Given a procedure block b and
intermediate blocks set 〈S,C〉 ∈ IBSb.

hit(b, 〈S,C〉) =


1 if (

∑
〈p,s,e〉∈S

∑
s≤l≤e

conflict(b, 〈p, l〉)) + C < A
0 otherwise

5. PROCEDURE PLACEMENT ALGORITHM
In this section, we present our procedure placement algorithm

for a specific cache configuration by utilizing IBP. However, not all
the procedures are invoked during execution or frequently called.
We only consider the hot procedures for placement.

Hot Procedures. For a procedure p, we define its hot attribute ac-
cording to its interaction with other procedures, not its execution
time. For procedure p, its hot attribute is defined as

phot =
∑

∀b∈p,<s,f(s)>∈IBPb

f(s)

We sort procedures in decreasing order according to their hot at-
tribute phot. Let total =

∑
p∈P phot. We use HotP to denote

the set of hot procedures we will consider for procedure placement.
We keep adding the next hottest procedure among the rest of pro-
cedures to HotP until

∑
p∈HotP phot ≥ total × Thres, where

0 < Thres ≤ 1. Initially, HotP = ∅.
Note that the hot procedures we define may be different from

traditional hot procedures (i.e., procedures which consume signif-
icant portion of a program’s total execution time). This is because
time consuming procedures may rarely switch control flow to other
procedures or be frequently called by other procedures. On the
other hand, procedure placement is a technique that aims to reduce
conflict misses due to procedure switching. Thus, our procedure
placement technique uses the interaction of a procedure with other
procedures rather than execution time as the hot attribute.

Our procedure placement technique is presented in Algorithm 1.
We start from the original procedure order (i.e., the procedure se-
quence in the original code layout). We place procedures one by
one and place them at a cache line boundary (line 3-6). We use a
two dimension array hit[b][s] to record the hits of procedure block
b for intermediate blocks set s ∈ IBPb. Array hit[][] is initialized
based on the original procedure order (line 7-9). Then, in each it-

Algorithm 1: Procedure Placement Algorithm

set = 0;1
Let List be the list of procedures in the original order;2
for i← 1 to |List| do3

p = L[i]; pset = set;4
set = set+ dpsize/Le;5

foreach b ∈ B do6
foreach 〈s, f(s)〉 ∈ IBPb do7

hit[b][s] = hit(b, s)× f(s);8
9

flag = TRUE;Placed = ∅;10
while flag do11

benefit = 0;12
foreach p ∈ HotP ∧ p /∈ Placed do13

old_set = pset;14
for dis← 0 to N − 1 do15

pset = dis;16
new_benefit = getBenefit(p);17
if new_benefit > benefit then18

benefit = new_benefit;19
selected_set = dis;20
p′ = p;21

22
pset = old_set;23

24
if benefit > 0 then25

p′set = selected_set;26
Placed = Placed ∪ p′;27
foreach b ∈ B do28

foreach 〈s, f(s)〉 ∈ IBPb do29
if p′ ∈ IPSs

b then30
hit[b][s] = hit(b, s)× f(s);31

32
33
34

else35
flag = FALSE;36

37
function(getBenefit(p))38

benefit = 0;39
foreach b ∈ B do40

foreach 〈s, f(s)〉 ∈ IBPb do41
if p ∈ IPSs

b then42
benefit = benfit+ hit(b, s)× f(s)− hit[b][s];43

44
45

return benefit;46

eration of the loop, we walk through all the hot procedures which
have not been selected for placement so far and try out all the dis-
placement values dis ∈ {0, . . . , N − 1} for them. For each iter-
ation, we select the procedure and its corresponding displacement
value that results in maximum benefit. If there is no benefit, the
iterative process is terminated.

Let us assume procedure p is selected for placement. Function
getBenifit(p) returns the benefit of this placement compared to the
code layout of previous iteration.

DEFINITION 7 (Influential Procedure Set (IPS)). Given a pro-
cedure block b and one of its intermediate blocks set s ∈ IBSb, let
b be 〈p, l〉 and s be 〈S,C〉. The influential procedure set IPSs

b is
{p} ∪ {p1 : 〈p1, s1, e1〉 ∈ S}.

The influential procedure set (IPS) for the procedure block b and
intermediate blocks set s ∈ IBSb, IPSs

b , is just the set of proce-
dures invoked between the two occurrences of b.



