Satisfying Real-Time Constraints with Custom Instructions

Pan Yu
panyu@comp.nus.edu.sg

Tulika Mitra
tulika@comp.nus.edu.sg

School of Computing
National University of Singapore
Republic of Singapore 117543

ABSTRACT

Instruction-set extensible processors allow an existing pro-
cessor core to be extended with application-specific custom
instructions. In this paper, we explore a novel application
of instruction-set extensions to meet timing constraints in
real-time embedded systems. In order to satisfy real-time
constraints, the worst-case execution time (WCET) of a
task should be reduced as opposed to its average-case ex-
ecution time. Unfortunately, existing custom instruction
selection techniques based on average-case profile informa-
tion may not reduce a task’s WCET. We first develop an
Integer Linear Programming (ILP) formulation to choose
optimal instruction-set extensions for reducing the WCET.
However, ILP solutions for this problem are often too ex-
pensive to compute. Therefore, we also propose an efficient
and scalable heuristic that obtains quite close to the opti-
mal results. Experiment results indicate that suitable choice
of custom instructions can reduce the WCET of our bench-
mark programs by as much as 42% (23.5% on an average).

Categories and Subject Descriptors: C.3 [Real-time
and embedded systems]

General Terms: Algorithms, Performance, Design.

Keywords: Customizable processors, instruction-set ex-
tensions, real-time systems, worst-case execution time.

1. INTRODUCTION

Instruction-set extensible processors allow a processor core
to be extended with application-specific custom instructions
[1, 8, 9, 18]. These processors have become popular as
they strike the right balance between challenging perfor-
mance requirement and short time-to-market constraints of
embedded systems. Custom instructions encapsulate the
frequently occurring computation patterns in an applica-
tion and are implemented as custom functional units (CFU).
CFUs improve performance through parallelization and chain-
ing of operations, and also save the fetch, decode, and se-
lection overhead of several base instructions. Thus custom

float expint (int n, float x)

{

if (x > 1.0) { //Lentz’s algorithm. @ @
. \XIT; >

} else { //Evaluate series. (b)
ans= .. -log(x)-EULER;
for (i=1; i<=MAXIT; i++) {

e o /
if |(fabs(del) < fabs(ans)*EPS)~———_____ @
}

leturn ans; @
}
(@) (c)

Figure 1: Motivating Example

instructions help simple embedded processors achieve con-
siderable performance and energy efficiency.

In this paper, we explore a novel application of instruction-
set extensions in the domain of embedded real-time systems.
The input to a real-time scheduler is a set of tasks with
their corresponding execution time, period, and deadlines.
If there does not exist any feasible schedule that meets all
the deadlines, then the designer is left with two choices. The
first option is to raise the processor’s clock frequency (at the
cost of increased power consumption) or choose a different
higher performance processor. However, it may not always
be possible to increase the clock frequency further or change
the processor. The second option is to optimize the code
so as to reduce the execution time. Again, the current code
may already be fully optimized. For these scenarios, we pro-
pose using custom instructions to reduce the execution time
such that the system can meet hard real-time constraints.
The availability of processor cores with programmable logic
for CFUs [1, 18] makes this quite a cost-effective solution.

The heart of the problem is then to choose an appropriate
set of custom instructions for an application. It is a diffi-
cult problem even for non real-time applications. Significant
research effort has been invested in developing automated
selection techniques. Unfortunately, we cannot apply these
techniques out-of-the-box for real-time applications.

