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ABSTRACT
Multimedia-dominated consumer electronics devices (such as cel-
lular phone, digital camera, etc.) operate under soft real-time con-
straints. Overly pessimistic worst-case execution time analysis tech-
niques borrowed from hard real-time systems domain are not par-
ticularly suitable in this context. Instead, the execution time distri-
bution of a task provides a more valuable input to the system-level
performance analysis frameworks. Both program inputs and un-
derlying architecture contribute to the execution time variation of a
task. But existing probabilistic execution time analysis approaches
mostly ignore architectural modeling. In this paper, we take the
first step towards remedying this situation through instruction cache
modeling. We introduce the notion of probabilistic cache states
to model the evolution of cache content during program execution
over multiple inputs. In particular, we estimate the mean and vari-
ance of execution time of a program across inputs in the presence of
instruction cache. The experimental evaluation confirms the scala-
bility and accuracy of our probabilistic cache modeling approach.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems.

General Terms
Measurement, Performance.

Keywords
Probabilistic Execution Time Analysis, Cache Modeling.

1. INTRODUCTION
Moore’s Law has moved the center of gravity of computing from

personal computers to numerous embedded computers hidden away
inside our everyday electronic products. The application domain of
embedded computing systems ranges from automotive, avionics,
health-care to the multimedia-dominated consumer electronics de-
vices. The safety-critical systems employed in automotive, avion-
ics, and health-care domain demand strong timing predictability in
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addition to the functional correctness. Traditional schedulability
analysis techniques can guarantee the satisfiability of timing con-
straints for such hard real-time systems consisting of multiple con-
current tasks. One of the key inputs required for the schedulability
analysis is the Worst-Case Execution Time (WCET) of each of the
tasks. WCET of a task on a target processor is defined as its maxi-
mum execution time across all possible inputs [16].

Multimedia-dominated consumer electronics devices, on the other
hand, are known as soft real-time systems. These systems require
the timing constraints to be satisfied most of the time. One can
employ WCET-driven schedulability analysis in the context of soft
real-time systems. But this approach leads to over-dimensioning
of the processor resources due to the over-estimations inherent in
static WCET estimation techniques. In particular, the complexity
of static WCET analysis techniques has grown significantly over
the years as embedded processors include performance enhancing
features such as cache, branch prediction, out-of-order pipeline, etc
[19]. While such complexities of WCET analysis have to be tol-
erated for hard real-time systems, systems with somewhat relaxed
timing constraints call for novel performance analysis approaches.

Probabilistic schedulability analysis [6, 9] is gaining popularity
in providing timing guarantees for soft real-time systems. Proba-
bilistic analysis techniques can exploit the timing flexibility of soft
real-time systems to offer better resource dimensioning while meet-
ing the quality of service (QoS) requirements. Most proposals in
probabilistic schedulability analysis assume probabilistic distribu-
tion of the execution times of the tasks. The distribution of exe-
cution times is also equally important in design space exploration,
compiler optimizations and parallel program performance predic-
tion for partitioning, scheduling, and load balancing [11, 18].

A naïve approach to derive this distribution through simulation
or execution of a large number of “representative inputs" is not suit-
able for the following reasons. First, it is extremely difficult, if not
impossible, to identify representative inputs for a complex program
with billions of possible inputs. If the inputs are not chosen appro-
priately, then the corresponding distribution can be completely dif-
ferent from the actual distribution. Second and most importantly,
the target platform may not be available during the design phase of
an embedded system, thereby leaving slow simulation for a large
number of inputs as the only choice. Thus static program analysis
techniques need to be explored in this context. However, despite its
importance, static analysis techniques to predict the distribution of
execution times remain largely unexplored. Most importantly, the
few static analysis approaches proposed either completely ignore
the micro-architectural effects or leave it as future work [7, 11, 18]

In this work, we take the first step towards incorporating the tim-
ing effects of architectural features in probabilistic execution time
analysis. In particular, we focus on the instruction cache in this pa-



susanc 0.03646
0.039688
0.108079
0.093093
0.03569
0.087792
0.084844
0.141846
0.042044
0.070547
0.011934
0.094021
0.200905
0.086051
0.021636
0.210363
0.140683
0.118715
0.063228
0.122345