PROPERTY 1. Given a procedure block b and intermediate blocks
set s ∈ IBSb, hit(b, s) is not affected by the placement of proce-
dure p if p /∈ IPSs

b .

Property 1 can be easily observed following Definition 2 and 6.
In function getBenifit(p), given a procedure block b and one of its
intermediate blocks set s, we will consider them only if they are
affected by the placement of procedure p (i.e., p ∈ IPSs

b ). If
p /∈ IPSs

b , then hit(b, s) is not affected. In other words, there is
no performance gain or loss. In each iteration, once a procedure
and its corresponding cache set number are selected, the affected
entries in hit[][] will be updated (line 30-34).

6. NEUTRAL PROCEDURE PLACEMENT
In the last section, we describe an algorithm to generate a new

code layout for a specific configuration using IBP. We observe that
the code layout generated for a specific cache configuration is so
tied to the specific configuration that it is not portable across differ-
ent cache configurations (see section 7.3). More importantly, the
code layout portability is a problem for all the techniques that are
aware of cache parameters [10, 8, 13, 9, 3]. In this section, we will
present an algorithm to generate a “neutral" code layout for a set of
cache configurations. The neutral code layout achieves better aver-
age performance (i.e., average number of cache misses across a set
of cache configurations) than any specific code layout.

We are interested in the set of cache configurations with differ-
ent cache size and associativity, but with constant line size. Given
cache size (S), line size (L) and associativity (A), the number of
cache sets is S

L×A
. We use CS

A to denote the cache configuration
with size S and associativity A. Then, the set of cache configura-
tions we support is Config = {CS

A|Smin ≤ S ≤ Smax;Amin ≤
A ≤ Amax; }, where Amin(Amax) is the minimum (maximum)
associativity and Smin(Smax) is the minimum (maximum) cache
size. We use Nmax(Nmin) to represent the maximum (minimum)
number of cache sets for the configurations in Config. Obviously,
Nmax = Smax

L×Amin
and Nmin = Smin

L×Amax
.

For a procedure block reference b[j], let b be 〈p, l〉. Its interme-
diate blocks set IBSb[j] is defined as 〈S,C〉 in section 4, where
C is the number of procedure blocks from p itself which conflict
with b between the references b[j − 1] and b[j]. However, for the
configurations in the set Config, they may have different number
of cache sets. According to Definition 2, the conflict for two pro-
cedure blocks may be different for caches with different number of
cache sets. Thus, we extend the definition of intermediate blocks
set IBSb[j] to 〈S,C[]〉, where S is the same as before, butC[] is an
array and C[i] returns the conflicts for the cache with i cache sets.

Our aim is to improve the average performance for the set of
configurations Config. Our algorithm is similar to Algorithm 1
with a few changes. First, for a procedure p, we use pset to rep-
resent its starting cache set number when mapped to cache CSmax

Amin

(i.e., the cache with maximum number of cache sets,Nmax). Thus,
0 ≤ pset < Nmax. When mapped to cache CS

A, starting cache set
number of procedure p is (pset modulo N ′), where N ′ is the
number of cache sets for cache CS

A(N
′ = S

L×A
). In other words,

for a procedure p, its starting cache set in CSmax
Amin

uniquely deter-
mines its starting cache set when mapped to other cache configu-
rations in Config with smaller number of cache sets. When a hot
procedure is selected for placement, we try all the displacements
dis ∈ {0, . . . , Nmax − 1} for it. Second, given a procedure block
b and intermediate blocks set s ∈ IBPb, we use hit[b][s] to repre-
sent the total number cache hits of all the configurations inConfig
rather than a specific configuration. Finally, getBenefit(p) func-
tion in Algorithm 1 only returns the benefit of a specific cache con-

Algorithm 2: Benefits for a set of configurations
function(getBenefit_Set(p))1
Let conf[] be an array ;2
benefit = 0 ;3
foreach b ∈ B do4

foreach 〈s, f(s)〉 ∈ IBPb do5
if p ∈ IPSs

b then6
Initialize conf[] to 0;7
Let s be 〈S′, C′[]〉 and b be 〈p′, l′〉 ;8
foreach intermediate blocks set 〈p′′, s′′, e′′〉 ∈ S′ do9

for l′′ ← s′′ to e′′ do10
set = Match(p′′set + l′′, p′set + l′) ;11
if set > Nmax then12

set = Nmax ;13
conf [set] = conf [set] + 1;14

15
for set← Nmax/2 to Nmin do16

conf [set] = conf [set] + conf [set ∗ 2];17
for set← Nmax to Nmin do18

conf [set] = conf [set] + C′[set];19
total_hit = 0;20
foreach CS

A ∈ Config do21
set = S

A×L
;22

if conf [set] < A then23
total_hit = total_hit+ f(s);24

25
benefit = benefit+ total_hit− hit[b][s];26

27
28

return benefit ;29

figuration when p is selected for placement. In the following, we
will define getBenefit_Set(p) function which returns the benefit
for all the configurations in Config.