The goal of traditional custom instruction selection prob-

Permission to make digital or hard copies of all or part of this work for lem is to reduce the average case execution time (ACET) of
personal or classroom use is granted without fee provided that copies arethe application. Therefore, these techniques rely on the ex-
not made or distributed for profit or commercial advantage and that copies ecution frequencies of the code fragments through profiling.
bear this notice and the full citation on the first page. To copy otherwise, 10 For real-time tasks, on the other hand, custom instructions
republish, to post on servers or to redistribute to lists, requires prior specific () 14 reduce the worst case execution time (WCET). The

permission and/or a fee. 1o
CODES+ISSS'055ept. 19-21, 2005, Jersey City, New Jersey, USA. WCET of a task is defined as Its maximum execution time
for all possible inputs. Let us illustrate the difference with

Copyright 2005 ACM 1-59593-161-9/05/00085.00.

an example. Figure 1 shows a code fragment that com-
putes the value of the exponential integral. There are two
candidate patterns — one from each side of a conditional
branch. Let us assume that we can implement only one
custom instruction. For reducing the ACET, the pattern
selection will depend on the frequency of execution of these
two patterns. However, this selection may not be optimal
for WCET reduction as the frequently executed pattern may
not contribute to the worst-case execution path. For exam-
ple, if the else part of the conditional branch contributes
towards the worst case path, then the pattern on the else
part should be selected for WCET reduction.

Moreover, it is not sufficient to use the execution fre-
quencies corresponding to the WCET path and then employ
the traditional custom instruction selection techniques. The
WCET path may not remain the same throughout the se-
lection process. Once we have selected some custom instruc-
tions to reduce the current WCET path, a new path may
become the WCET path. Therefore, custom instruction se-
lection problem for WCET reduction is more challenging
compared to ACET reduction.

In this paper, we first provide an Integer Linear Program-
ming (ILP) formulation of the custom instruction selection
problem for real-time tasks. The formulation guarantees op-
timal reduction of the WCET. However, the ILP formulation
is compute intensive and even fails to terminate within rea-
sonable time for large applications. So, we also propose a
scalable heuristic algorithm that achieves close to the opti-
mal result. The contributions of this work are the following.

e To the best of our knowledge, ours is the first work that
explores the possibility of using custom instructions to
meet the timing constraints in real-time systems.

e Custom instructions should reduce the WCET of a
real-time task as opposed to ACET. Towards this end,
we provide both an optimal solution based on ILP and
a heuristic algorithm. Our results indicate that an
appropriate choice of custom instructions can reduce
WCET by as much as 42% (23.5% on an average).

2. RELATED WORK

The design space exploration problem to select suitable
custom instructions for an application consists of two steps.
The first step [2, 3, 6, 7, 11, 21] identifies a large set of
candidate patterns from the program’s dataflow graph and
their frequencies via profiling. Given this library of patterns,
the second step selects a subset to maximize the average
case performance under constraints on number of allowed
custom instructions and/or area budget. Various different
approaches have been proposed for this step such as dynamic
programming [2], branch-and-bound [19], 0-1 Knapsack [7],
greedy heuristic [5, 6, 13, 20], and ILP [13, 20]. In contrast,
our goal is to improve the worst case performance.

Compiler techniques to reduce the worst case execution
time of a program have started to receive attention very re-
cently. Reduction in WCET has been achieved though dual
instruction sets [14], reordering of the sequence of compiler
optimizations [22], and code positioning [23]. [14, 23] greed-
ily optimize the current WCET path till there is a shift to
another path. However, this approach may miss the global
optima as it does not consider closely competing paths si-
multaneously. [22] uses genetic algorithm. In contrast, our
ILP formulation ensures the optimality of the solution. Also,

=27

]
return ans

(a) CFG (b) Syntax tree

Figure 2: CFG and syntax tree corresponding to the
code in Figure 1

our heuristic takes a more global perspective and selects a
pattern that reduces the WCET across all the paths.

3. PROBLEM FORMULATION

Given an application, we first use our previously proposed
algorithm [21] to exhaustively identify all possible compu-
tation patterns in that application. All the generated pat-
terns satisfy certain pre-defined constraints on the maxi-
mum number of allowed input and output operands. Let
us assume that we have identified N candidate patterns in
a program denoted by Ci...Cn. A pattern C; can have
n; different instances occurring in the program denoted by
Ci1...Cin;. Let P; be the performance gain obtained by
implementing C; in hardware as opposed to software. R; is
the amount of area (hardware blocks) required to implement
C;. Suppose we have a constraint on the total number of
custom instructions that can be implemented in the archi-
tecture, say M (M < N). Then our goal is to cover each
original instruction in the code with zero/one instance of at
most M custom instructions, such that the WCET of the
task is minimized. Similarly, we may have a constraint that
the total amount of area required by the selected custom
instructions should not exceed R.

