
Cache-aware Optimization of BAN Applications
Yun Liang Lei Ju Samarjit Chakraborty Tulika Mitra Abhik Roychoudhury

Department of Computer Science, National University of Singapore
{liangyun, julei, samarjit, tulika, abhik}@comp.nus.edu.sg

ABSTRACT
Body-area sensor network or BAN-based health monitoring is in-
creasingly becoming a popular alternative to traditional wired bio-
monitoring techniques. However, most biomonitoring applications
need continuous processing of large volumes of data, as a result of
which both power consumption and computation bandwidth turn
out to be serious constraints for sensor network platforms. This
has resulted in a lot of recent interest in design methods, model-
ing and software analysis techniques specifically targeted towards
BANs and applications running on them. In this paper we show that
appropriate optimization of the application running on the commu-
nication gateway of a wireless BAN and accurate modeling of the
microarchitectural details of the gateway processor can lead to sig-
nificantly better resource usage and power savings. In particular,
we propose a method for deriving the optimal order in which the
different sensors feeding the gateway processor should be sampled,
to maximize cache re-use. Our case study using a faint fall detec-
tion application – from the geriatric care domain – which is fed
by a number of smart sensors to detect physiological and physi-
cal gait signals of a patient show very attractive energy savings in
the underlying processor. Alternatively, our method can be used to
improve the sampling frequency of the sensors, leading to higher
reliability and better response time of the application.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and appli-
cation-based systems—Real-time and embedded systems

General Terms
Algorithms, Performance, Design

Keywords
Sensor networks, Body-area networks, Cache, Mobile devices

1. INTRODUCTION
Body-area sensor networks (or BANs) and related wearable com-

puting technologies have lately become very popular, particularly
in the context of biomonitoring applications. Well-known projects
and prototype architectures in this area include MIThril [4], Cus-
toMed [11], Wearable e-Textiles [5], Wearable Motherboard [17],
e-Textile [12], and RFab-Vest [10]. Growth in this area has been
largely fueled by the recent technological advancements in em-
bedded processors, availability of lightweight sensor nodes, and
advances in wireless networking. As a result, BAN-based health

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

Figure 1: Data from different sensors triggering different parts of the
application on the gateway processor.
monitoring is increasingly becoming a viable alternative to tradi-
tional wired biomonitoring techniques, which require a patient to
be hospitalized and hooked up to large monitoring equipments.
However, most biomonitoring applications require continuous

processing of large volumes of data streams arriving through mul-
tiple sensors. As a result, both computation bandwidth and power
consumption turn out to be serious constraints while designing sen-
sor network-based computing platforms for high-end biomonitor-
ing applications. This has led to a trememdous interest in architec-
tures, design methods and software analysis techniques specifically
targeted towards wireless BANs and wearable-computing related
applications such as biomonitoring (for example, see [6, 7, 11, 13]
and the references therein).

Our contributions: In this paper we propose a disciplined method
to optimize applications running on the communication gateway of
a wireless BAN by exploiting the microarchitecture of the proces-
sor and the code layout of the application in memory. More specif-
ically, we show how to compute the optimal order in which the
different sensors feeding data into the gateway processor should
be sampled in order to maximize the cache re-use. Techniques for
optimal code/data [16, 18] placement to maximize cache re-use –
which are related to the problem we address in this paper – have
been well-studied in the embedded systems literature along with
techniques for optimally configuring a cache [8]. But the problem
of optimizing applications processing data from multiple sensors
has not received sufficient attention so far. An important difference
between well-known cache-aware code/data placement techniques
and the problem we address here is that the former case is primar-
ily concerned with static data. On the other hand, we are concerned
with data streams, where different data items trigger different parts
of the application code.
We have applied our method to a real-life fall detection appli-

cation from the geriatric care domain, which is fed by eight dif-
ferent smart sensors connected to a patient’s body. By using a
combination of physiological and physical gait signals, this fall de-