For a procedure block b, let b be 〈p, l〉. It will be mapped to
cache set ((pset + l) modulo N ′) in cache with N ′ cache sets.
According to Definition 2, we have

PROPERTY 2. Two procedure blocks that conflict inC1 ∈ Config
with N1 cache sets, will conflict in C2 ∈ Config with N2 cache
sets, if N1 > N2.

The new getBenefit_Set(p) function is detailed in Algorithm 2.
Let us assume the selected procedure for placement is p. Then, for
a procedure block b and its intermediate blocks set s pair, we com-
pute its benefit only if it is affected (p ∈ IPSs

b ). If it is affected,
then we compare procedure block b with every procedure block
in intermediate blocks set s. We determine the maximum num-
ber of cache sets at which two procedure blocks conflict by using
Match function. Match(a, b) = 2k, where k is the contiguous
right matched bits of a and b.

According Property 2, the conflicts are propagated from cache
with more cache sets to cache with less cache sets (line 16-17).
The number of cache sets is always power of 2. The conflicts from
the procedure blocks in the same procedure are added too (line 18-
19). In the end, we walk through all the cache configurations and
collect the benefits.

7. EXPERIMENTAL RESULTS

7.1 Experiments Setup
We select benchmarks from MiBench and MediaBench for eval-

uation purposes as shown in Table 1. We conduct our experiments
using SimpleScalar framework [2]. Each benchmark is first run
with a training input to generate an execution trace. Then, each
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Benchmark # Procedures # Hot Trace IBP
procedures (MB) (MB)

Cjpeg 324 27 235 5.1
Djpeg 351 29 63 5.2

Gsmdec 188 16 101 2.6
Mpeg2dec 216 23 222 27

Ispell 261 12 242 6.8
Rsynth 188 21 495 6.9
Tiff2bw 498 61 365 4.5

Tiff2rgba 493 68 359 3.2

Table 1: Characteristics of Benchmarks.

benchmark is recompiled with our analysis activated. We generate
the instruction trace of each benchmark using sim-profile, a func-
tional simulator. Given the address trace, our analysis transforms
it to the procedure block trace and builds corresponding IBP. As
discussed in section 5, we only select the hot procedures for proce-
dure placement and in our experiment, we set the threshold for hot
procedures as 0.99. Benchmarks characteristics such as number of
hot procedures, size of address trace, and IBP are shown in Table 1.

We evaluate the effectiveness of our algorithms with different
cache parameters. We vary the cache size (4KB, 8KB), associa-
tivity (1, 2, 4, 8), and block size (32 bytes). We collect the cache
misses and execution cycles using cache simulator and cycle accu-
rate simulator in SimpleScalar. The performance numbers are col-
lected by running the optimized program with a different input. In
other words, we use different inputs for training and evaluation run.
We perform all the experiments on a 3GHz Pentium 4 CPU with
2GB memory. In this paper, we focus on the cache placement (i.e.,
assign starting set number to procedures to minimize cache conflict
misses). As for memory placement, Guillon et al. [16] present a
polynomial optimal algorithm and we implement their technique to
minimize code size.

IBP vs Trace. Both the address trace and IBP size are shown in
Table 1. As shown, IBP is significantly more compact compared to
the address trace. More importantly, when the input size increases,
its address trace will increase while IBP size most likely will re-
main the same. This is because when the input size increases, the
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Figure 5: Address trace vs IBP for various inputs with different sizes
for Cjpeg. Inputs are sorted in ascending order according to their sizes.

intermediate blocks set will most likely stay stable and only the
frequency is increased.

In Figure 5, we show how the address trace and IBP size change
for various inputs for Cjpeg benchmark. We tried 10 different in-
puts with different sizes. The raw image sizes vary from 34K to
2.9M . In Figure 5, the inputs are sorted according to their size.
As shown, the trace size increases significantly when the input size
increases. However, the IBP size stays stable when the input size
increases. Different inputs may cover different paths of the pro-
gram. Thus, a small input may have more intermediate blocks set
than a big input. As a result, the size of the intermediate blocks
profile for a small input may be larger than that of the big input.
Hence, it is possible that the IBP size decreases while the input
size increases as shown in Figure 5.