Since we need to improve the WCET, the problem for-
mulation is intrinsically related to the method used for esti-
mating the WCET. In this work, we use the Timing Schema
approach to estimate the WCET of a task.

3.1 WCET Analysis using Timing Schema

Timing schema is an efficient technique to estimate the
WCET of a structured program [15]. The structure of the
program is represented as a hierarchical syntax tree with
basic blocks as leaf nodes and control structures (i.e., se-
quences, branches, and loops) as interior nodes. The entire
program is represented at the root of the syntax tree. Fig-
ure 2 shows control flow graph (CFG) ' and syntax tree
corresponding to the code in Figure 1. Function calls are
represented by leaf nodes (e.g., node E in Figure 2 (b)). A
separate syntax tree is constructed for each function. So the
entire program is represented as a syntaz forest.

WCET of a program is estimated by traversing its hierar-
chical syntax tree in a bottom-up fashion. First, the execu-
tion times of the leaf nodes, i.e., basic blocks are obtained

We build CFG for optimized assembly code. The figure
uses source code for illustration purpose only.

(e.g., by counting the number of execution cycles for each
basic block). For each interior node V' of the syntax tree,
this method computes wcet(V') that represents the WCET
of the code fragment corresponding to V as a function of

the WCETSs of its children as follows:
Basic block: wcet(V) = constant

Sequence: weet(V1;V2) = weet(V1) + weet(V2)
Branch: weet(if V1 then V2 else V3) =
weet(V1) + max(wceet(V2),weet(V3))
Loop: weet(for V1 loop V2) =
(n+1) x weet(V1) + nxweet(V2)
where the loop iterates at most n times. The WCET of
a function is computed at the root node of its syntax tree.
The WCET of a program is computed at the root node of its
main function. There are other sophisticated schemas [16]
for capturing infeasible paths, unstructured programs and
timing effects due to cache, pipeline. However, this simple
timing schema suffices to illustrate the concept.

4. OPTIMAL SOLUTION USING ILP

We can formulate the selection of optimal instruction-set
extension for minimizing the WCET as an Integer Linear
Programming (ILP) problem. The objective function mini-
mizes the WCET of the root node of the main function:

minimize : wceelpain

The first part of the ILP formulation defines wcetpain in
terms of the WCET of the basic blocks using timing schema.
The rules of the timing schema can be easily mapped to a
set of linear equations. The second part defines the WCET
of the basic blocks in the presence of custom instructions.

wcetnain depends on the WCET of its children as discussed
in Section 3.1. Let V be a non-leaf node in the syntax tree
and let V7 ...V} be its children. If V is a sequence node, then
following timing schema, we have wcety = Zle weety,. If
V' is a conditional branch, then it has at most three children
corresponding to the condition (V1), taken (V2), and non-
taken (V3) paths (if any), respectively. Then,

wceety weety, + weety,

>
wceety >

weety, + weetyy
If V is a loop node with loop bound n and two children
corresponding to the condition (V1) and the loop body (V'2),
then wcety = (n + 1) X weety, + n X wcety,. If node V
represents a call to a function func, then wecety = wcetsunc.
Now, we define the WCET of the leaf nodes (basic blocks)
in the presence of custom instructions. WCET of a basic
block depends on the selection of the custom instructions.
Let us define binary variables s;; (1 <i < N;1 <7 <mn;)
corresponding to each of the custom instruction instances.
54,5 is equal to 1 if custom instruction instance ¢;.; is selected
and 0 otherwise. Similarly, we define binary variable S; (1 <
1 < N) to be equal to 1 if custom instruction C; is selected
and 0 otherwise. That is,

Si= 1 if Zsi,j >0
=1
= 0 otherwise

The following logically equivalent linear equations can sub-
stitute the above non-linear equations.