tection application is able to distinguish between regular motion
(e.g., walking and stair climbing) and the onset of an imminent
fall. Once the possibility of such a fall is detected, various pre-
cautionary measures can be activated or an alarm might be trig-
gered to call for help. Hence, the application has strict real-time
requirements; an increased sampling rate of the sensors increases
the reliability and responsiveness; and finally — as with all other
applications in this class — it should incur low battery energy con-
sumption. Clearly, these goals contradict each other and compli-
cate the design of both the underlying hardware and the software,
especially when combined with additional requirements like light-
weight, ease of use, and small form-factor. Hence, this calls for
careful optimization and co-design of the hardware and the soft-
ware. Our results show that the order in which the eight sensors are
sampled in each round (which does not affect the functionality of
the application) has a significant effect on the degree of instruction
cache re-use and hence the processing time of the sensor data. Ig-
noring this sampling order can lead to up to 40% increased energy
expenditure in the gateway processor. Alternatively, the reduction
in processing time can be exploited to increase the sampling rate of
sensors, which leads to improved reliability and responsiveness of
the application.

Overview of the proposed method: A high-level overview of our
setup is shown in Figure 1. Data from multiple wireless sensors
attached to a patient’s body arrive at a battery-operated gateway
processor (also strapped to the patient), which runs various biomon-
itoring applications implementing fall detection, electrocardiogram
(ECG) analysis, etc. Often such applications are run on regular
personal mobile devices such as mobile phones or PDAs. How-
ever, given that such devices usually have large form-factors and
short battery life, there is an increasing trend towards building cus-
tomized gateways that have been tailored for specific biomonitoring
applications. We assume such an application-specific gateway hav-
ing a lightweight processor (running at 60 - 80 MHz) with a small
instruction cache.
Depending on the sensor from which the data arrives, different

parts of the application code are triggered. However, often there
is a significant overlap between the codes corresponding to two
different sensors. As the processing time of any sensor data de-
pends on the state of the instruction cache (that is determined by
the previously executed code blocks), the specific order in which
data from different sensors is processed has a significant impact
on the number of instruction cache misses and hence the process-
ing time. Towards this, our cache modeling relies on fixed-point
construction-based analysis of program semantics [15] and is sim-
ilar to the ones used for estimating the so-called cache-related pre-
emption delay (see [14]). When the number of sensors in question
is relatively small, it may be feasible to exhaustively enumerate
all possible sensor orderings, compute the processing time corre-
sponding to each of these orderings by accurately modeling the
instruction cache states, and finally select the ordering with the
smallest processing time. However, this scheme breaks down when
the number of sensors start increasing. For high-end biomonitor-
ing applications, the number of sensors can easily exceed 20 (e.g.,
12 sensors for ECG monitoring [13] plus 8 sensors for our fall de-
tection application). For these many sensors, it is easy to see that
exhaustively enumerating all possible sensor orderings can be ruled
out. For such problems, we rely on modeling the instruction cache
re-use from the last one sensor only. In other words, given an order-
ing of sensor nodes . . . , Si, Sj , Sk, when estimating the maximum
execution time of the code for Sk, only the cache state resulting
from processing Sj ’s data is accounted for; we ignore the cache

Figure 2: Structure of the fall detection application.
state resulting from processing the data from Si and all previous
sensors. Although this leads to some (safe) over-approximation
of the processing time, this is done in order to contain the com-
plexity of the problem. With this restricted cache modeling, our
problem can be formulated as a standard traveling salesman prob-
lem (TSP). However, unlike versions of TSP that are anemable to
reasonable approximations, the TSP arising in our case is a non-
metric, asymmetric TSP that cannot be approximated within any
factor [3]. Hence, we have used the well-known Lin-Kernighan lo-
cal search heuristic (LKH) [3], which is known to perform well for
this class of TSP problems [9].

Organization of this paper: In the next section we describe our
fall detection application in detail, followed by our cache modeling
technique in Section 3 in conjunction with the exhaustive search
for determining the optimal sensor ordering. We then present our
restrictive cache modeling and discuss how it is used along with
the LK heuristic. Experimental results are presented in Section 4.
Finally, we conclude in Section 5 by discussing some directions for
future work.