7.2 Layout for a Specific Cache Configuration
To evaluate our technique, we compare our work with the state

of art [9] which extends [8] to deal with code size. In [9], param-
eter α(0 ≤ α ≤ 1) is used to control the tradeoff between miss
rate reduction and code size expansion. When α = 1, the algo-
rithm is biased toward miss rate reduction only, which is exactly
the same as technique [8]. With α = 1, cache miss rate is reduced
but with significant code size expansion. Two other values of α,
0.995 and 0.999995 are used in [9] which gives the miss rate re-
duction nearly the same as α = 1 but with smaller code size expan-
sion. Though the techniques in [8, 9] are mainly for direct mapped
cache, as shown in [8], they can be applied to set associative caches
as well.



100%
4K Cache 8K Cache

60%
80%

100%
R

at
e 

m
en

t
1

60%
80%

100%

1

20%
40%
60%

he
 M

is
s 

pr
ov

em 0.999995
0.995

20%
40%
60% 0.999995

0.995

-20%
0%

20%

C
ac

h
Im

p IBP

-20%
0%

20% IBP

(a) Associativity = 2

80%
4K Cache 8K Cache

60%

80%

R
at

e 
m

en
t

1
60%
80%

100%

1

20%

40%

e 
M

is
s 

pr
ov

em 0.999995
0.995

20%
40%
60% 0.999995

0.995

20%

0%

C
ac

h
Im

p IBP

-20%
0%

20% IBP

-20%

(b) Associativity = 4

4K Cache 8K Cache

20%
30%
40%

R
at

e 
m

en
t 1

60%
80%

100%

1

0%
10%
20%

e 
M

is
s 

pr
ov

em 0.999995
0.995

20%
40%
60% 0.999995

0.995

-20%
-10%

0%

C
ac

he
Im

p IBP

-20%
0%

20% IBP

(c) Associativity = 8

Figure 6: Cache miss rate improvement compared to original code layout for set associative cache.

We use the original code layout as baseline. Original code lay-
out is the code layout from the compiler without any procedure
reordering. For each technique, we show its cache miss rate im-
provement and code size expansion compared to original code lay-
out. We discuss the comparison between our technique (IBP) and
Guillon method [9] for direct mapped and set associative caches,
respectively. For Guillon method [9], we tried various values of α
(1, 0.999995, 0,995).

Direct Mapped Cache. The results are shown in Figure 3 and 4
for 4K and 8K cache, respectively. Both techniques are effective
for direct mapped cache as shown. As for Guillon method, our
finding is that when α is set to 0.999995(0.995), it achieves sim-
ilar miss rate improvement as α = 1, but the code size expansion
is much smaller than α = 1 as shown in [9]. However, Guillon
method may generate worse code layout compared to original code
layout due to its imprecise conflict model (e.g., djpeg for 4K cache
and tiff2bw for 8K cache).

For every benchmark and configuration pair, our IBP achieves
more cache miss rate improvement than Guillon method. For 4K
cache, IBP improves cache miss rate by 43.5% on an average; Guil-
lon method improves performance by 30%—30.5% on an average
depending on the value of α. For 8K cache, IBP improves cache
miss rate by 64% on an average; Guillon method improves perfor-
mance by 37.3%—38.3% on an average depending on the value of
α. For Guillon method, if the miss rate improvement is negative,
we consider it as 0 when computing average values.

There are two reasons for the gain of IBP over Guillon method.
First, IBP is a precise model working at the granularity of proce-
dure block, but Guillon method is based on imprecise conflict in-
formation. In addition to cache modeling, two techniques differ in

the nature of the procedure placement algorithm. In IBP, we start
from original procedure order and align the procedure at cache line
boundaries. In each round, we try all the hot procedures not placed
so far to determine the best procedure for placement and its corre-
sponding placement. However, in Guillon method, the sequence to
place procedures is pre-determined by conflict graph and only the
different placement of procedures are attempted.

IBP based method achieves more miss rate reduction with a very
small code size expansion. For 4K cache, IBP expands code size
by 1.6% on an average; Guillion method expands code size by
0.8%—3% on an average depending on the values of α. For 8K
cache, IBP expands code size by 2.4% on an average; Guillion
method expands code size by 0.9%—16% on an average depend-
ing on the values of α.

