
Exploiting Forwarding to Improve Data Bandwidth of
Instruction-Set Extensions

Ramkumar Jayaseelan , Haibin Liu , Tulika Mitra
School of Computing, National University of Singapore

{ramkumar,liuhb,tulika}@comp.nus.edu.sg

ABSTRACT
Application-specific instruction-set extensions (custom in-
structions) help embedded processors achieve higher perfor-
mance. Most custom instructions offering significant per-
formance benefit require multiple input operands. Unfor-
tunately, RISC-style embedded processors are designed to
support at most two input operands per instruction. This
data bandwidth problem is due to the limited number of
read ports in the register file per instruction as well as the
fixed-length instruction encoding. We propose to overcome
this restriction by exploiting the data forwarding feature
present in processor pipelines. With minimal modifications
to the pipeline and the instruction encoding along with co-
operation from the compiler, we can supply up to two addi-
tional input operands per custom instruction. Experimental
results indicate that our approach achieves 87–100% of the
ideal performance limit for standard benchmark programs.
Additionally, our scheme saves 25% energy on an average by
avoiding unnecessary accesses to the register file.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
Performance, Design

Keywords
Instruction-set Extensions, Data Forwarding

1. INTRODUCTION
Application-specific instruction-set extensions, also called

custom instructions, extend the instruction-set architecture
of a base processor [6, 7, 9]. Processors that allow such
extensibility have become popular as they strike the right
balance between challenging performance requirement and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006,July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

0%

10%

20%

30%

40%

50%

60%

70%

R
ijn
da
el

S
ha

B
lo
w
fis
h

D
jp
eg

C
om
pr
es
s

N
de
s

B
itc
nt
s

D
ijk
st
ra

S
p
e
e
d
u
p

2-input

3-input

4-input

Figure 1: Impact of limited input operands on per-
formance speedup of custom instructions.

short time-to-market constraints of embedded systems de-
sign. Custom instructions encapsulate the frequently oc-
curring computation patterns in an application. They are
implemented as custom functional units (CFU) in the data-
path of an existing processor core. CFUs improve perfor-
mance through parallelization and chaining of operations.
Thus custom instructions help simple embedded processors
achieve considerable performance and energy efficiency.

Commercial embedded processors supporting instruction-
set extensibility, such as Altera Nios-II [6] and Tensilica
Xtensa [7], are all RISC-style cores with simple instruc-
tions and fixed-length instruction encoding formats. How-
ever, custom instructions typically encapsulate quite com-
plex computations. This results in a fundamental mismatch
between the base processor core and the new extensions
both in terms of ISA definition and micro-architecture. Sim-
ple RISC-style instructions use at most two register input
operands and one register output operand. As a result, at
the micro-architectural level, the base processor core sup-
ports two register read ports per instruction. Unfortunately,
multiple studies [3, 15] have shown that custom instructions
generally require more than two input operands to achieve
any significant performance gain. Figure 1 plots the speedup
due to custom instructions with at most 2, 3, and 4 input
operands, respectively1. Clearly, performance drops signifi-
cantly as we restrict the number of input operands per cus-
tom instruction.

In this paper, we present a novel scheme that exploits the
forwarding logic in processor pipeline to overcome the data
bandwidth limit per custom instruction. Data forwarding,

1Details of the experimental setup are given in Section 5

also known as register bypassing, is a standard architectural
method to supply data to a functional unit from internal
pipeline buffers rather than from programmer-visible regis-
ters. In conventional processors, forwarding is used to re-
solve data hazard between two in-flight instructions. We
observe that, in many cases, at least some of the input
operands of a custom instruction are available from the data
forwarding logic. Thus, we leverage on the data forwarding
logic to provide additional inputs to the custom instructions.

The key to exploiting such a scheme is of course a com-
pile time check to determine if a specific operand can indeed
be obtained from the forwarding logic. However, in the
presence of statically unpredictable events, such as cache
miss for a custom instruction, this cannot be guaranteed
at compile time. As the custom instruction gets delayed,
the instruction supplying the operand may complete execu-
tion and leave the pipeline. Therefore, the operand is no
longer available from the forwarding logic. To circumvent
this problem, we propose minimal changes in the pipeline
control hardware to guarantee the availability of the operand
from the forwarding logic under such scenarios. At the same
time, we ensure that the changes do not have any negative
impact on the instruction throughput of the pipeline.

