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ABSTRACT
Multi-core architectures consisting of multiple processing cores on
a chip have become increasingly prevalent. Synthesizing hard real-
time applications onto these platforms is quite challenging, as the
contention among the cores for various shared resources leads to
inherent timing unpredictability. This paper proposes the use of
shared cache in a predictable manner through a combination of
locking and partitioning mechanisms. We explore possible design
choices and evaluate their effects on the worst-case application per-
formance. Our study reveals certain design principles that strongly
dictate the performance of a predictable memory hierarchy.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
and Embedded Systems

General Terms
Measurement, Performance

Keywords
Shared-cache multi-core, WCET, cache locking, cache partitioning

1. INTRODUCTION
Multi-core architectures are increasingly common in both desk-

top and embedded markets. Energy and thermal constraints are ef-
fectively precluding the design of complex high-performance single-
core processors. In this context, multiple simpler processing cores
on a single chip is an attractive option. Several manufacturers (e.g.,
Intel, AMD) have released dual/quad cores while Sun’s Niagara
multiprocessor accommodates 8 cores on the same die. In the em-
bedded domain, ARM MPCore is a synthesizable multi-processor
configurable to contain between 1 and 4 ARM11 cores. IBM Cell
processor in Sony PlayStation 3 contains 9 cores while Xenon in
Microsoft’s Xbox 360 is a custom PowerPC-based triple-core.

Memory optimizations remain indispensable for performance as
we move from single-core to multi-core systems. Along with the
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processing cores, increasingly large memory area can now be inte-
grated onto the die. A popular choice for the on-chip memory struc-
ture is a two-level cache hierarchy (e.g., Niagara, Xenon, Power5).
In this architecture, Level 1 (L1) caches are attached to and pri-
vately accessible by each core. All the cores share the access to a
large Level 2 (L2) cache. The presence of a shared cache offers the
flexibility in adjusting the memory allocated per core according to
its requirement, as well as the possibility of multiple cores enjoy-
ing fast access to shared code/data. This potentially improves the
performance, but also requires complex resource management.

The challenge is even greater when designing for real-time ap-
plications, which cannot afford to miss deadlines and hence de-
mand timing predictability. Any schedulability analysis requires
the worst-case execution time (WCET) of the application’s tasks as
input. Static analysis of a task to estimate its WCET bound is com-
plicated by the dynamic nature of cache memory. Still, a decade
of research has solved the problem of cache-aware WCET analysis
to a large extent in the context of single-core processors. How-
ever, the interaction and the resulting contention among multiple
cores in a shared cache bring out many new challenges. To the
best of our knowledge, no static analysis method has been devel-
oped to estimate WCET bounds in the presence of shared caches.
In our opinion, it will be extremely difficult, if not impossible, to
develop such a method that can accurately capture the contention.
Instead, we propose to use the shared cache in a restrictive manner
that eases the analysis effort, with possible tradeoff in performance.
Towards this end, we exploit two mechanisms: cache locking and
cache partitioning. Cache locking allows the user to load selected
contents into the cache and subsequently prevents these contents
from being replaced at runtime. This feature is available in several
commercial processors (PowerPC 440 core, ARM 920T, Freescale
Semiconductor’s e300 core, etc). Cache partitioning assigns a
portion of the cache to each task (or processor), and restricts cache
replacement to each individual partition. Cache partitioning en-
ables compositional analysis where the timing effect of each task
(processor) can be estimated separately.

The interplay among processing elements in a multi-core set-
ting through the shared cache provides some unique design choices
and opportunities. One simple choice, for example, is global cache
locking where contents are selected from all the tasks in all the
cores. More sophisticated policies may partition the cache among
the cores or the tasks and manage each partition independently. The
relative merits of these different design choices are not obvious.

In this paper, we explore the possible design choices for a pre-
dictable and high performance shared L2 cache on multi-core ar-
chitectures. We devise different combinations of cache locking and
partitioning schemes, then study their impact on the worst-case
performance of applications with different characteristics. This



study can provide guidelines to real-time application programmers
in terms of design decisions for the memory hierarchy.

