
Characterizing Embedded Applications for Instruction-Set
Extensible Processors

Pan Yu
panyu@comp.nus.edu.sg

Tulika Mitra
tulika@comp.nus.edu.sg

School of Computing
National University of Singapore

Singapore 117543

ABSTRACT
Extensible processors, which allow customization for an ap-
plication domain by extending the core instruction set ar-
chitecture, are becoming increasingly popular for embedded
systems. However, existing techniques restrict the set of
possible candidates for custom instructions by imposing a
variety of constraints. As a result, the true extent of perfor-
mance improvement achievable by extensible processors for
embedded applications remains unknown. Moreover, it is
unclear how the interplay among these restrictions impacts
the performance potential. Our careful examination of this
issue shows that significant speedup can only be obtained by
relaxing some of the constraints to a reasonable extent. In
particular, to the best of our knowledge, ours is the first work
that studies the impact of relaxing control flow constraint
by identifying instructions across basic blocks and indicates
5–148% relative speedup for different applications.

Categories and Subject Descriptors: C.1.3 [Other Ar-
chitecture Styles] Adaptable architectures

General Terms: Algorithms, Performance, Design.

Keywords: Customization processors, Instruction-set ex-
tensions.

1. INTRODUCTION
The application-specific nature of embedded system cre-

ates new opportunities to customize processor architecture
for a particular application. This customization is critical in
meeting the challenging demand on performance without in-
curring high cost in terms of energy and area. A recent trend
in customization is to extend an existing processor core with
a set of custom instructions. These custom instructions
in the extended Instruction Set Architecture (ISA) can be
implemented in the processor’s datapath itself or as a sepa-
rate co-processor. Tensilica’s Xtensa [7], Altera’s NIOS [1],
and Lx [6] are some examples of commercial extensible pro-
cessors. Given the growing interest in the area, this paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

examines the limits of performance gain due to extended
ISA for embedded applications.

A custom instruction is simply a fragment of the pro-
gram’s dataflow graph mapped onto a hardware Custom
Functional Unit (CFU). It encapsulates the computation
of a cluster of primitive instructions and helps achieve sev-
eral benefits including improved code size, register pressure,
and execution cycles. However, certain characteristics of the
core processor, cost considerations, and compiler limitations
restrict the size, shape and number of custom instructions.

• Number of Operands: The base architecture of the
core processor may impose constraints on the maxi-
mum number of source and destination operands used
by the custom instructions. The length of a custom in-
struction increases with increasing number of operands
which may be difficult to accommodate in the standard
format of the base ISA. Moreover, the number of input
and output ports to the register file is proportional to
the number of input and output operands required by
an instruction. The cost and energy consumption of a
processor increase significantly with increasing number
of register file ports. These considerations may impose
limits on the maximum number of operands.

• Number of custom instructions: The format of
the base ISA may limit the number of custom instruc-
tions that can be introduced. For example, if the base
ISA implements 26 instructions using fixed length 5-bit
opcode, then it can accommodate six new instructions.

• Area: As cost is a major consideration for embedded
systems, only a limited amount to die area is expected
to be available for the implementation of the CFUs.

• Control Flow: Custom instruction identification is
typically performed within basic block boundaries. (Ba-
sic block is a code fragment with single entry and exit
points.) The assumption is that the compiler cannot
exploit instructions that cross basic block boundaries.

We investigate the performance impact of these constraints
on extensible processors for embedded applications. We ob-
serve that in real life it is impossible not to put any such
constraint. Some of them are imposed by the designers of
the base processor core. Others are imposed artificially by
the tools that automate the ISA extension process in order
to make the problem more tractable. To the best of our
knowledge there has not been any systematic study of the

effect of these restrictions. Therefore, it is not clear how
much theoretical performance potential exists for extensi-
ble processors and how the different constraints are inter-
acting with each other to limit that potential. We do so
in this paper in the same spirit as the paper by Wall [16]
that examines the limits of instruction level parallelism for
general-purpose programs. The goal of our work is to offer
some guidelines to the designers on the relative importance
of the different constraints. The designers can then avoid
putting in a constraint which is too restrictive to allow the
extensions to achieve the performance potential.