2. CASE-STUDY APPLICATION
Any wearable fall detection system typically employs physical

motion sensors such as tri-axial accelerometers and gyroscopes.
The fall detection system we examine as a case study consists of
one tri-axial (3D) MEMS accelerometer plus one gyroscope on the
thigh position and another accelerometer on the waist position. The
sensitivity axes of each accelerometer is arranged in lateral, verti-
cal, and antero posterior directions. The gyroscope provides 2D
angular (lateral and sagittal) motion information. Overall we have
eight streams of sensor signals coming in from the physical motion
sensors (lateral, vertical, antero-posterior for each accelerometer
and lateral, sagittal for gyroscope) to the gateway device through
ZigBee (802.15.4) wireless communication protocol. The sensor
signals are sampled at 300 samples per second to detect the onset
of falls. The fall detection algorithm runs on the gateway device.
In the event that the onset of a fall is detected, the fall safety sys-
tem is engaged that may attempt to minimize the injury through
airbag inflation or prevent the fall through muscle constriction. In
any case, the gateway device notifies the incident to the heath care
providers or relative of the patient via mobile telephone networks
(GPRS, 3G, etc.) or wireless LAN.
The algorithm implementing fall detection first needs to trans-

form the 3D accelerometer data to 2D angular data (lateral and
sagittal). Next, it marks an angular motion of the thigh beyond
a threshold as a “possible" onset of fall. For each such possible

onset of fall, the correlation between thigh and waist angles as well
as pattern matching of gyroscope angle (against reference values
obtained from a number of actual falls) are used to eliminate false
positives. A high-level overview of the functionalities of this appli-
cation appears in Figure 2.
Let us now examine the code sharing pattern among the program

paths exercised by the eight different sensors in this application to
intuitively understand the opportunities for instruction cache reuse.
Figure 3 shows the different modules (procedures or functions) for
a small fragment of the application code. Each of the sampled sen-
sor data first undergoes discrete wavelet transformation by going
through two complimentary filters (a low-pass filter and a high-
pass filter). However, the coefficients for the acclelerometer signals
and gyroscope signals are quite different. So we have two different
coefficient selection modules. Next, the accelerometer signals are
calibrated and the calibration process is different for each signal.
Finally, each 3D accelerometer signal is converted to 2D angular
motion data by going through the appropriate 3D→ 2D module.
Figure 3 also shows the modules exercised to process the lateral

motion from the waist accelerometer say S (left path) and the lat-
eral motion from the gyroscope say S′ (right path). Clearly, the
processing of these two sensor data shares the FIR filter code. If
S′ is processed after S, then S′ can take advantage of the common
code left in the instruction cache by S (such as FIR filter code).
Moreover, in this small fragment of the application, it is quite obvi-
ous that sampling the accelerometer signals first followed by gyro-
scope signals will provide maximum opportunities for cache reuse
(as the code for coefficient selection may be reused in addition to
FIR filter). In general it is non-trivial to manually identify the op-
timal sampling order of the different sensors for maximal cache
re-use, especially when the number of sensors is large and/or the
application is complex.
Traditional code optimization approaches are oblivious to the

context in which a sensor data is being processed. In other words,
the processing of each sensor data is considered in isolation. Thus
these code optimization techniques fail to exploit the cache reuse
opportunities opened up by code sharing among the processing
tasks of the different sensors. In the next section we present a
systematic methodology to exploit maximal cache reuse through
optimal sampling order of the sensors.

3. OPTIMIZING BAN APPLICATIONS
In this section, we describe our optimization scheme based on

micro-architectural modeling, in particular, cache modeling. Fur-
ther, we determine the order in which the different sensors should
be sampled to maximize the guaranteed cache re-use. As an ex-
ample, consider two sensors S and S′ — which are processed by
programs P and P ′. If the two programs are completely disjoint,
we do not encounter any instruction cache re-use (owing to the ex-
ecution of P) while executing P ′. However, typically, the process-
ing of different pieces of sensed data share (a lot of) common code.
Consequently, there is non-trivial cache re-use from the execution
of P while we are executing P ′. However, since P and P ′ are pro-
grams with many possible execution traces, the cache re-use (the
number of cache hits thus accrued) is not a constant. Depending on
the exact value of the sensor data — both P and P ′ may execute
different paths. Executing a trace π1 of P just prior to a trace π′