2. SHARED CACHE MANAGEMENT
We consider a multi-core architecture consisting of identical cores.

The on-chip memory is configured as two-level caches with a shared
L2 cache, which is the focus of this work. We assume that the cache
coherence is implemented in hardware, and that the caches support
locking and set-based partitioning [4] that allocates a number of
sets (rows) to each task. This paper focuses on instruction cache,
though our technique is equally applicable to data caches.

We adopt the classic real-time system model where a set of in-
dependent tasks {T1, T2, . . . , TK} execute periodically. Each task
Ti is associated with a period pi, which defines its deadline, and
a worst-case execution time ci. We choose partitioning [2] strat-
egy for homogeneous multiprocessor scheduling. In a partitioning
strategy, once a task is allocated to a processor, it is executed ex-
clusively on that processor. Any uniprocessor scheduling algorithm
can then be applied on each processor. Partitioning strategy has the
advantage of lower overhead compared to global strategy that al-
lows migration of a task to a different processor at runtime.

López et al. [6] show that the earliest deadline first (EDF) schedul-
ing policy with First Fit (FF) allocation is an optimal partitioning
approach with respect to utilization bounds. Our framework ap-
plies this policy. FF assigns a task to the first processor that can
accept it. A task set is EDF-schedulable on uniprocessor if U ≤ 1,
where U is the utilization of a task set {T1, T2, . . . , TK} given by
U =

∑K
i=1

ci
pi

. The system utilization of a Q-core multiprocessor
is Usystem = U

Q
. We measure the performance of a task set on a

multiprocessor by the system utilization: the lower, the better.
We separate the treatment of the private L1 caches and the shared

L2 cache, in order to observe the shared cache behavior while ab-
stracting out the effects of the L1 caches. As our focus is on the
shared cache, we choose a simple static locking scheme for L1.
The private L1 cache attached to a core is utilized only by the tasks
executing on that core; for each, we adopt the cache content selec-
tion algorithm for multitasking systems [9]. The chosen blocks for
L1 will be excluded during content selection for the L2 cache.

The shared L2 cache opens up the opportunity to combine dif-
ferent locking and partitioning schemes as shown in Figure 1(e).
For cache locking, we can choose a static scheme (cache content
remains unchanged throughout execution) or a dynamic scheme
(cache content can be reloaded at runtime) For cache partitioning,
we have the choice of (1) no partition, where a cache block may be
occupied by any task, scheduled on any core; (2) task-based par-
tition, where each task is assigned a portion of the cache; or (3)
core-based partition, where each core is assigned a portion of the
cache, and each task scheduled on that core may occupy the whole
portion while it is executing. From these, the {dynamic locking, no
partition} combination must be ruled out, because dynamic lock-
ing strictly requires a dedicated partition. Further, both the {static
locking, no partition} (SN) and the {static locking, task-based par-
tition} (ST) schemes lock the cache contents chosen from all tasks
in the application throughout execution, but SN offers more flexi-
bility by not enforcing a concrete boundary. Thus ST is either infe-
rior or at most as good as SN; we eliminate ST from our evaluation.

Figure 1(a–d) illustrates the four eligible possibilities, applied
on a multi-core with 2 processing elements (PE1, PE2) and 4 in-
dependent tasks (T1, . . . T4). The scheduler assigns T1, T2 to PE1

and T3, T4 to PE2. T1 and T4 are each divided into two regions for
dynamic cache locking. We assume a 2-way set-associative shared
L2 cache with 8 sets.

Static Locking, No Partition (SN). This is the simplest scheme
where the cache content is kept unchanged throughout application
runtime (Figure 1(a)). A cache block can be assigned to any task
irrespective of the processor it is scheduled on. This scheme offers
maximum flexibility; however, its performance is restricted if the
code size of all the tasks together far exceeds the L2 cache size.
For static locking, we apply the cache content selection algorithm
presented in [9], which minimizes the system utilization.

Static Locking, Core-based Partition (SC). On a system with
preemptive scheduling, only memory blocks belonging to the “ac-
tive" tasks are useful at any time. When a task Ti is preempted
by Ti′ on one of the cores, we can replace Ti’s memory blocks in
the cache with those of Ti′ ’s. This comes at the cost of reloading
the cache at every preemption. This scheme requires the cache to
be partitioned among the cores, as each core has an active task at
any point of time and the cores invoke preemptions independently.
However, when a task runs on a core, it can occupy the entire parti-
tion for that core. In Figure 1(b), PE1 gets the first four sets; PE2

gets the rest. Initially T1 occupies PE1’s partition and T4 occupies
PE2’s partition. When T2 preempts T1, it loads and locks PE1’s
partition with its own content. We adapt a dynamic programming
based optimal partitioning algorithm [11] here.