Finally, we need to address the related problem of instruc-
tion encoding to support additional operands. Assuming an
instruction format similar to the Altera Nios-II processor [6],
we show that minimal modification to the encoding scheme
can support up to 64 custom instructions each having up to
4 input operands.

2. RELATED WORK
Significant research effort has been invested in issues re-

lated to instruction-set extensions for the past few years.
Most of this effort has concentrated on the so called “design
space exploration” problem to choose an appropriate set of
custom instructions for an application [1, 3, 15, 16]. The
first step of this exploration process identifies a large set of
candidate patterns from the program’s dataflow graph and
their frequencies via profiling. Given this library of patterns,
the second step selects a subset to maximize the performance
under constraints on the number of allowed custom instruc-
tions and/or the area budget.

Limited data bandwidth is one of the key problems in
the implementation of custom instructions. This problem
arises because custom instructions normally require more
than two input operands whereas the register file provides
only two read ports per instruction. Increasing the number
of read ports to the register file is not an attractive option
as the area and power consumption grow cubically with the
number of ports.

The Nios-II processor [6] solves this problem by allowing
the custom functional unit (CFU) to read/update either the
architectural register file or an internal register file. How-
ever, additional cycles are wasted to move the operands be-
tween the architectural register file and the internal register
file through explicit MOV instructions. Similarly, the MicroB-
laze processor [9] from Xilinx provides dedicated Fast Sim-
plex Link (FSL) channels to move operands to the CFU. It
provides put and get instructions to transfer operands be-
tween the architectural register file and the CFU through
FSL channels.

Cong et al. [4, 5] eliminate these explicit transfer of operands
with the help of a shadow register file associated with the

CFU. Shadow register file is similar to the internal regis-
ter file of Nios-II in that they both provide input operands
to the CFUs. However, the major difference is that the
shadow registers are updated by normal instructions during
the write back stage. An additional bit in the instruction
encoding decides whether the instruction should write to the
shadow register file in addition to the architectural register.

Pozzi et al. [13] suggest an orthogonal approach to re-
lax the register file port constraints. Their technique ex-
ploits the fact that for a CFU with pipelined datapath, all
the operands may not be required in the first clock cycle.
Therefore, the register accesses by the CFU datapath can
be distributed over multiple cycles. This approach will have
limited performance benefit if most custom instructions with
multiple operands require single-cycle datapath.

Though the previous works [4, 5, 13] improve the data
bandwidth, they do not address the related problems of en-
coding multiple operands in a fixed-length instruction for-
mat and data hazards.

• Fixed-length and fixed-position encoding employed in
RISC processors do not provide enough space to en-
code the additional operands of the custom instruc-
tions. Previous works do not discuss the issue of en-
coding operands for custom instructions. For exam-
ple, the work by Pozzi et al. [13] still requires a reg-
ister identifier corresponding to each input operand of
a custom instruction. Similarly, the work based on
shadow register files requires either the shadow regis-
ter identifier or an architectural register identifier for
each input operand of a custom instruction.

• Data hazards occur in a pipeline when the depen-
dent instruction reads the register before the source
instruction writes into it. These are resolved by em-
ploying data forwarding as discussed in Section 1. For
a multiple-operand custom instruction, data hazards
can occur on any of the input operands. It is not
clear how data hazards are handled for the additional
operands in case of multi-cycle register reads [13] or
shadow registers [5].

Our work addresses both of these important issues. In ad-
dition, our method avoids unnecessary register accesses and
thereby saves energy (see Section 5).

3. PROPOSED ARCHITECTURE
Our proposed architecture exploits data forwarding logic

in the processor pipeline to supply additional operands per
custom instruction. In addition, we require minimal mod-
ification of the instruction encoding to specify the addi-
tional operands per custom instruction. In this section, we
describe these modifications in the processor pipeline and
the instruction encoding. We assume a RISC-style in-order
pipeline that is prevalent in embedded processor architec-
tures with extensibility feature. For illustration purposes,
we use a simple MIPS-like 5-stage pipeline. However, our
technique can be easily applied to other in-order pipelines.
We begin with a brief review of the data forwarding logic as
it is central to our discussion.