2. RELATED WORK
Commercial examples of extensible processors include HP

Laboratory and STMicroelectronics’ Lx [6], Altera’s NIOS [1]
and Tensilica’s Xtensa [7], whereas examples from academia
are Chimaera [17] and AEPIC [15].

Automatic ISA extension generation consists of: (1) Cus-
tom Instruction Identification that identifies patterns1 meet-
ing certain topology requirements and (2) Custom Instruc-
tion Selection that selects the most important patterns un-
der resource and other constraints. Almost all the custom
instruction identification methods attempt to identify pat-
terns within a basic block. The only exception is [2] which
identifies patterns based on execution trace and can possibly
go beyond basic blocks even though their actual implementa-
tion does not. Pozzi et. al. [13] imposes further constraints
on the instruction topology by allowing only Multiple In-
puts Single Output (MISO) patterns and thereby achieving
linear complexity in the number of instructions. Similarly,
Goodwin [8] imposes a limit of 2-input 1-output, single-cycle
execution in order to identify all possible patterns within a
basic block. The problem in identifying Multiple Input Mul-
tiple Output (MIMO) patterns is that there can potentially
be exponential number of them corresponding to a basic
block. Arnold et. al. [2] avoids this problem by using an it-
erative technique that first identifies 2-operator patterns, re-
place their occurrences in the DDG, and repeats the process.
However, this technique might get stuck in a local maxima.
Moreover, as the approach is trace-based, its time/space
complexity is very high. Atasu et. al. [3] searches a full bi-
nary tree and decides at each step whether or not to include
a particular instruction in a pattern. The potential expo-
nential search space is pruned based on input/output con-
straints. Recently, Clark et. al. [5] has proposed a heuristic
method to speedup the exploration process. Given the set of
candidate patterns, [3] proposed an optimal method to se-
lect at most N patterns. Both ILP-based [11] and heuristic-
based [5] methods have been proposed for pattern selection
under area constraints. Finally [2] presents a dynamic pro-
gramming approach to maximize the performance gain when
there is no constraint.

The work in [2, 3, 5, 6, 11, 13] all show potential per-
formance gain due to custom instructions. However, all
these works make some assumption or the other in both the
identification as well as the selection process. This is not
unexpected given the inherent complexity of the problem.
However, the assumptions make it unclear how the choice of
different constraints impacts the performance improvement
due to ISA extensions. This papers takes a holistic approach

1In this paper, we will use the terms custom instruction and
patterns interchangeably

S -> AABB5
A -> 23
B -> 24

S(1)

A(2) B(2)

2(4) 3(2) 4(2) 5(1)

Leaf node
(basic block)

Internal node
(basic block
sequence)

Figure 1: WPP for basic block sequence 232324245
with execution count annotations

towards this problem and explores the limit of performance
potential for extensible processors. In that respect, our work
is in the same spirit as that of Wall [16], which examines the
amount of instruction-level parallelism existing in a program
at the limits of feasibility and even beyond.

3. METHODOLOGY
As mentioned in Section 2, ISA extension identification

consists of custom instruction identification and custom in-
struction selection. In this section, we describe our method-
ology and explain how we overcome the exponential blowup
that arises especially when we do not impose any constraint.

3.1 Custom Instruction Identification
Most of the research in custom instruction identification

are based on analyzing the basic blocks (program fragment
with single entry and exit points) in isolation. The only
exception to this is [2] which identifies custom instructions
based on the dynamic execution trace of the program. As
we are interested in identifying the performance potential
of customization at the limits of feasibility, our identifica-
tion process is also based on dynamic execution trace. This
way we can also identify custom instructions and their fre-
quencies across basic block boundaries. However [2] con-
stitutes a huge data dependence graph for the entire trace
and builds patterns incrementally by traversing this graph
multiple times. This approach is computationally expen-
sive thereby limiting it to small patterns. Instead our study
is based on a compact representation of the dynamic exe-
cution trace called Whole Program Path (WPP) [10] that
allows us to identify patterns within and across basic blocks
in an efficient manner.