1

of P ′ may produce many additional hits over executing some other
trace π2 of P prior to another trace π′

2 of P ′. Therein lies our no-
tion of guaranteed cache re-use. The guaranteed cache re-use of
a given ordering of sensors S1, . . . , Sk stems from the commonal-
ity of the processing code for S1, . . . , Sk irrespective of the paths
executed in these processing codes. Note that this involves static

program analysis (we are analyzing the programs processing the
sensor data). The static analysis results are used to find a sensor
ordering which maximizes the guaranteed cache re-use.

3.1 Cache Behavior Summarization
We now formally describe our static analysis method for com-

puting cache behavior summary for a given application program.
To model cache behavior, we first need the notion of a cache state.
For simplicity of notation, let us assume a direct-mapped cache;
the analysis can be straightforwardly extended for set-associative
caches. For a direct-mapped cache with n blocks, a cache state cs
is simply a mapping {1, . . . , n} → M ∪ {⊥}, whereM is the set
of code memory blocks being mapped to cache, and⊥ indicates the
situation where a cache block is empty. As a notational shorthand,
we use cs[i] to denote the content of the ith cache block in cache
state cs.
Now, let us consider a program processing a particular sensed

data. In order to statically summarize the overall cache behav-
ior, we associate program points or control locations in the pro-
gram with sets of cache states. We develop and use two quantities:
Reaching Cache States (RCS) and Live Cache States (LCS).
DEFINITION 1 (REACHING CACHE STATES). For a program

point p in a program Prog, the set of reaching cache statesRCS(p)
is defined as the set of cache states with which p can be reached (via
any incoming path to p in Prog).

DEFINITION 2 (LIVE CACHE STATES). For a program point
p in a program Prog, the set of live cache states LCS(p) is the set
of possible first references to cache blocks via any outgoing path
from p in Prog.
Given any program point p in program Prog, the quantitiesLCS(p)
and RCS(p) are computed by exploring the paths to/from p in
the control flow graph of Prog. This is done efficiently (with-
out path enumeration) by (i) associating each program point with a
LCS/RCS, (ii) defining the RCS of a program point using the RCS
of its predecessors, and (iii) defining the LCS of a program point
using the LCS of its successors. As a program contains loops, the
above will produce a set of recursive equations on LCS/RCS that
needs to be solved iteratively. Assuming empty cache at the begin-
ning of the program, we can iteratively solve the recursive equa-
tions for LCS and RCS separately. This is done, until the LCS and
RCS estimates at each program point is stable – that is, until the
iterative computation reaches a fixed-point.
The resultant RCS estimate for the exit point of the program is

denoted as RCS(Prog); these are the possible cache states at the
end of the program. Similarly, the LCS estimate at the entry point
of the program is denoted as LCS(Prog); these are the possi-
ble first references to cache blocks during the program’s execution.
Given a program Progi processing a particular sensed data Si, the
quantities RCS(Progi) and LCS(Progi) form the summary of
the cache behavior for Progi. Details of LCS and RCS computa-
tion for a program appear in [14].

3.2 Composition of Cache Summaries
Consider the processing of various sensed data S1, . . . , Sk where

the processing of Si is done by application Progi. In reality, for
i �= j, applications Progi and Progj are not disjoint — they share
non-trivial chunks of code. In the preceding, we have shown the
cache behavior summarization of each individual application. Now
we compose these cache summaries to tightly estimate the cache
re-use from a given ordering of processing. When we say a given
ordering S1, . . . , Sk we mean that (i) data from these sensors are
repeatedly obtained over many “rounds", and (ii) in each round,

Figure 3: A fragment of the application with different sensor data exercising different paths through the application.

Figure 4: Computing Guaranteed Cache Re-use.

the sensed data in that round are processed by executing Prog1,
followed by Prog2, . . . , followed by Progk.
So, we need to estimate the minimum guaranteed cache re-use

resulting from the execution of Prog1, . . . , P rogk. At this stage,
we are determining the cache behavior across applications. The
cache behavior within an application is already summarized by the
LCS/RCS quantities. The cache behavior across applications can
be intuitively captured by queries like the following.