3.1 Data Forwarding
We will illustrate our technique through a simple, 5-stage,

MIPS-style pipeline shown in Figure 3. The five pipeline

ADD R1, R2, R3

SUB R4, R1, R6

OR R7, R8, R9

CUST R10, R4, R7

WBMEMEXIDIF

SUBORCUST....

ADDSUBORCUST..

ADDSUBORCUST

ADDSUBOR

ADDSUB

ADD

Clock

6

5

4

3

2

1

Figure 2: Illustration of data forwarding for a se-
quence of instructions.

IF/ID ID/EX EX/MEM MEM/WB

PC I-Cache

Register

File

M

U

X

M

U

X

D-cache

M

U

X

Figure 3: Data forwarding in a pipeline.

stages are: instruction fetch (IF), instruction decode/register
read (ID), execute (EX), memory access (MEM) and write-
back (WB). Data forwarding or register bypassing is a com-
mon technique used to reduce the impact of data hazards
in pipelines. Consider the execution of the sequence of in-
structions shown in Figure 2 in a MIPS pipeline (the first
register identifier of each instruction specifies the destina-
tion operand and the other two specify the source operands).
There is a dependency between the ADD instruction and the
SUB instruction through register R1. The ADD instruction
writes the result into the register file in clock cycle 5. How-
ever, the SUB instruction reads the register file in clock cycle
3 and hence would read a wrong value. This is known as
data hazard in the pipeline. To prevent data hazard, we can
stall the pipeline for two clock cycles till the ADD instruction
writes register R1. This would result in significant perfor-
mance degradation. A more efficient method is to forward
the result of the ADD instruction to the input of the func-
tional unit before it has been written to the register file.
This is based on the observation that the SUB instruction
requires the input only in clock cycle 4 and the ADD instruc-
tion produces the result at the end of clock cycle 3. Thus,
forwarding avoids pipeline stalls due to data hazards.

Figure 3 shows the pipeline with highlighted data for-
warding logic. Forwarding paths are provided from the
EX stage (the latch EX/MEM) and the MEM stage (the latch
MEM/WB) to the functional units. Multiplexers are placed be-
fore the functional unit to select the operand either from
the register file or from the forwarding paths. Note that
there is no forwarding path from the output of the WB stage.
The hazards in this stage are handled by ensuring that the
register writes happen in the first half of a clock cycle and
the register reads happen in the second half of a clock cycle.
Interested readers can refer to [12] for further details.

We observe that in most cases, the operands of custom in-
structions are available from the forwarding paths. In Figure

RS1 RS2 RD OPX OP

06 517 1622 2127 2631

RS1 RS2 RD OPD OP

06 517 1622 2127 2631

COP

12 11

Original Encoding

Modified Encoding

Figure 4: Encoding format of custom instructions.

2, the custom instruction CUST reads both its input operands
from the forwarding path. Hence, the forwarding path can
be used as a proxy to cover up for the lack of number of
read ports in the register file. The two latches (EX/MEM and
MEM/WB) can provide up to two additional input operands for
a custom instruction (the other two come from the register
file). Note that in a conventional pipeline, an instruction
reads from the register file in the ID stage even if it later
uses the data from the forwarding logic. In contrast, we do
not allow a custom instruction to read from the register file
if the corresponding operand will be supplied from the for-
warding path. The challenge now is to identify at compile
time which operands will be available from the forwarding
logic, encoding that information in the instruction, and en-
suring that the operand is available even in the presence of
unpredictable events (e.g., instruction cache miss).

3.2 Instruction Encoding
We now describe the instruction encoding in the presence

of custom instructions that exploit forwarding logic to ob-
tain up to two additional input operands. The basic idea
behind our encoding is not to affect the decoding of nor-
mal instructions. We also try to minimize the number of
bits required to encode the operand information. We illus-
trate our encoding with the instruction format of Nios-II
processor. However, the general idea is applicable to any
RISC-style instruction format.

The original encoding in Figure 4 is the format for custom
instructions in Nios-II. It consists of a 6-bit opcode field OP,
which is fixed at 0x32 for all custom instructions. The 11-
bit opcode extension field OPX is used to distinguish different
custom instructions. 3-bits from the OPX field is used in Nios-
II to indicate whether each source/destination register refers
to the architectural or the internal register file (see Section
2). The rest of the 15-bits are used to specify the two source
and one destination operands.