Whole Program Path (WPP).Larus developed the no-
tion of Whole Program Path (WPP) [10] which captures
the entire execution trace of a program. The storage over-
head for the trace is reduced drastically by employing on-
line string compression techniques called SEQUITUR [12].
SEQUITUR algorithm [12] represents a finite string σ (the
control flow trace in our case) as a context free grammar
whose language is the singleton set {σ}. The execution path
of a program can be viewed as a string (over an alphabet
of basic blocks) from which the grammar is synthesized on-
the-fly. The time complexity of the algorithm is linear in
the length of the input string. The grammar is represented
as a directed acyclic graph, called WPP. Figure 1 shows an
example of WPP. Each node of the WPP is annotated by
the execution count of the sub-DAG rooted at that node.

Traversing WPP.The leaf nodes of the WPP are basic
blocks and their execution counts represent the execution
counts of the basic blocks. An internal node represents a
path which is a sequence of basic blocks appearing in the
execution trace. We first start with the basic blocks and
identify patterns within the basic blocks. To identify pat-
terns across basic block boundaries, we look at frequently
occurring internal nodes and treat the sequence of basic
block corresponding to that node as the unit for pattern
identification process.

Pattern Identification.Given a basic block or a sequence
of basic blocks, for which we want to identify the patterns,
we first create a data dependence graph (DDG). Given this
DDG, we identify all the possible subgraphs that meet the
pre-defined criteria such as number of input/output operands.
This identification process is based on [3] that searches a full
binary tree and decides at each step whether or not to in-
clude a particular instruction in a subgraph. The potential
exponential search space is pruned based on input/output
constraints. We modify this search so as to identify only
connected subgraphs of the the DDG. Each identified sub-
graph is associated with a latency and area requirement.

3.2 Custom Instruction Selection
Given the set of candidate subgraphs, we first identify the

identical subgraphs using a modified version of the algorithm
presented in [14]. All the identical subgraphs map to a sin-
gle CFU or custom instruction; that is, a custom instruction
has multiple instances. The execution frequencies of custom
instruction instances are different and results in different
performance gains. The selection process attempts to cover
each original instruction in the code with zero/one custom
instruction to maximize performance. We first provide an
optimal solution based on ILP for instruction selection fol-
lowed by heuristic methods.

3.2.1 Optimal Solution using ILP
Let us first define the variables. We have N custom in-

structions defined by C1 . . . Cn. A custom instruction Ci
can have ni different instances occurring in the program de-
noted by ci.1 . . . ci.ni . Each instance has execution frequency
given by fi.j . Let Ri be the area requirement of the custom
instruction Ci and Pi be the performance gain obtained by
implementing Ci in hardware as opposed to software (given
in number of clock cycles). Finally, we define binary vari-
ables si.j which is equal to 1 if custom instruction instance
ci.j is selected and 0 otherwise. The objective function max-
imizes the total performance gain using custom instructions:

max :

N∑
i=1

ni∑
j=1

(si.j × Pi × fi.j)

We optimize the objective function under the constraint
that a static instruction can be covered by at most one cus-
tom instruction instance. If custom instruction instances
ci1.j1 . . . cik.jk can cover a particular static instruction, then

si1.j1 + . . .+ sik.jk ≤ 1

In order to model the area constraint or the constraint on
the total number of custom instructions, we first define the
variable Si. Si is the binary variable which is equal to 1 if

Input: Set of all custom instruction instances X; Area
constraint R

Output: Instructions selected; Performance gain P

P := 0 ;
Si := 0 ∀1 ≤ i ≤ N ;
si.j := 0 ∀1 ≤ i ≤ N, 1 ≤ j ≤ ni;
while X 6= ∅ do

select the highest priority instr. instance ci.j ∈ X;
if Si = 1 then

si.j := 1; P := P + Pi × fi,j ;
else if Ri ≤ R then

Si := 1; si.j := 1;
R := R−Ri; P := P + Pi × fi.j ;
K:= static instructions belonging to ci.j ;
remove all instances in X containing k ∀k ∈ K;

remove ci.j from X;

end

Algorithm 1: Heuristic instruction selection method

Ci is selected and 0 otherwise. Si is defined in terms of si.j .