• Given the execution of Prog1, . . . , P rogi, what is the guar-
anteed cache re-use when we execute Progi+1?

To answer the above query, let us try to estimate the set of possi-
ble cache states after the execution of Prog1, . . . , P rogi. For this
purpose, we define a simple operation over cache blocks. Note that
a cache block’s content is drawn fromM ∪{⊥} whereM is the set
of memory blocks and ⊥ is a symbol denoting empty cache block.
We define:

m ⊕ m′ def
=

�
m′ ifm′ �=⊥
m otherwise

Thus m ⊕ m′ is m′ (the later content) unless it is empty. As a
cache state is essentially a vector of cache block contents, the above
operation can be lifted to cache states by applying the operation
point-wise to individual cache blocks.

(cs ⊕ cs′)[i]
def
= cs[i] ⊕ cs′[i] 1 ≤ i ≤ n

The operation can now be further lifted to sets of cache states CS,
CS′ as CS ⊕ CS′ def

= {cs ⊕ cs′ | cs ∈ CS, cs′ ∈ CS′}. Using

this operator, the set of possible cache states after the execution
of Prog1, P rog2 is simply RCS(Prog1) ⊕ RCS(Prog2). That
is, the set of cache states is drawn from the execution of Prog2

(the application last executed), but for empty cache blocks their
content is derived from RCS(Prog1). In a similar way, the set
of cache states after the processing of sensed data S1, . . . , Si (i.e.,
after executing Prog1, P rog2, . . . , P rogi) is

Reach1...i = RCS(Prog1)⊕RCS(Prog2)⊕. . .⊕RCS(Progi)

Given the above set of cache states after the execution of Prog1,
. . . , P rogi, what is the minimum number of guaranteed cache hits
when Progi+1 is executed? To answer this, we need to see how
the cache states at the end of Prog1, P rog2, . . . , P rogi can help
(in terms of achieving cache hits) the possible first references to
cache blocks in Progi+1. Recall, the possible first references to
cache blocks in an application is summarized by the LCS of the
application. So, the hit/miss scenarios encountered in Progi+1 due
to the prior execution of Prog1, . . . , P rogi is

Reach1...i 	 LCS(Progi+1)

where Reach1...i is as defined in the preceding (using RCS quan-
tities) and the operator 	 defines cache state equality as follows.
Given cache states cs, cs′ we get a vector of boolean values as fol-
lows: (cs 	 cs′)[i]

def
= (cs[i] == cs′[i]). Thus, cs 	 cs′ checks

whether the cache states cs, cs′ are equal; for each cache block that
is equal in content it stores the boolean value true (otherwise false).
We can lift the 	 operation over sets of cache states CS, CS′ in
the usual way: CS 	 CS′ def

= {cs 	 cs′ | cs ∈ CS, cs′ ∈ CS′}
Hence, the setReach1...i 	LCS(Progi+1) summarizes all the

hit/miss scenarios for the first cache block accesses in Progi+1

owing to the prior execution of Prog1, . . . , P rogi. The minimum
guaranteed number of cache hits is given by:

minh∈Reach1...i�LCS(Progi+1) |h|
where h is a vector of boolean values inReach1...i�LCS(Progi+1)

and |h| is the number of occurrence of true in the boolean vector h.
A schematic explanation of the guaranteed cache re-use com-

putation appears in Figure 4. Here we show the processing of
three sensors S1, S2, S3 and the guaranteed cache re-use encoun-
tered while processing S3 assuming prior processing of S1, S2.
We have shown a direct-mapped cache with only two blocks for
simplicity of explanation. Effect of the prior processing of S1, S2
is captured by RCS(S1) ⊕ RCS(S2). This set is computed by
applying the ⊕ operator pairwise to the members of RCS(S1)
and RCS(S2). Thus 〈⊥, m2〉 ⊕ 〈m1,⊥〉 = 〈m1, m2〉. Once
RCS(S1) ⊕ RCS(S2) has been computed, we check for cache
state equality with LCS(S3), the possible first references to cache