Zisi,jfUXSiSO

j=1

ZiSiAj+1—Si>0

Jj=1

where U is a large constant greater than max(n;).

Let Ty be the original execution time of a basic block
V' without any custom instruction. Let cq.p...ce.r be the
custom instruction instances that can possibly cover instruc-
tions of basic block V. Then,

weety =Ty — (Pa X Sq.b+ ...+ Pe X Se.v)

Now, we express the various constraints for this optimiza-
tion problem. First, a base instruction in the program can
be covered by at most one custom instruction instance. If
Cz.y - - - Cw.> COVer a base instruction, then sz +... 4+ 5.2 <
1. Second, if M is the constraint on the maximum number of
custom instructions allowed, then vazl S; < M. Similarly,
if R is the total area budget for implementing all custom
instructions, then Zivzl S; x R; < R.

5. HEURISTIC ALGORITHM

Solving ILP formulation takes prohibitively long time as
the number of patterns and their instances increases. There-
fore, we also present an efficient and scalable heuristic algo-
rithm for this problem. We first introduce a greedy heuris-
tic algorithm. Subsequently we improve the heuristic to take
care of its limitations.

Algorithm 1: Custom Instruction Selection Heuristic

Input: P: all patterns
Output: pat, ins: selected patterns, instances
m := 0; pat := ¢; ins := ¢;
while m < M do
Vp € P compute profit(p);
Let p € P be the pattern with max profit;
if profit(p) = 0 then return pat;
add p to pat; remove p from P;
add selected instances of p to ins;
m :=m+ 1; weet := wcet — profit(p);
end

0O Uk WK

Algorithm 1 shows the heuristic for selecting custom in-
structions such that the WCET of the program is minimized.
We iteratively select the pattern that reduces the WCET
most (defined by the profit function). We continue until
either the maximum number of custom instructions allowed
in the architecture is reached (M in Algorithm 1) or no fur-
ther reduction is possible (line 5). The profit of a pattern
is defined as the reduction in the program’s WCET if the
pattern is chosen as custom instruction. Note that the profit
function computes the global WCET reduction (considering
all paths) as opposed to just execution time reduction of the
current WCET path. This difference is important if we have
two or more closely competing worst case paths. A pattern
that reduces the execution time across all these competing
paths will be a better choice than the one that only reduces
the execution time of the current worst case path.

Notice that the selection of a pattern does not imply se-
lection of all its instances (line 7). This is because (1) an
instance of the currently selected pattern may overlap with

w-WCET I~ 7I/f \ [P
| main ! B \ | foo)
p-Profit ———~— I A=y - 1| Fiseq
/ W,D1.P2,P3,PaPs | W,P1,P2
T it | E: if

W,P1,P2,P3 '\ W,ps,Ps n

',7\5._\
= N
Ciloop || D:loop i[6]
2 T T

T
s
\-

N

Figure 3: Efficient computation of profit function.

an instance of a previously selected pattern, and (2) two or
more instances of the selected pattern may overlap among
themselves. We handle the first case by ignoring the in-
stances of the currently chosen pattern that overlap with
previously selected patterns. In the second case, we have to
choose a subset of the currently selected pattern’s instances
such that there is no overlap. However, selecting the optimal
subset is too compute intensive. Therefore, we again apply
a greedy selection process. The overlapping instances of a
pattern always belong to a single basic block. The instances
are selected according to the order in which they appear
inside the basic block. An instance cannot be selected if
it conflicts with a previously selected instance. Note that
the selection of pattern instances is performed during the
profit calculation itself (line 3); otherwise, the profits will
be over-estimated.