Si = 1 if

ni∑
j=1

si.j > 0

= 0 otherwise

However, the above equation is not a linear one. We substi-
tute it with the following equivalent linear equations.

ni∑
j=1

si.j − U × Si ≤ 0

ni∑
j=1

si.j + 1− Si > 0

where U is a large constant greater than max(ni).
If R is the total area budget for all the CFUs, then

N∑
i=1

(Si ×Ri) ≤ R

Similarly, if M is the constraint on the total number of
custom instructions, then

N∑
i=1

Si ≤M

3.2.2 Heuristic Methods
As the ILP based custom instruction selection may be-

come computationally expensive for large number of cus-
tom instruction instances, we design heuristic algorithms as
well. The idea is to assign priorities to the custom instruc-
tion instances. The instances are chosen starting with the
highest prioritized one. We use the following three prior-
ity functions: (1) Performance/Cost ratio: Priority(ci.j) =
(Pi×fi.j)/Ri, (2) Software execution time: Priority(ci.j) =
(softwarei × fi.j) where softwarei is the total execution
cycles if ci.j is implemented in software, and (3) Speedup:
Priority(ci.j) = (Pi × fi.j). The first priority function is
more suitable under tight area budget whereas the third one
maximizes performance gain when area is not an issue. The
second one simply attempts to speedup the time consuming

Benchmark Class Total Hot Avg. Hot
BB BB BB Size

rawcaudio Telecomm 68 22 2.6
rawdaudio Telecomm 66 18 2.6
fft Telecomm 129 24 6.8
sha Security 76 6 17.2
strsearch Office 148 4 6
qsort Automotive 30 26 4.9
bitcnts Automotive 79 13 12.4
basicmath Automotive 94 28 6
patricia Network 203 37 2.8
dijkstra Network 77 6 5
djpeg Consumer 317 96 6.8

Table 1: Characteristics of benchmark programs

portions of the applications. For each design point, we ap-
ply all the three heuristics and choose the one that gives the
best result. Algorithm 1 describes the heuristic for a given
priority function.

4. RESULTS AND ANALYSIS
In this section, we describe the findings of our limit study.

Due to space constraints, only selected results are presented.

4.1 Experimental Setup
Table 1 shows the benchmark programs used in our limit

study. All these benchmarks are from MiBench [9]: a free,
commercially representative embedded benchmark suite. We
have selected benchmark programs from all the different cat-
egories such as automotive, network, telecomm etc. We use
the sample inputs for the benchmarks. Table 1 also shows
the total number of basic blocks and hot basic blocks for
each program. We define hot basic blocks as the ones whose
aggregate contribution exceeds 95% of the total execution
time of the program. Our ISA extension selection method-
ology only explores these hot basic blocks. Experimental
results show that including patterns from the rest of the ba-
sic blocks does not improve performance. The average size
of hot basic blocks varies from small (2.6 instructions) to
quite big (17.2 instructions).

We generate the execution traces using Simplescalar tool
set [4] which is a cycle-accurate simulation platform for
RISC-like processor architectures. The benchmarks are com-
piled by gcc version 2.7.2.3 with -O3 optimization. We build
the Whole Program Path (WPP) from the execution traces
using a modified version of the Sequitur grammar [12]. We
construct data dependence graphs (DDG) for the hot basic
blocks and paths (internal nodes of WPP) to identify the
custom instructions. We only impose the restriction that
a pattern cannot contain memory operations. We consider
integer-intensive benchmarks as including floating-point op-
erators in patterns seldom results in speedup. For instruc-
tion selection, we use the ILP-based method when there is a
restriction on the number of custom instructions and heuris-
tic method under area constraint. The heuristic method
chooses the optimal one most of the time under area con-
straint, but performs poorly under the total custom instruc-
tion constraint.