As we do not want to affect the encoding of normal in-
structions, all the information about the operands of the
custom instructions are encoded as part of the 11-bit op-
code extension field OPX. Each operand of a CFU can come
either from the two register ports or from one of the two for-
warding paths. However, the number of input operands of
a custom instruction need not be encoded as the datapath
of the CFU can ignore the extra inputs. For example, a
3-input custom operation would ignore the fourth operand.

Among the four input operands, at most two operands
are specified using the forwarding path. There are C4

2 = 6
possibilities for the choice of these two operands among the
four input operands. In addition, for each of the operands
from the forwarding path, we need to specify whether it
comes from the EX/MEM latch or the MEM/WB latch. There are
a total of four possibilities in this case and hence the total

WBMEMEXIDIF

ADDSUBNOP

ADDSUBNOP

ADDSUBNOP

ADDSUBNOP

ADDSUBMiss

ADDSUB

ADD

CC

7

6

5

4

3

2

1

21

20

19

18

SUBORCUST....

ADDSUBORCUST..

ADDSUBORCUST

ADDSUBOR

ADD R1, R2, R3

SUB R4, R1, R6

OR R7, R8, R9

CUST R10, R4, R7

Cache miss before OR instruction (15 cycles latency)

WBMEMEXIDIF

NOPNOPNOPNOPNOP

SUBNOPNOPNOPNOP

ADDSUBNOPNOPNOP

ADDSUBNOPNOP

ADDSUBMiss

ADDSUB

ADD

CC

7

6

5

4

3

2

1

21

20

19

18

NOPORCUST....

NOPNOPORCUST..

NOPNOPNOPORCUST

NOPNOPNOPNOPOR

(A) Normal forwarding (B) Predictable forwarding

Figure 5: Pipeline behavior for I-cache miss

WBMEMEXIDIF

SUBMULTCUST....

ADDSUBMULTCUST..

ADDSUBMULTCUST..

ADDSUBMULTCUST..

ADDSUBMULTCUST

ADDSUBMULT

ADDSUB

ADD

CC

8

7

6

5

4

3

2

1

WBMEMEXIDIF

NOPMULTCUST....

NOPNOPMULTCUST..

SUBNOPMULTCUST..

ADDSUBMULTCUST..

ADDSUBMULTCUST

ADDSUBMULT

ADDSUB

ADD

CC

8

7

6

5

4

3

2

1

(A) Normal forwarding
(B) Predictable forwarding

ADD R1, R2, R3

SUB R4, R5, R6

MULT R7, R8, R9

CUST R10,R4, R7

Multi-cycle operation MULT (3 cycles)

Figure 6: Pipeline for multi-cycle operation.

number of possibilities that need to be encoded is 24, i.e., we
require 5 bits to encode the information. The modified en-
coding in Figure 4 shows the new instruction format with the
operand information. 5 bits from the OPX field are used to
encode the operand information (OPD field). The remaining
6 bits (COP field) can be used to specify the custom func-
tion to be performed. Thus there can be 64 distinct custom
instructions each having up to four input operands. Note
that decoding the operand information is done in parallel to
the instruction decoding in the ID stage of the pipeline and
hence would not affect the cycle time.

3.3 Predictable Forwarding
The key to exploiting forwarding for custom instructions

is to determine at compile time (i.e., statically) whether an
operand can be obtained from the forwarding path. In Fig-
ure 3 there are two forwarding paths. Let us assume a
sequence of instructions 〈I1, I2, . . . In〉. An operand of in-
struction Ii is available from the forwarding path only if
instruction Ii−1 or Ii−2 produces the operand. For example
in Figure 2, the operands of the custom instruction CUST are
available from the forwarding paths as they are produced by
the two immediate predecessors (SUB and OR instructions).

However this property does not hold when there are multi-
cycle operations and also in the event of instruction cache
misses. This is because these events introduce bubbles in the
pipeline and hence affect forwarding between dependent in-
structions. Figure 5(A) illustrates the problem in the event
of an instruction cache miss. The OR instruction misses in
the instruction cache and hence the custom instruction CUST

cannot obtain the result of the SUB instruction (register R4)
from the forwarding path. This is not a problem for conven-

tional pipeline because normal instructions will simply read
the result from the register file (it was relying on data for-
warding only when the result has not yet been written to the
register). Unfortunately, the custom instruction has to read
the data from the forwarding path, i.e., it does not have the
fall back option of reading from the register file. Similarly,
multi-cycle operations can affect the forwarding path in the
pipeline. Figure 6(A) shows the pipeline behavior when a
multi-cycle instruction MULT is executed in the pipeline.