Set Associative Caches. As shown in Figure 6(a), (b) and (c),
Guillon method is not always effective for set associativity caches
especially when associativity is high (4, 8). For some benchmarks,
the code layout from Guillon method is much worse than the orig-
inal code layout. For 2-way associative cache, 12 out of 48 code
layouts are worse than the original code layout; for 4-way associa-
tive cache, 17 out of 48 code layouts are worse than the original
code layout; for 8-way associative cache, 16 out of 48 code lay-
outs are worse than the original code layout. On the other hand,
IBP is always better than original code layout. This is because IBP
allows us to precisely model the cache performance for set asso-
ciative caches while Guillon method does not model set associative
caches accurately.

For 2-way associative cache, IBP improves cache miss rate by
43.7% on an average; Guillon method improves cache miss rate by
17.3%—20.7% on an average depending on the value of α. For 4-
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Figure 8: Energy consumption improvement compared to original code layout.

way associative cache, IBP improves cache miss rate by 33.4% on
an average; Guillon method improves cache miss rate by 8.6%—
12.9% on an average depending on the value of α. For 8-way as-
sociative cache, IBP improves cache miss rate by 24.8% on an av-
erage; Guillon method improves cache miss rate by 6.1%—14.2%
on an average depending on the value of α. For Guillon method,
if the miss rate improvement is negative, we consider it as 0 when
computing average values.

Finally, for both techniques, the cache miss rate improvement
decreases when the associativity increases. It is because higher
associativity leads to fewer cache sets leaving little opportunity for
procedure reordering.

IBP achieves high miss rate improvement with only small code
expansion. As for code size, for 2-way associative cache, IBP
expands code size by 1.3% on an average; for 4-way associative
cache, IBP expands code size by 1.1% on an average; for 8-way
associative cache, IBP expands code size by 0.9% on an average.

Execution Time Improvement. Figure 7 shows the execution time
improvement of new code layout (IBP) compared to the original
code layout. These experiments are conducted assuming single-
issue in-order processor with 100 cycles cache miss latency and 1
cycle cache hit latency. Some benchmarks do not gain consider-
able execution time improvement even though cache miss rate is
improved. This is because for these benchmarks the absolute cache
miss number without procedure placement is very small. Thus, im-
provement in cache miss rate will not contribute much to the overall
execution time reduction. IBP obtains 19.67% execution time im-
provement on an average for 1-way cache, 13.53% execution time
improvement on an average for 2-way cache, 9.32% execution time
improvement on an average for 4-way cache and 5.3% execution
time improvement on an average for 8-way cache.

Energy Consumption Improvement. Figure 8 shows the mem-
ory hierarchy energy improvement of new code layout (IBP) com-
pared to the original code layout. For different cache configura-
tions, we model the energy consumption of the memory hierarchy
using the CACTI [22] model for 0.13µm technology. In this paper,
our focus is dynamic energy consumption. As for the energy con-
sumption for one access to memory, it is assumed to be 200 times of
energy consumption of one access to standard level one cache [23].

IBP obtains 31.2% energy consumption improvement on an aver-
age for 1-way cache, 22.4% energy consumption improvement on
an average for 2-way cache, 15.8% energy consumption improve-
ment on an average for 4-way cache and 10% energy consumption
improvment on an average for 8-way cache.

Impact of Replacement Policy. IBP based cache modeling is de-
veloped under the assumption that the replacement policy is least
recently used (LRU). However, Berg and Hagerston observed that
different replacement policies may have little effect on the miss ra-
tio for most of applications, but small differences exist [4]. We
evaluate IBP layout under FIFO replacement policy. The code lay-
out is generated based on LRU replacement policy, but miss rate is
computed using FIFO replacement policy.

In Figure 9, we show the cache miss improvement compared to
original code layout for FIFO. We observe that for most applica-
tions, IBP code layout is still quite effective. IBP obtains 43.3%
miss rate improvement on an average for 2-way cache, 32.2% miss
rate improvement on an average for 4-way cache, and 23.7% miss
rate improvement on an average for 8-way cache. However, we no-
tice that small differences do exist. For 4K, 8-way set associative
cache, IBP code layout is a little bit worse than the original code
layout for Mpeg2dec for FIFO replacement policy. This is probably
because IBP code layout is not quite effective for this configuration
for Mpeg2dec as shown in Figure 6.