Sj

s1 s2 s3 s4 s5 s6 s7 s8
s1 - 49 62 44 48 61 41 49
s2 25 - 33 54 40 45 39 49

Si s3 27 21 - 23 35 32 17 27
processing s4 32 54 35 - 41 33 18 36
order: s5 56 68 58 61 - 62 37 55

(Si, Sj) s6 48 50 55 44 49 - 41 41
s7 36 43 43 41 32 42 - 59
s8 36 52 45 51 42 42 43 -

Best ordering: 378 cache hits for (S7, S8, S2, S4, S5, S1, S6, S3)

Table 1: Guaranteed cache reuse from previous sensor task.

blocks in the processing of S3. Again, (RCS(S1)⊕RCS(S2))	
LCS(S3) is computed by applying the	 operation pairwise. Thus,
by applying	 to 〈m1, m2〉 (a cache state inRCS(S1)⊕RCS(S2))
and 〈m5, m2〉 (a cache state inLCS(S3)), we get the boolean vec-
tor 〈false, true〉 signifying a cache hit in the second cache block.
By analyzing all such possible hit/miss scenarios (in this simple
example there are only two of them as shown in Figure 4), we cal-
culate the number of guaranteed cache hits during the processing
of S3 due to the prior processing of S1, S2.
In the preceding discussion, we have detailed the cache behavior

summarization for (a) any one application, and (b) across many
applications, provided an ordering for their execution is given. We
now describe how these cache behavior summaries can be exploited
to produce an “optimal" ordering of the applications’ execution.
The generated ordering is optimal in the sense that it maximizes
cache re-use.

3.3 Determining Optimal Composition Order
For an application with k sensors, in each ordering S1, . . . , Sk,

the cache re-use can be calculated as:
k−1�

j=1

(minh∈Reach1...j�LCS(Progj+1)|h|)

We can compute the cache re-use for all k! different orderings and
find the “optimal" ordering with maximum cache re-use. However,
for larger number of sensors, such an exhaustive search becomes
infeasible. We propose to convert our problem of finding the “op-
timal" ordering into the well-known Traveling salesman problem
(TSP). Given k sensed data for processing, (S1, . . . , Sk), we define
a complete graph G where each vertex represents a sensor. The
weight w(Si → Sj) of the edge Si → Sj represents the guaran-
teed number of cache hits encountered while processing Sj owing
to the processing of Si immediately prior to it. Thus

w(Si → Sj)
def
= minh∈RCS(Progi)�LCS(Progj)|h|

Thus, we are only considering the application program Progi that
executed immediately before Progj . We are not considering in the
execution history which application program(s) executed prior to
Progi. Thus, the guaranteed cache re-use estimated by us will be
a (safe) underestimate of the actual cache re-use. However, this
under-estimation is relatively small, and ignoring it still produces
near-optimal results. Finally, note that w(Si → Sj) �= w(Sj →
Si) as the cache re-use of Si from Sj could be different from the
re-use of Sj from Si.
For a small fragment of our fall detection application, Table 1

shows the guaranteed number of cache hits for the task associated
with sensor Sj if the immediately preceeding sensor whose data
was processed is Si. The guaranteed cache hits for the optimal
sampling order are indicated in bold face. It may be noted that even
for such relatively few sensors, determining this order optimally in
an ad hoc trial-and-error fashion might not be possible. Therefore,
we formulate it as a TSP.

Figure 5: Execution requirements for different sensor orderings.
TSP is defined as finding a hamiltonian cycle (a tour) of a graph

G with minimum cost. To solve our problem as a TSP, we need to
make the following modifications. (1) TSP finds hamiltonian cycles
where each node is visited exactly once. However, our problem
of searching for the best ordering is to find an acyclic path in the
graph, where each node is visited exactly once. Hence, we add a
dummy node Sk+1 to G. Edges Sk+1 → Si and Si → Sk+1 are
set with weight 0 for all nodes Si (1 ≤ i ≤ k). The dummy node
tells us where to break the cyclic tour to generate the optimal linear
ordering. (2) While TSP returns a tour with the minimum cost, we
need to find a path with maximum cost instead (maximum cache
re-use). Hence, for each edge, weight w(Si, Sj) is modified to
Const − w(Si, Sj) for all edges, where Const is a large constant
bigger than any edge weight of G.
After these two modifications above, we apply the well-known

Lin-Kernighan local search heuristic (LKH) [9] to find the tour of
G with minimum cost. LKH is known to perform well for non-
metric, asymmetric TSP; it produces near-optimal results for our
experiments as well.