Data cache misses and branch mispredictions occur in the
MEM stage and hence only the instruction in the WB stage will
not be able to forward the result. As we do not assume
any forwarding from the WB stage anyway (it is taken care
of by split register read/write as discussed in Section 3.1),
branch misprediction and data cache misses do not affect
our forwarding path.

We suggest a simple change in the pipeline control logic
to guarantee forwarding between instruction Ii−1/Ii−2 and
instruction Ii in the event of instruction cache misses and
multi-cycle operations. Events such as cache misses create
bubbles in the pipeline draining out instructions in later
stages of the pipeline. This affects forwarding. This can be
clearly seen by comparing Figure 2 with Figure 5(A). In
Figure 2, the SUB instruction is in the pipeline when the
custom instruction enters the EX stage. However in Figure
5(A), due to the instruction cache miss the SUB instruction
leaves the pipeline before the custom instruction enters the
EX stage. Therefore the value cannot be forwarded; instead
it should be read from the register file in the ID stage.

The key insight is to stall the instructions in the later
stages of the pipeline (after the event) rather than allow-
ing them to progress. That is, instead of introducing NOPs
into the pipeline (as shown in Figure 5(A)), we retain the
contents of the later stages for the duration of the I-cache
miss. This way when the normal flow resumes, the pipeline
looks like as if the event did not happen at all. This sce-
nario is shown in Figure 5(B). Similarly, for multi-cycle
operations the effect on the pipeline execution is shown in
Figure 6(B). Note that stalling the pipeline stages as op-
posed to introducing bubbles (NOPs) does not cause any
additional performance degradation in terms of instruction
throughput.

To achieve this, we simply need stall signal for each pipeline
latch. When the stall signal is set, the latch holds its cur-
rent value. A stall unit is responsible for stalling the pipeline
during cache misses and multi-cycle operations. To ensure
forwarding, the stall signals for latches in the later stages of
the pipeline must be set (ID/EX, EX/MEM and MEM/WB) for the
duration of the cache miss. In a similar fashion, the stall
signals for the EX/MEM and MEM/WB latch must be set for the
duration of the multi-cycle operation.

4. COMPILATION TOOLCHAIN
As mentioned before, our technique requires cooperation

from the compiler. We need to determine at compile time
whether a specific operand can be forwarded and encode the
custom instruction accordingly. In addition, the compiler
can schedule the instructions appropriately so as to maxi-
mize the opportunity of forwarding. We now describe how
these concerns are addressed in the compilation toolchain
for custom instruction selection and exploitation.

The relevant portion of the compilation toolchain is shown

Pattern Identification

IR Scheduling

Pattern Selection

Register Allocation

Instruction Scheduling

Forwarding Check

and MOV insertion

Figure 7: Compilation toolchain

in Figure 7. Pattern identification is performed at the inter-
mediate representation (IR) level just prior to register allo-
cation and after the scheduling of the intermediate instruc-
tions. We use the pattern identification scheme discussed
in [16] that involves construction of the data dependency
graphs for each basic block followed by identification of all
possible patterns that satisfy the given constraints. In our
case, we impose a constraint that the patterns should have
at most 4 input operands and one output operand. This is
followed by the selection of a subset of patterns to be imple-
ment as custom instructions. We now describe the pattern
selection phase in detail.

4.1 Pattern Selection
We use a heuristic pattern selection method. Given the

set of identified patterns, we first club together identical sub-
graphs using the algorithm presented in [11]. All the iden-
tical subgraphs map to a single custom instruction and are
called the instances of a pattern. Associated with each pat-
tern instance, we have an execution count (obtained through
profiling) and the speedup. A greedy heuristic method is em-
ployed for pattern selection [15]. It attempts to cover each
original instruction in the code with zero or one custom in-
structions using a priority function given by

Priorityi.j = speedupi.j × frequencyi.j

where Priorityi.j , speedupi.j , and frequencyi.j are the pri-
ority, performance speedup and execution frequency of the
jth instance of pattern i. The pattern instances are chosen
starting with the highest priority one.