Dynamic Locking, Task-based Partition (DT). Dynamic lock-
ing allows more memory blocks to fit in the cache via runtime load
and lock. The overhead is the cache reload cost every time the ex-
ecution of a task moves from one region to another. As different
tasks have different region formations, the cache is first partitioned
among the tasks. Each task then performs dynamic locking within
its partition. Figure 1(c) shows the scheme at work for T1 and
T4. In contrast to SC, reloading is performed intra-task. No inter-
task reloading is required as the partitioning prevents interference
among the tasks, thus preemptions incur no cache reload overhead.
However, if the application comprises a large number of tasks, such
rigid partitioning might not be effective. DT also suffers from the
same drawback as SN: tasks occupy cache blocks even when they
are inactive (preempted). We employ the dynamic locking algo-
rithm in [8] here.

Dynamic Locking, Core-based Partition (DC). In this most com-
plex scheme, reloading is supported within a task in addition to
reloading at preemption (see Figure 1(d)). Initially, the cache is
loaded with region 1 of T1 and region 1 of T4. As time progresses,
T1’s execution (on PE1) moves to region 2, which then replaces
the content of PE1’s portion of the cache. Later on, a preemp-
tion brings into the cache the content associated with T2. However,
when T1 resumes, it again brings in region 2 into the cache.

3. EXPERIMENTAL EVALUATION
We choose a dual-core multiprocessor for experimental evalua-

tion. Our pool of tasks comprises independent C programs chosen
from popular WCET benchmarks. From this pool, we construct
task sets of 4 tasks each. These task sets are chosen to exhibit dif-
ferent characteristics (region formation, code size, and WCET) that
affect the effectiveness of the locking and partitioning schemes, as
listed under each chart in Figure 2. Task periods are set such that
the utilization of each core is very close to 1, that is, the task set is
schedulable with maximum system utilization.

For both L1 and L2 caches, we choose 16 byte line size (2 in-
structions) and 2-way associativity. The size of L1 caches are fixed
at 128 byte per core. The small size is chosen so that memory
requirements are mostly served from the shared cache, enabling
better observation of the multiprocessing effect. Given the average
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Figure 1: Different locking and partitioning schemes for the shared L2 cache

code size of 4 KB per task, we vary the size of the shared L2 cache
from 1 KB to 4 KB. We assume L1 latency is 1 clock cycle, L2
latency is 4 cycles, and off-chip latency is 10 cycles.

For all task sets, we first select the L1 contents for each core, then
apply the four shared caching schemes SN, DT, SC and DC. This
gives us the set of locked memory blocks for each task. Note that a
task may not be allocated any space in the cache in certain schemes.
Based on these locked sets, we calculate the new WCET of each
task, taking into account any extra latency involved to reload the
cache contents. Finally, we compute the system utilization. Fig-
ure 2 shows the system utilization computed for each task set given
the various schemes and varied cache sizes. These values are nor-
malized against the system utilization without a cache.

Cache Partitioning Strategy. We have three possible choices for
cache partitioning as shown in Figure 1(e): no partition, task-based
partition, and core-based partition. The experimental results indi-
cate that the best partitioning choice strongly depends on the lock-
ing scheme (static or dynamic) used in conjunction and cache size.

First let us consider static cache locking. As mentioned before,
task-based partition (ST) is provably inferior compared to no parti-
tion (SN). This is due to the partitioning granularity of ST, which
requires the cache partition for a task to contain power of 2 sets. SN,
in contrast, allows complete flexibility and a task is free to occupy
as little as one cache block.

However, when it comes to no partition versus core-based par-
tition (SN versus SC), the situation is reversed; SC consistently
performs better than SN irrespective of cache size and application
characteristics. Recall that in SC, the entire partition for a core is
occupied only by the “active" tasks at any point of time. For SN,
in contrast, the “idle" tasks continue to occupy precious real-estate
in the shared cache. The downside of SC is of course the cache
partition reloading and locking cost at every preemption. However,
the results indicate that preemption cost does not over-shadow the
advantage of better cache utilization by SC.