If we have a constraint on total area instead of number
of instructions, then we choose the pattern with the best
profit/area ratio (line 4) until we cannot fit any pattern
within the remaining area.

5.1 Computing Profits for Patterns

Our algorithm requires to re-compute profits for all the
unselected patterns at each iteration. This is because of two
reasons. First, the selection of a pattern may make some
new paths competing for the worst case and hence the profit
values of all the patterns change. Recall that the profit of a
pattern is defined as the reduction in the program’s WCET
if the pattern is chosen as custom instruction. Second, a se-
lected pattern eliminates certain other overlapping pattern
instances from further consideration. For example, selec-
tion of the pattern C'1 in Figure 4 implies that the pattern
instance of C'2,(C3 cannot be selected in future. The elimi-
nated pattern instances cannot contribute towards reducing
the execution time and hence the profit values of the cor-
responding patterns should be re-computed. A naive com-
putation of the profits requires a bottom-up traversal of the
entire syntax tree for each pattern. We avoid this costly
computation based on the following optimizations.

1. We can compute profits for all the patterns through a
single traversal of the syntax tree.

2. As all the instances of a pattern are typically localized
in the program, selection of a pattern requires update
of only a small portion of the syntax tree.

During the initialization phase, we compute profit values
for all the patterns through a single bottom-up traversal of
the syntax tree. We also annotate each node of the syntax

Figure 4: Limitation of the heuristic.

tree with (1) the profit values for all the patterns appearing
in the corresponding code fragment and (2) the WCET of
that code fragment. We first compute the profit values at
the leaf nodes (basic block). The computation of profits at
an interior node applies rules similar to timing schema for
WCET computation except for the branch nodes. Let V' be
a branch node with C, T, F' as the children corresponding to
conditional, taken and non-taken paths, respectively. Then
profit of a pattern p at the branch node V' is defined as

profit(p, V) = weet(V) — (weet(C) — profit(p, C))—
maz (weet(T) — profit(p, T), wcet(F) — profit(p, F))

The root node is annotated with all the patterns in the pro-
gram. As the instances of a pattern are typically localized,
number of patterns is quite small for most of the interior
nodes, as shown in Figure 3.

Once a pattern is chosen at an iteration, we identify the
leaf nodes (basic blocks) in which its selected instances ap-
pear. We re-compute the profits for all the unselected over-
lapping patterns in these leaf nodes. Changes in a leaf node
are propagated towards the root of the syntax tree. The
only nodes that need to be updated in this phase are the
nodes that lie on the path from the root to a modified leaf
node. The shaded nodes in Figure 3 gives an example of
update after the selection of C3.

With this optimization, the complexity of the algorithm
is O(M x |P| x D x A) where M is the number of patterns
to be selected from a library of | P| patterns, D is the height
of the syntax tree and A is the average number of selected
instances of a pattern.

5.2 Improving the Heuristic

The greedy heuristic presented in the previous subsection
runs pretty fast. Unfortunately, it makes poor choices in
the presence of subsumed patterns. We call p a subsumed
pattern of ¢ if there exists at least one instance of pattern
p that is fully covered by an instance of q. We call ¢ the
subsuming pattern. As the greedy heuristic chooses the pat-
tern with the maximum profit at each iteration, it typically
favors subsumed patterns. However, this choice may not
be globally optimal as the selection of a subsumed pattern
eliminates some of the subsuming pattern instances from
further consideration. For example, in Figure 4, the perfor-
mance gain of custom instructions C'1, C2 and C3 are 1, 2
and 2 cycles, respectively. Also, all the instances contribute
towards the reduction of WCET. The greedy heuristic will
choose C1 and all its instances leading to a total profit of
3 cycles. However, the optimal solution in this case is one
instance of C'1, C2, and C3 each for a total profit of 5 cycles.