We calculate hardware latency/area for each of the simple
operations in the Simplescalar ISA using Synopsys design
tool with a popular cell library, based on which we approx-
imate the latency/area of custom instructions. To calculate
speedup, we use a single-issue, in-order pipelined architec-

200
8\4

4\2

5\2
8\3

10\2

5\2

3\2

10\2

5\23\24\2

0%

10%

20%

30%

40%

50%

60%

70%

80%

rawcaudio rawdaudio fft sha strsearch qsort bitcnts basicmath patricia dijkstra djpeg

Sp
ee

du
p

MISO
MIMO

Figure 2: Comparison of MISO and MIMO.

ture with 100% cache hit rate (benchmark inputs are the
same as the profiling input). As most of the recent em-
bedded processors, such as ARM11 and PowerPc602, are
in-order processors, this is not an unrealistic assumption.
The Speedup is given as

Speedup = (
Exec. cycles with origninal ISA

Exec. cycles with extended ISA
− 1) ∗ 100

We first look at the speedup obtained by limiting the pat-
terns to basic blocks. Later, we revisit the issues with pat-
terns that can cross basic block boundaries.

4.2 Operand Constraint
The restriction on number of operands either comes from

inherent limitations of the ISA or the register file design de-
cisions of the base processor (e.g., Tensilica’s Xtensa proces-
sor [7]). However, sometimes this is an artificial restriction
imposed by the tool that automatically selects the exten-
sions in order to prune the deign space [13, 8]. The most
popular choices are (1) 2-input, 1-output patterns and (2)
multiple-input single-output (MISO) patterns. In this sec-
tion, we investigate how these choices affect the speedup due
to extended ISA.

First, we restrict the patterns to 2-input, 1-output with-
out imposing any other constraint. The results indicate that
for most benchmarks, it is extremely difficult to find any
such pattern. Even for benchmarks for which such patterns
exist, the speedup is insignificant (maximum is around 3.2%
for dijkstra). However, we observe that as we do not allow
memory operations within a pattern, we cannot exploit 2-
input, 1-output structures like x = a[i].

Figure 2 shows the speedup for MISO and MIMO in-
structions without any other restrictions. Note that the
speedup for MIMO represents the theoretical speedup ob-
tainable when the patterns are restricted to basic blocks.
The speedup is roughly 20% for most of the benchmarks
except for Sha which achieves close to 74% speedup. There
is an average of 9.1% speedup improvement by relaxing the
single-output constraint imposed by MISO. The data labels
for each MIMO bar show the minimum number of input and
output operands required to obtain the maximum speedup.
We observe that most benchmarks achieve the theoretical
limit with only 2 output operands (for djpeg the speedup is
only 0.8% less with 2 outputs).

As the number of output operands can be easily restricted
to two according to Figure 2, we vary the number of input
operands while the number of output operands is set to two
(see Figure 3). Again there is no other restriction. With
the exception of a few benchmarks, 4-input operands seem

200

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6
Number of input

Sp
ee

du
p

sha
dijkstra
djpeg
strsearch
bitcnts
rawcaudio
rawdaudio
fft
patricia
qsort
basicmath

Figure 3: Effect of the number of input operands.

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 12 16 20 24 28 32 36 40 inf
Resource

S
pe

ed
up

sha
dijkstra
djpeg
strsearch
bitcnts
raw caudio
raw daudio
fft
patricia
qsort-exam
basicmath

200

Figure 4: Effect of area constraint.

sufficient to achieve reasonable speedup. We conclude that
even though 2-input, 1-output is quite a restrictive option,
4-input, 2-output can achieve close to the theoretical limit.