Runtime. Our procedure placement algorithm is very efficient thanks
to the compact format of IBP. It only takes a few minutes to com-
plete our analysis for any considered settings.

7.3 Neutral Layout
We evaluate our neutral code layout using the set of configura-

tions Config = {CS
A|4K ≤ S ≤ 8K; 1 ≤ A ≤ 8; }. For each

configuration CS
A, we generate a specific S-A-way code layout. So

there are total 8 specific code layouts and 1 neutral code layout.
We first present the code layout portability problem in Table 2.

For each code layout, we evaluate its portability using all the 8 con-
figurations in Config. Table 2 shows the results of 2 benchmarks
Ispell and Rsynth. The other benchmarks are not shown here due to
space limitation.
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Figure 9: Cache miss rate improvement of IBP over original code layout for FIFO replacement policy.

Portability. As shown in the Table 2, for each configuration, the
cache miss varies significantly across different code layouts. For
example, for 4K size, 1-way cache, Rsynth incurs about 8 million
cache misses using the code layout generated for 4K-1-way config-
uration while the number of cache miss goes up to more than 62
million using code layout generated for 4k-2-way cache configu-
ration. As expected, we also observe that, in most cases, the code
layout C generated for the cache configuration C is the best code
layout for cache configuration C among all the code layouts in the
set (diagonal line from top left to bottom right). This is because
the underlying cache parameters match exactly with the assumed
cache parameters during procedure placement. However, the code
layout generated forC may perform badly for other configurations,
though it is good for configuration C. For example, for benchmark
Ispell, 4k-1-way code layout is better than 4k-2-way code layout
for 4k-1-way cache configuration, but worse than 4k-2-way code
layout for 4k-2-way cache configuration. In other words, there is
no single code layout that performs better than other code layouts
for all the configurations.

More importantly, the above portability problem exists for all
procedure placement techniques [8, 9, 13, 10, 3] that take cache
parameters into account. This has been observed for [8, 9], which
is not shown here due to space limitation.

Performance. The comparison of 9 (8 specific + 1 neutral) code
layouts in terms of average performance is shown in Figure 10. Y-
axis in Figure 10 shows the average cache miss improvement over
all cache configurations compared to original code layout. Only 6
benchmarks are shown due to space limitation. Similar trend has
been observed for others.

First, the neutral code layout always performs better than any
specific code layout in terms of average performance for all the
benchmarks. For all the benchmarks, neutral code layout achieves
positive performance improvement. Though the neural code layout
is better than any other specific code layout, it does not win for
all the configurations. For most of the cases, the S-A-way code
layout is the best for CS

A configuration. So, our neutral code layout
is not the best code layout for a specific cache configuration, but
the best code layout for the average performance across a set of
configurations.

Second, we notice that the best specific code layout is differ-
ent for different benchmarks. For example, for Djpeg, the best
specific code layout is 8K-1-way; for Mpeg2dec, the best specific
code layout is 4K-1-way. Moreover, some specific code layouts
for highly associative caches (4-way and 8-way) degrade average
performance compared to the original code layout (e.g., Mpeg2dec,
Rsynth etc). Though the specific code layouts are better than the
original code layout for their own configurations, they are worse
than the original code layout for the rest of the configurations. As a
result, they are worse than the original code layout on an average.
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Code Size. Neutral code layout achieves better average miss rate
improvement with small code size expansion. On an average, neu-
tral code layout expands code size by 2.3%.

8. CONCLUSION
Procedure placement is a popular instruction cache optimization

technique that aims to improve instruction cache performance by
reducing conflicts in the cache through compile/link time reorder-
ing of procedures. However, state of the art of procedure placement
techniques make reordering decisions based on imprecise conflict
information and they mainly target direct mapped cache only. There-
fore, the code layout generated by the state of the art may be worse
than the original code layout for set associative caches. In this
paper, we first introduce intermediate blocks profile (IBP) to pre-
cisely model the cost and benefit of procedure placement. Then,
we propose a procedure placement algorithm using IBP. Our algo-
rithm starts from the original procedure order and selects the most
beneficial procedures and their placements iteratively. Experiments
indicate that our technique improves both cache performance and
energy consumption compared to the state of the art. Furthermore,
we notice that the code layout generated for a specific cache config-
uration is not portable across different cache configurations. Thus,
we propose another algorithm that uses IBP to generate a neutral
layout for a set of cache configurations.
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