4. EXPERIMENTAL RESULTS
We have conducted two different classes of experiments. The

first using the full-fledged fall detection application that was de-
scribed in Section 2. Here, our experiments illustrate the utility
of our proposed cache modeling in tightly estimating the gateway
processor’s minimum clock frequency and reducing its power dis-
sipation. Our second class of experiments are based on synthetic
data and a larger number of sensors (15 - 20 in number). Here, our
main goal is to illustrate the minimal loss in accuracy as a result of
the restrictive cache modeling.

4.1 Case Study: Fall Detection Application
Recall that our application has three sensor inputs from the ac-

celerometer and two from the gyroscope attached to the thigh, and
three sensor inputs from the accelerometer attached to the waist
(Figure 2). For the gateway, we have assumed a light-weight proces-
sor with single-issue in-order pipeline, 1 KB direct-mapped instruc-
tion cache (128 cache sets, 8 bytes block size) and 100 cycles cache
miss penalty. We have also used a “natural” code layout that re-
sulted from compiling the original C code of the application using
SimpleScalar GCC compiler [1]. For all power estimates, we used
Wattch [2] along with the SimpleScalar instruction set simulator.
Our experimental results show that the number of processor cy-

cles required for processing all the data from one round of sampling
(i.e., one data sample from each of the eight sensors) is equal to
248,657 cycles, when no inter-application (i.e., processing code for
different sensors) cache reuse is modeled. In other words, the in-
struction cache is assumed to be empty before the application code

Figure 6: Memory latency reduction for sensor data processing tasks.

for each sensor starts executing. With inter-application cache mod-
eling, an optimal ordering of the sensors results in 206,357 cycles,
whereas the worst-case ordering results in 224,057 cycles. Note
that the chances of an arbitrary ordering being close to the opti-
mal is fairly low. This is illustrated in Figure 5 where the range of
execution requirements (i.e., number of processor cycles) for one
round of processing has been partitioned into 10 equal-sized bins
(horizontal axis). Each bar in this figure represents the number
of sensor orderings that result in the execution requirement corre-
sponding to the associated bin. The bin with the lowest execution
requirement (first bin) contains only 23 of the 8! different possible
sensor orderings. This illustrates the need for a systematic approach
to optimize the sensor sampling order. The importance of accurate
cache modeling is illustrated in Figure 6, which shows the memory
latencies (in number of processor cycles) for the tasks associated
with the different sensors, with and without cache modeling. It
also shows the reduction in memory latency with optimal ordering
(except for sensor 7, which being the first sensor in this ordering
cannot exploit any cache reuse).
With a sampling rate of 300 samples/sec and no inter-task cache

modeling, the processor is estimated to be clocked at 74.6 MHz.
With the same sampling rate, but with inter-task cache modeling
the estimated minimum clock frequencies drop to 67.2 MHz and
61.9 MHz for the worst and the best sensor orderings. Hence,
without accurately modeling the instruction cache and ignoring the
sampling ordering of the sensors can lead to running the processor
at a 21% higher clock frequency. Results returned by the Wattch
simulator show that the average energy consumption per sampling
round corresponding to these cases are 32.84 mJ and 23.41 mJ. Ig-
noring the effects of the cache and the sensor ordering can therefore
lead to 40% extra energy expenditure per sampling round, thereby
illustrating the benefits of our proposed scheme.