4.3 Area constraint
Given the cost conscious nature of embedded systems, it is

likely that a chip-area budget will be imposed for implemen-
tation of the custom functional units (CFU) [5, 11]. Figure
4 shows the speedup with varying area budget and no re-
striction on number of input/output operands. The x-axis
shows the resource budget in terms of number of adders. For
most benchmarks, the resource requirement is very small —
the area required to implement the custom instructions is
roughly equal to that of 25 adders. The only exception is
djpeg which requires area equivalent to around 200 adders
for optimal speedup. In general, resource does not seem to
be an issue for embedded benchmarks.

4.4 Total instruction constraint

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

raw caudio raw daudio fft strsearch qsort basicmath patricia dijkstra

Sp
ee

du
p

No. Instr = inf
No. Instr = 5
No. Instr = 4
No. Instr = 3
No. Instr = 2
No. Instr = 1

Figure 5: Effect of constraint on total number of
custom instructions.

200

3\1
4\1

5\1

10\1
4\1

8\1

5\3

4\3

5\3

10\3

4\3

6\4

10\3

10\3
5\2

8\5

0%

20%

40%

60%

80%

100%

120%

140%

160%

rawcaudio rawdaudio fft sha strsearch qsort bitcnts basicmath patricia dij kstra dj peg

R
el

at
iv

e
im

pr
v.

 R
at

io

MISO Imprv.
MIMO Imprv.

Figure 6: Relative performance improvement by re-
laxing control flow constraints.

Some extensible processors impose a limit on the total
number of custom instructions that can be added. The tool
developed by Atasu et. al. [3] finds the extended ISA that
will achieve maximum speedup under this constraint. As
shown in Figure 5, except for qsort, all the other bench-
marks achieve maximum speedup under 5 instruction con-
straint. For the other three benchmarks (sha, bitcnts and
djpeg), whose solutions cannot be obtained via ILP, heuris-
tic methods indicate that the peak speedup requires 6, 10,
38 custom instructions respectively. With 5 instructions,
they can achieve up to 78%, 74%, and 33% of peak speedup
respectively. Five instruction constraint may not be good
for some programs like djpeg whose datapaths vary a lot,
but effective enough for most others to exploit the majority
of the benefit from custom instructions.

4.5 Control flow constraint
A common restriction imposed by almost all the tools is

that the patterns should be limited to basic blocks. The
rationale being that it is hard for the compiler to exploit
patterns that span multiple basic blocks. We study the per-
formance potential that can be achieved by relaxing this
constraint. Note that as we are using WPP to find hot
paths (consisting of multiple basic blocks), we do not im-
pose any artificial limit on the number of basic blocks in a
path. However, our experiments indicated that for all the
benchmarks opportunities exist only among 2–3 consecutive
basic blocks. That is, it is quite local and attempting to find
patterns across several basic blocks is not fruitful.

Figure 6 shows the effect of relaxing the control flow con-
straints for both MISO and MIMO (no area constraint). In
general, compared to MISO, MIMO gets more improvement.
The benchmark dijkstra does not get any improvement by
allowing patterns to cross basic block boundaries. However,
for others the relative improvement (relative to speedup of
MISO and MIMO within basic blocks) ranges from a modest
5% to as much as 148%.

One question that may naturally arise is whether the re-
source consumption increases significantly as we cross basic
block boundaries. Figure 7 shows the results for two selected
benchmarks. In general, under tight resource budget, it does
not help much to find patterns spanning basic blocks. For
some values of the area constraint, speedup degrades across
basic blocks; but that is an artifact of the heuristic. The
total area budget requirement remains roughly the same ir-
respective of whether the patterns are within or across basic
blocks. For the similar question about the effect of num-

0%

20%

40%

60%

80%

100%

120%

4 8 12 16 20 24 28 32 36 40 inf
Resource

Sp
ee

du
p

sha - across basic blocks
sha - w ithin basic block
fft - across basic blocks
fft - w ithin basic block

Figure 7: Speedup across basic blocks under varying
area budgets for Sha and FFT

200

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6
No. of input

S
pe

ed
up

sha
stringsearch
dijkstra
djpeg
bitcnts
raw caudio
raw daudio
fft
qsort
patricia
basicmath

Figure 8: Effect of the number of input operands
across basic blocks

ber of operands, Figure 6 shows that most benchmarks can
achieve peak performance with 3 outputs. Under this re-
striction of 3 outputs, we show in Figure 8 that usually 4 to
5 inputs will suffice to obtain near optimal performance.