In our forwarding-based approach, the performance speedup
of a pattern instance depends on how many of its input
operands can be forwarded. Suppose we have a 4-input cus-
tom instruction. Two of its operands can be obtained from
the forwarding path and two are read from the register file.
Then we can easily encode that custom instruction. How-
ever, if we cannot obtain any operand from the forwarding
path, then we need to add additional MOV instructions in the
code. Let us suppose the custom instruction needs three
input operands R2, R3, R4. R2, R3 can be read from the
register file. For R4, we insert a redundant instruction MOV

R4, R4 just before the custom instruction. This ensures that
the operand R4 can be obtained from the forwarding path.
The latency of a MOV instruction is one clock cycle. Accord-
ingly, we update the performance speedup of all the custom
instruction instances.

4.2 Instruction Scheduling
The speedup of a custom instruction depends heavily on

the final instruction scheduling (after register allocation) due

Benchmark Source Patterns Instances

Rijndael MiBench 17 1790
Sha MiBench 11 33
Blowfish MiBench 13 197
Djpeg MiBench 34 133
Compress GothenBurg 11 26
Ndes FSU 13 39
Bitcnts MiBench 11 28
Dijkstra MiBench 4 5

Table 1: Characteristics of benchmark programs.

to the forwarding constraint. Given a basic block with cus-
tom instructions, we have formulated the problem of finding
the optimal schedule with forwarding as an integer linear
programming (ILP) problem. Due to space constraint, we
do not discuss the formulation in detail here. Interested
readers can refer to [10].

Finally, register allocation (due to register spilling) and
scheduling can affect the forwarding paths. Thus the ac-
tual encoding of the custom instructions and the insertion
of MOV instructions (if necessary) are performed in the final
stage of the compilation process. The check to determine
if a specific input operand can be forwarded is simple. We
just need to check the distance of the custom instruction
from the instruction producing the operand. If the instruc-
tion producing the operand spans across basic blocks, then
we have to ensure that the forwarding condition is satisfied
along all possible program paths.

5. EXPERIMENTAL EVALUATION
In this section we discuss the experimental evaluation of

our proposed architecture.

5.1 Setup
Table 1 shows the characteristics of the benchmark pro-

grams selected mostly from MiBench [8]. We use SimpleScalar
tool set [2] for the experiments. The programs are compiled
using gcc 2.7.2.3 with -O3 optimization.

Given an application, we first exhaustively enumerate all
possible patterns and their instances [16]. We impose a con-
straint of maximum 4 input operands and 1 output operand
for any pattern. Table 1 shows the number of patterns and
pattern instances generated for each benchmark. The ex-
ecution frequencies of the pattern instances are obtained
through profiling. The hardware latencies and area of cus-
tom instructions (patterns) are obtained using Synopsys syn-
thesis tool. Finally, the number of execution cycles of a
custom instruction is computed by normalizing its latency
(rounded up to an integer) against that of a multiply accu-
mulate (MAC) operation, which we assume takes exactly
one cycle. We do not include floating-point operations,
memory accesses, and branches in custom instructions as
they introduce non-deterministic behavior. The set of pat-
terns identified is provided as input to the selection phase
which outputs the set of custom instructions selected.

The speedup of an application using custom instructions
is defined as follows

Speedup = (
Cycleorig

Cycleex
− 1) ∗ 100

where Cycleorig is the number of cycles when the bench-

Benchmark Ideal Forwarding MOV

Rijndael 64.03% 63.85% 45.44%
Sha 46.82% 40.77% 20.94%
Blowfish 35.56% 35.56% 24.38%
Djpeg 17.42% 17.36% 15.43%
Compress 26.85% 26.85% 21.77%
Ndes 25.62% 22.37% 15.55%
Bitcnts 20.67% 20.67% 18.58%
Dijkstra 28.99% 28.99% 19.12%

Table 2: Speedup under different architectures.

mark executes without custom instructions and Cycleex is
the number of cycles when custom instructions are added.
For the speedup calculations we assume a single issue in-
order processor with 100% data cache hit rate.

5.2 Results
We compare the speedup of each benchmark for three dif-

ferent architectures. The first architecture is “ideal” as it
has support for four read ports in the register file and enough
space to encode these operands in the instruction format.
This architecture is able to provide the highest speedup with
custom instructions. The second architecture is based on
our idea of exploiting data “forwarding”. In this case, we
may need additional MOV instructions when more than two
operands must be read from the register file. The final ar-
chitecture “MOV” is based on Nios-II where custom MOV

instructions are used to transfer data from the architectural
register file to internal register files (see Section 2).