4.2 Accuracy
For large number of sensors, exhaustively enumerating all pos-

sible sensor orderings is not feasible. Hence, we rely on the TSP
formulation of the problem (as described in Section 3.3) to identify
the optimal ordering. The question remains about the quality of the
solutions returned by this TSP formulation. There are two sources
of approximations in this formulation: (1) it maintains a limited
cache history, and (2) it applies the LK heuristic to solve the TSP
problem. While the sub-optimality due to the LK heuristic is a well
studied issue (see [3]), the effect of the first approximation is un-
known. First, we observe that for our case study, there exists up to
5% additional guaranteed cache reuse beyond the immediate pre-
decessor sensor. But the TSP formulation returns identical sensor
orderings as the exhaustive search.
To confirm the generality of this result, we modeled cache reuse

beyond just the immediate predecessors in an experiment with syn-

thetic data. We assigned random weights (within appropriate con-
straints) for cache re-use between two sensor nodes as well as three
sensors sequences. However, as cache sizes in gateway devices are
quite small, we do not model cache reuse beyond two sensor nodes.
We compare the quality of the solutions (in terms of guaranteed
cache hits) returned by TSP formulation and exhaustive search for
12 sensor nodes. The TSP formulation returns optimal or near-
optimal solutions (with more than 95% accuracy) in all the cases.
Moreover, we observed that exhaustive search is scalable only up
to 15 sensors. But our TSP formulation in conjunction with the LK
heuristic returns an ordering within few seconds for hundreds of
sensors.

5. CONCLUDING REMARKS
In this paper we have proposed a methodical cache-aware opti-

mization technique for wireless BANs. Our results — with a real-
life application — show that appropriate modeling of the gateway
processor’s cache, coupled with carefully determining the order in
which the sensors are sampled can lead to significant energy sav-
ings. In this work we have assumed a fixed code layout in the mem-
ory. As a part of future work, it would be interesting to use optimal
code placement strategies in conjunction with the techniques devel-
oped in this paper, for further improving execution time estimates
and energy consumption.

6. ACKNOWLEDGMENTS
This work is supported by A*STAR SERC project R-252-000-

258-305. We would like to thank Francis Eng Hock Tay and Nyan
Myo Naing for sharing the fall detection application with us.

7. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for

computer system modeling. IEEE Computer, 35(2), 2002.
[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In ISCA, 2000.
[3] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill,

2006.
[4] R. W. DeVaul et al. MIThril 2003: Applications and architecture. In

International Symposium on Wearable Computers, 2003.
[5] J. Edmison et al. E-Textile based automatic activity diary for medical

annotation and analysis. In International Workshop on Wearable and
Implantable Body Sensor Networks, 2006.

[6] I. Al Khatib et al. A multiprocessor system-on-chip for real-time biomedical
monitoring and analysis: Architectural design space exploration. In DAC, 2006.

[7] E. Farella et al. A wireless body area sensor network for posture detection. In
IEEE Symposium on Computers and Communications, 2006.

[8] A. Ghosh and T. Givargis. Cache optimization for embedded processor cores:
An analytical approach. TODAES, 9(4), 2004.

[9] P. Gupta, A. B. Kahng, and S. Mantik. Routing-aware scan chain ordering.
TODAES, 10(3), 2005.

[10] R. Jafari et al. Adaptive and fault tolerant medical vest for life-critical medical
monitoring. In ACM Symposium on Applied Computing, 2005.

[11] R. Jafari et al. Wireless sensor networks for health monitoring. In International
Conference on Mobile and Ubiquitous Systems, 2005.

[12] J.-C. Kao and R. Marculescu. On optimization of e-textile systems using
redundancy and energy-aware routing. IEEE Trans. on Computers, 55(6), 2006.

[13] I. Al Khatib et al. Performance analysis and design space exploration for
high-end biomedical applications: Challenges and solutions. In CODES+ISSS,
2007.

[14] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. In CODES+ISSS, 2003.

[15] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 2004.

[16] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory data organization for
improved cache performance in embedded processor applications. TODAES,
2(4), 1997.

[17] S. Park, K. Mackenzie, and S. Jayaraman. The wearable motherboard: A
framework for personalized mobile information processing (PMIP). In DAC,
2002.

[18] H. Tomiyama and H. Yasuura. Code placement techniques for cache miss rate
reduction. TODAES, 2(4), 1997.