Finally, we discuss how compilers can exploit these pat-
terns. A pattern spans basic blocks with either a loop branch
or a conditional non-loop branch in between. The first case
can be exploited through loop unrolling. For the second
case, the compiler can combine the corresponding instruc-
tions from the basic blocks in question and add fix-up code
for the situation where the branch is taken in the other di-
rection. It can also use predicated execution if available.
We investigate how much these two cases contribute to the
performance gain in Figure 9.

5. CONCLUSIONS
We have studied the performance limit of extensible pro-

cessors for embedded applications. Using a novel method-
ology based on compressed execution trace, we have cal-
culated speedup for extended ISA under extremely relaxed
conditions. The summary of our major findings are:

1. Relaxing control flow constraints can achieve 5–148%
relative improvement without major impact on total
resource requirement. Moreover, most of this improve-
ment can be realized with existing techniques such as
predication and loop unrolling.

2. One can put a reasonable limit on resource and number
of custom instructions without affecting speedup.

3. Restrictions on number of operands (such as allowing
only MISO or 2-input, 1-output patterns) can signif-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

rawcaudio rawdaudio fft sha strsearch qsort bitcnts basicmath patricia djpeg

Pe
rc

en
ta

ge

Loop
branches

Conditional
non-loop
branches

Figure 9: Contributions due to loop and conditional
non-loop branches

icantly limit the performance. However, 4-input, 3-
output patterns achieve close to maximal speedup.

In future, we plan to extend this work to study the impact
of ISA extensions on code size, register pressure, and energy.

6. ACKNOWLEDGMENTS
This work was partially supported by NUS research grants

R252-000-088-112, R252-000-171-112 and A*STAR Project
022/106/0043.

7. REFERENCES
[1] Altera. Nios embedded processor system development. http://

www.altera.com/products/ip/processors/nios/nio-index.html.

[2] M. Arnold and H. Corporaal. Designing domain-specific
processors. In CODES, 2001.

[3] K. Atasu, L. Pozzi, and P. Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In DAC, 2003.

[4] D. Burger, T. Austin, and S. Bennett. Evaluating Future
Microprocessors: The SimpleScalar Toolset. Technical Report
CS-TR96-1308, Univ. of Wisconsin - Madison, 1996.

[5] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In MICRO,
2003.

[6] P. Faraboschi et al. Lx: a technology platform for customizable
VLIW embedded processing. In ISCA, 2000.

[7] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2), 2000.

[8] D. Goodwin and D. Petkov. Automatic generation of
application specific processors. In CASES, 2003.

[9] M. R. Guthausch et al. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE 4th
Annual Workshop on Workload Characterization, 2001.
http://www.eecs.umich.edu/mibench/.

[10] J. R. Larus. Whole program paths. In PLDI, 1999.

[11] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for
automatic instruction set design of configurable ASIPs. In
ICCAD, 2002.

[12] C. Nevill-Manning and I. Witten. Identifying hierarchical
structure in sequences: A linear-time algorithm. Journal of
Artificial Intelligence Research, 7, 1997.

[13] L. Pozzi, M. Vuletic, and P. Ienne. Automatic topology-based
identification of instruction-set extensions for embedded
processor. Technical Report 01/377, Swiss Federal Institute of
Technology Lausanne (EPFL), 2001.

[14] R.Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM Transaction on Design
Automation of Electronic Systems, 7(2), 2002.

[15] S. Talla. Adaptive Explicitly Parallel Instruction Computing.
PhD thesis, New York University, 2000.

[16] D. W. Wall. Limits of instruction-level parallelism. In
ASPLOS, 1991.

[17] A. Ye et al. Chimera: A high-performance architecture with a
tightly-coupled reconfigurable functional unit. In ISCA, 2000.