We take care of this problem in the improved heuristic
shown in Algorithm 2 as follows. Instead of simply se-

Algorithm 2: Improved Custom Instruction Selection
Heuristic
selectPatterns(in)
Input: in: partial selection of patterns, instances, and cor-
responding wcet
Output: complete selection of patterns, instances, and cor-
responding wcet

1 if in.m = M then return in;

2 Let p € (P — in.pat) be the pattern with max profit;

3 if profit(p) = 0 then return in;

4 Let ins(p) be the selected instances of pattern p;

5 tmp.m:=m+1; tmp.wcet := in.wcet — profit(p);
tmp.pat := in.pat Up; tmp.ins := in.ins U ins(p);

6 choicel := selectPatterns (tmp);

7 if subsuming(p) — in.pat = ¢ then return choicel;
8 Let g € subsuming(p) — in.pat be the pattern with max
profit;
9 if profit(q) = 0 then return choicel;
10 Let ins(q) be the selected instances of pattern g;
11 tmp.m:=m+1; tmp.wcet := in.wcet — profit(q);
tmp.pat := in.pat Ugq; tmp.ins := in.ins Uins(q);
12 choice2 := selectPatterns (tmp);
13 if choicel.wcet < choice2.wcet then return choicel;
else return choice2;

Program | Source WCET cycles
adpcmf SNU suite 3,365,394
blowfish Mibench 4,847,327
compresst | Gothenburg 56,428
crct SNU suite 42,227
djpeg MediaBench 13,447,397
gsmdec MediaBench 28,163,930
g721dec MediaBench 28,420,193
ndest FSU suite 47,897
rijndael Mibench 1,835,219
sha Mibench 356,061

Table 1: Benchmark Characteristics.

lecting the pattern with the maximum profit (pattern p in
Algorithm 2) and eliminating all the subsuming patterns’
instances from further consideration, we also make an al-
ternative choice by selecting a subsuming pattern with the
maximum profit (pattern q). The search then proceeds cor-
responding to these two choices separately (lines 6 and 12,
respectively). The inputs to the recursive selectPatterns
function are the patterns and instances selected so far and
the corresponding WCET. The function returns with the
complete selection of up to M patterns. Finally, the WCET
corresponding to the two choices are compared (line 13) and
the better one is selected. Experimental results show that
this simple modification reduces the WCET by an additional
2%—23% for our benchmarks.

6. EXPERIMENTAL EVALUATION

Table 1 shows the characteristics of the benchmark pro-
grams selected from MediaBench [12], MiBench [10] and
WCET-specific application suite [17] (marked by). We
use SimpleScalar tool set [4] for the experiments. The pro-
grams are compiled using gec 2.7.2.3 with -O3 optimization.
We assume a single-issue in-order base processor core with
perfect cache and branch prediction. We assume that loop
bounds are provided through manual annotation to compute
the WCET of a program. All the experiments are performed
on a Pentium4 1.7Ghz PC with 1GB memory.

Program | No. | No. | WCET Red. Time (sec)
Pat. | Inst. | Heur. | Opt. | Heur. | Opt.
adpcm 51 150 9% 9% 0.002 0.02
blowfish 15 276 16% 16% 0.002 0.02
compress 37 92 2% 2% 0.002 | 0.01
crc 12 23 15% 15% 0.001 0.01
djpeg 64 | 435 | 7% 7% | 0.017 | 0.12
gsmdec 158 | 2312 21% 22% 0.031 0.10
g721dec 73 180 1% 4% 0.006 0.03
ndes 22 7 10% 10% 0.002 0.12
rijndael 49 2520 16% 16% 0.034 1.25
sha 9 40 12% 12% 0.001 0.01

Table 2: WCET Reduction under 5 custom instruc-
tion constraint with constrained topology.