Table 2 shows the speedup obtained for the three differ-
ent architectures. The performance of forwarding is very
close to the ideal performance limit (96% on an average).
This is because for the majority of the selected patterns, at
least two operands can be obtained through forwarding; thus
MOV instructions are inserted rarely. The case where custom
move instructions are inserted (“MOV”) achieves only 70%
of the performance limit. Thus our technique can overcome
the limitations in number of register ports and instruction
encoding without affecting performance.

In addition, our technique reduces the energy consump-
tion in the register file. As data forwarding is predictable
in our approach (refer Section 3.3), register file reads can
be avoided for forwarded operands. Table 3 presents the
register file energy consumption for the three different ar-
chitectures. The first column is the ideal case where there
are four read ports in the register file. The second column is
the case where there are two read ports and custom MOV in-
structions are inserted. The third column is our forwarding-
based approach that avoids redundant register file accesses.
The energy values presented here are obtained using CACTI
3.2 [14] for 130 nm technology. It is clear from Table 3 that
increasing the number of ports of the register file is not an
attractive option as it almost doubles the energy consump-
tion. By comparing the second and third column, it can
be seen that forwarding results in significant savings in the
energy consumption of the register file (25% on an average).

6. CONCLUSION AND FUTURE WORK
In this paper we have shown how data forwarding can be

exploited to implement multiple-input single-output (MISO)

Benchmark Energy(µJ)
Ideal MOV Forwarding

Rijndael 31,462 16,393 12,373
Sha 15,180 7,909 6,587
Blowfish 30,653 15,972 12,951
Djpeg 3,721 1,939 1,411
Compress 4 2 2
Ndes 46 24 17
Bitcnts 41,689 21,722 15,915
Dijkstra 49,078 25,573 16,811

Table 3: Register file energy consumption under dif-
ferent architectures

custom instructions on a processor with limited number of
register ports. Our technique overcomes the restrictions
imposed by limited register ports and instruction encoding
achieving almost ideal speedup. In the future, we plan to
address restrictions on the number of output operands.

7. ACKNOWLEDGMENTS
This work was partially supported by NUS research grant

R252-000-171-112 and A*STAR Project 022/106/0043.

8. REFERENCES
[1] K. Atasu, L. Pozzi, and P. Ienne. Automatic

application-specific instruction-set extensions under
microarchitectural constraints. In DAC, 2003.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2), 2002.

[3] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration
through automated instruction set customization. In
MICRO, 2003.

[4] J. Cong et al. Instruction set extension with shadow
registers for configurable processors. In FPGA, 2005.

[5] J. Cong, G. Han, and Z. Zhang. Architecture and
compilation for data bandwidth improvement in
configurable embedded processors. In ICCAD, 2005.

[6] Altera Corp. Nios processor reference handbook.
[7] R. E. Gonzalez. Xtensa: A configurable and extensible

processor. IEEE Micro, 20(2), 2000.
[8] M. R. Guthausch et al. Mibench: A free, commercially

representative embedded benchmark suite. In IEEE 4th
Annual Workshop on Workload Characterization, 2001.

[9] Xilinx Inc. Microblaze soft processor core.
[10] R. Jayaseelan, H. Liu, and T. Mitra. Exploiting forwarding

to improve data bandwidth of instruction-set extensions.
Technical Report TRB5/06, School of Computing, National
University of Singapore, 2006.

[11] R. Kastner et al. Instruction generation for hybrid
reconfigurable systems. ACM Transaction on Design
Automation of Electronic Systems, 7(2), 2002.

[12] D. Paterson and J. Hennessey. Computer Organization and
Design: The Hardware/Software Interface. Morgan
Kaufmann, 3rd edition, 2004.

[13] L. Pozzi and P. Ienne. Exploiting pipelining to relax
register-file port constraints of instruction-set extensions. In
CASES, 2005.

[14] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An
integrated cache timing, power and area model. Technical
Report 2001/2, Compaq Computer Corporation, 2001.

[15] P. Yu and T. Mitra. Characterizing embedded applications
for instruction-set extensible processors. In DAC, 2004.

[16] P. Yu and T. Mitra. Scalable custom instructions
identification for instruction-set extensible processors. In
CASES, 2004.