The best partitioning strategy, when used in conjunction with dy-
namic cache locking scheme, depends heavily on cache size. Here
we are comparing DT versus DC). As dynamic locking allows bet-

ter cache utilization through intra-task reloading at region bound-
aries, DT becomes a competitive scheme. Its main advantage is
zero interference among the tasks, thus avoiding cache reloading at
task preemption. DC, on the other hand, offers more cache space
per task, thus performs better at small cache sizes. As cache size
increases, the difference between the two is negligible.

Static versus Dynamic Cache Locking. Here the best choice is
strongly influenced by application characteristics, cache size, and
the cache partitioning strategy.

Let us first consider core-based partition (SC versus DC). Clearly,
DC can better utilize the cache if the application has many hot
regions and the cache space is limited. The experiments validate
this observation with DC performing better for task sets with large
number of regions (C*RLT*). Even for those task sets, DC gives
diminishing returns as cache size increases. If the constituent tasks
do not contain profitable regions (C*RST*), then it is better to use
SC, which is a much simpler cache management scheme.

We now turn to task-based partition. Normally, we would com-
pare ST against DT, but as already discussed, ST is never better than
SN. We thus compare DT with SN instead. The trend is roughly the
same as SC versus DC: DT wins if the tasks have a number of hot
regions. However, there is one important difference. As we choose
a reload point within a task only if it is profitable to do so, DC
cannot perform worse than SC. We cannot make this claim for DT
over SN, as DT and SN use different schemes for cache partition-
ing. Indeed, SN enjoys much more flexibility in cache allocation
to tasks. The rigid partitioning of DT can completely over-shadow
the gain from reloading at region boundaries. Thus SN can per-
form better than DT when (1) tasks have very few regions (CSRSTL
and CSRSTS) or (2) some tasks get no space in the shared cache
(CSRLTL) with DT policy.

Guiding Design Principles. From the preceding discussion, we
can make the following general conclusions.

• SC is better than SN, which in turn is better than ST irrespec-
tive of cache size and application characteristics. In other
words, if the designer wants to use static cache locking, she
should use core-based partition.
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Figure 2: Effects of shared caching schemes SN, DT, SC, and DC on task sets with various characteristics

• DC is better than DT for small shared cache size. They are
comparable for large cache size; avoiding cache reloading at
preemption via task-based partitioning does not seem to af-
fect performance much. Core-based cache partition emerges
as overall winner independent of locking strategy.
• Dynamic cache locking is better than static cache locking

only for tasks with a large number of hot regions and for
smaller shared cache size. Moreover, designer should be ex-
tra careful to use task-based partition in conjunction with dy-
namic cache locking. If some tasks do not get any cache
allocation, the overall system utilization is severely affected.

4. RELATED WORK
The state of the art in the domain of predictable hard real-time

systems shows a lot of research effort in modeling dynamic cache
behavior for WCET estimation [5, 7, 13]. Static cache locking al-
gorithms to minimize system utilization are presented in [9], while
a dynamic cache locking algorithm is proposed in [8]. In the con-
text of data caches, [14] tries to balance the performance and pre-
dictability tradeoff introduced due to locking, by applying it only
on parts of the program that are difficult to analyze statically. All
these methods work on private caches. Hardware-based cache par-
titioning schemes have been presented in the literature; [4] allows
set partitioning while [3] proposes way-partitioning. The technique
in [11] attempts to minimize task utilization via dynamic program-
ming, while [12] aims to minimize cache miss rate. The partition-
ing technique in [10] allows prioritizing of critical tasks. Finally,
for shared caches, [1] proposes a cache-aware multi-core schedul-
ing scheme for real-time applications.

5. CONCLUSION
In this paper, we have explored predictable caching schemes

for shared memory multi-cores in the context of preemptive hard
real-time systems. In particular, we have developed and evalu-
ated various design choices for the shared L2 cache by exploiting

static/dynamic locking and task/core-based partitioning. We have
studied system utilization for the different choices with respect to
the characteristics of the task set and cache size. Our study reveals
some interesting guiding principles for real-time system designers
with respect to the memory hierarchy.
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