Program | No. | No. | WCET Red. Time (sec)
Pat. | Inst. | Heur. | Opt. | Heur. | Opt.
adpcm 101 258 14% 14% 0.005 0.04
blowfish 56 1221 39% 39% 0.012 11.1
compress 141 248 6% 6% 0.003 0.02
crc 24 39 17% 17% 0.001 0.01
djpeg 226 1056 11% 11% 0.028 0.30
gsmdec 796 6782 26% 26% 0.064 0.28
g721dec 220 392 11% 11% 0.010 0.05
ndes r 182 17% 18% 0.003 0.03
rijndael 156 9032 39% 39% 0.096 943
sha 47 148 31% 31% 0.002 0.04

Table 3: WCET Reduction under 5 custom instruc-
tion constraint with relaxed topology.

Given a binary executable of an application, we first ex-
haustively enumerate all possible patterns and their instances
under certain pre-defined constraints on the maximum num-
ber of input and output operands using our previously pro-
posed algorithm [21]. The hardware latency of a custom
instruction is approximated as the summation of the laten-
cies of the original operations along the critical path of its
dataflow graph. Latency values for the original operations
from the base ISA are obtained through Synopsys synthesis
tool with a popular cell library. Finally, execution cycles
of a custom instruction is computed by normalizing its la-
tency (rounded up to an integer) against that of a multiply-
accumulate (MAC) operation, which we assume takes ex-
actly one cycle. We do not include floating-point operations,
memory accesses, and branches in custom instructions as
they introduce non-deterministic behavior.

We use ILOG CPLEX, which is a leading commercial lin-
ear programming solver, to obtain the optimal solutions.
1p_solve, a popular public domain linear programming solver,
fails to terminate within reasonable time for most problems.
We compute WCET reduction as follows:

Original WCET — Reduced WCET
Original WCET

Reduction = x 100%

We perform the custom instruction selection under a va-
riety of scenarios in order to stress our heuristic algorithm.
The number of patterns and instances has direct impact on
the time required to solve the optimization problem. We
control the number of patterns generated for a benchmark
by imposing different constraints on the number of input and
output operands allowed for a pattern. Our pattern genera-
tion phase only emits the patterns that satisfy the operand
constraints. First, we consider a constrained topology that

Program | WCET Red. Time (sec)
Heur. | Opt. | Heur. | Opt.
adpcm 16% 16% 0.02 0.04
blowfish 42% 42% 0.04 2.11
compress 7% % 0.01 0.01
cre 20% 20% 0.01 0.01
dipez 13% | 18% | 012 | 0.38
gsmdec 28% 28% 0.32 0.39
g721ldec 13% 13% 0.08 0.15
ndes 19% 20% 0.01 0.03
rijndael 40% 40% 0.11 120
sha 37% 37% 0.01 0.04

Table 4: WCET Reduction under 10 custom instruc-
tion constraint with relaxed topology.

allows at most 2 register inputs, 1 immediate input and 1
register output for each custom instruction. This is real-
istic for most modern processors without major impact on
their ISA format and micro-architecture. Second, we con-
sider a more aggressive relazed topology that allows at most
4 inputs (either register or immediate value) and 2 outputs.
The relaxed topology results in significantly more number
of patterns (No. Pat.) and instances (No. Inst.) compared
to the constrained topology.

Table 2 and Table 3 show the WCET reduction if we can
implement at most 5 custom instructions under constrained
and relaxed topology, respectively. We observe that custom
instructions can indeed reduce the WCET of a program sig-
nificantly and make it easier for a real-time task to meet
its deadline. Even with constrained topology and a limit of
only 5 custom instructions, we can still achieve up to 22%
reduction in worst case execution time. Allowing relaxed
topology obtains further reduction of WCET.

We also note that our improved heuristic (Heur. in the
Tables) obtains close to the optimal results at a fraction of
the ILP (Opt.) solving time. A comparison of the solution
time (T%me column) in Table 2 and Table 3 shows that the
heuristic is quite scalable as we increase the problem size;
but ILP is not. ILP solution time increases from 1.25 sec
to 943 sec for the rijndael benchmark as we increase the
number of patterns. In fact, with even more relaxed topol-
ogy constraint, there are a few cases that CPLEX ILP solver
cannot solve even after 24 hours. The heuristics only takes
a few seconds and the result produced is better than the
intermediate result returned by CPLEX after 24 hours.

Table 4 shows the effectiveness and scalability of the heuris-
tic algorithm under increased number of allowed custom in-
structions. As expected, allowing more custom instructions
reduces the WCET further. Table 5 shows that our heuristic
algorithm is equally effective if we have resource constraint
(area corresponding to 20 adders) instead of constraint on
the total number of custom instructions.

7. CONCLUSION

Instruction-set extensions open the opportunities for pro-
gram acceleration. In this work, we have exploited this op-
portunity to satisfy timing constraints for real-time tasks.
Our methodology is tailored towards improving the worst
case execution time as opposed to average case execution
time. In the future, we would like to extend this methodol-
ogy for multiple real-time tasks mapped to one processor.

Program | WCET Red. Time (sec)

Heur. | Opt. | Heur. | Opt.
adpcm 12% 12% 0.02 0.05
blowfish 4% 42% 0.05 2.70
compress 7% 7% 0.02 0.02
crc 20% 20% 0.01 0.01
dipeg 3% | 13% | 0.10 | 8.10
gsmdec 25% 26% 0.25 2.60
g721dec 12% 12% 0.03 0.18
ndes 18% 19% 0.02 0.30
rijndael 40% 40% 0.48 295
sha 37% 37% 0.03 0.02

Table 5: WCET Reduction under resource con-

straint (area of 20 adders) with relaxed topology.

8. ACKNOWLEDGMENTS

This work was partially supported by NUS research grants
R252-000-088-112, R252-000-171-112 and A*STAR Project
022/106,/0043.

9. REFERENCES

[1] Altera. Nios embedded processor, 2003.

[2] M. Arnold and H. Corporaal. Designing domain-specific
processors. In CODES, 2001.

[3] K. Atasu, L. Pozzi, and P. Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In DAC, 2003.

[4] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE Computer,
35(2), 2002.

[5] N. Cheung, S. Parameswaran, and J. Henkel. Inside:
Instruction selection/identification & design exploration for
extensible processors. In ICCAD, 2002.

[6] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In MICRO,
2003.

[7] J. Cong et al. Application-specific instruction generation for
configurable processor architectures. In FPGA, 2004.

[8] P. Faraboschi et al. Lx: A technology platform for customizable
VLIW embedded processing. In ISCA, 2000.

[9] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2), 2000.

[10] M. R. Guthaus et al. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE Annual
Workshop on Workload Characterization, 2001.

[11] R. Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM TODAES, 7(4), 2002.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: a tool for evaluating and synthesizing multimedia
and communicatons systems. In MICRO, 1997.

[13] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for
automatic instruction set design of configurable asips. In
ICCAD, 2002.

[14] S. Lee et al. A flexible tradeoff between code size and WCET
using a dual instruction set processor. In SCOPES, 2004.

[15] C. Y. Park and A. C. Shaw. Experiments with a program
timing tool based on source-level timing schema. IEEE
Computer, 24(5), 1991.

[16] G. Pospischil et al. Developing real-time tasks with predictable
timing. IEEE Software, 9(5), 1992.

[17] F. Stappert. WCET benchmarks. Available from
http://www.c-lab.de/home/en/download.html.

[18] Stretch. S5000 software-configurable processors, 2004.

[19] F. Sun, S. Ravi, A. Raghunathan, and N.K.Jha.
Custom-instruction synthesis for extensible-processor
platforms. IEEE TCAD, 23(2), 2004.

[20] P. Yu and T. Mitra. Characterizing embedded applications for
instruction-set extensible processors. In DAC, 2004.

[21] P. Yu and T. Mitra. Scalable custom instruction identification
for instruction-set extensible processors. In CASES, 2004.

[22] W. Zhao et al. Tuning the WCET of embedded applications. In
RTAS, 2004.

[23] W. Zhao et al. WCET code positioning. In RT'SS, 2004.