0%
5%
10%

15%
20%
25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inputs

M
is

s 
R

at
e

Figure 1: Variation in instruction cache miss rates for susan-c (cache
configuration: 32 sets, 32-byte block, 2-way associativity).

per as (1) it is most commonly used in embedded processors, and
(2) the variation in execution time from instruction cache effects
can be quite large. For example, Figure 1 shows the wide vari-
ation in instruction cache miss rate of susan-c benchmark that
translates to large variation in the execution time. Ignoring the in-
struction cache effect may produce a distribution that is far from the
actual distribution. More concretely, our contribution in this paper
is modeling the instruction cache timing effects in static estimation
of the execution times distribution of a program. Ideally the static
analysis technique should derive the probability distribution func-
tion (pdf) of the execution time. However, such elaborate analysis
will be, in general, computationally expensive and often of little
practical value. Instead, we characterize the execution-time distri-
bution through mean and variance. If necessary, our work can be
easily extended to include additional statistical moments (such as
skewness and kurtosis) so that the distribution can be completely
reconstructed [11].

Motivating Example. To illustrate the difficulty of modeling the
instruction cache for probabilistic execution time analysis, let us
consider the following program fragment.

for (i=1; i<=n; i++)
if (a[i] != b[i])

c[i] = a[i] * b[i]; /* S1 */
else

c[i] = a[i] / b[i]; /* S2 */

For the purpose of this example, let us ignore the execution time of
the for and if conditions. Also let p be the truth probability of the
branch condition a[i] != b[i]. Then the expected execution
time of this program fragment per iteration will be estimated by
existing techniques as E[T ] = p × TS1 + (1 − p) × TS2 where
TS1 (TS2) is the constant execution time of statement S1 (S2). This
assumption of constant execution time for each instruction fails in
the presence of instruction cache, which has global timing effects.

In the presence of instruction cache, let us assume S1 and S2
conflict with each other for the same cache block. Now the execu-
tion time depends on whether S1 (S2) incurs cache miss, which in
turn depends on the cache content after the previous iteration. For
any loop iteration i > 1, the cache contains S1 with probability p
and S2 with probability 1 − p at the end of the previous iteration.
Therefore, S1 (S2) will incur cache miss with probability 1 − p
(p). Thus the expected execution time per iteration now changes to
E[T ] = p× (TS1 + (1− p)× δ) + (1− p)× (TS2 + p× δ) where
δ is the cache miss penalty.

It is clear from the previous example that the cache content at
any program pointP depends on the probability of execution of the
various paths leading to P . Thus we introduce the notion of proba-
bilistic cache states to capture the probability of the different cache
contents at any program point. Our analysis technique then pro-
ceeds by transforming the probabilistic cache states as we traverse
the control flow graph of the program. Once we compute the prob-
abilistic cache states at all the program points, we can estimate the
cache miss probability of any code block. Our experimental results
with a number of embedded benchmarks confirm that the model
is accurate in estimating the miss probability as well as mean and
variance of execution time in the presence of instruction caches.

2. RELATED WORK
A general framework for determining average program execu-

tion time and their variance has been presented by Sarkar [18]. A
static analysis framework to obtain probabilistic distributions of ex-
ecution times has been proposed by David et al. [7]. Based on the
assumption that external variables (input data) are independent and
their probability distributions are known, they derive the execution
time and probability of each path through the program. Gautama
et al. [11] presents a program performance prediction approach. In
their work, loop bounds, branch probabilities, and execution time
of basic blocks all are characterized by their statistical moments.
The objective of these works is to predict the statistical moments of
performance distribution or even full probability distribution func-
tion. However, architectural features such as caches have not been
modeled so far. In other words, the execution time variations are
only from program level (variation in loop bounds, branch direc-
tion, etc.) and not from the architecture. Finally Bernat et al. [5]
propose a WCET analysis technique (without architectural model-
ing) that estimates the WCET with a high probabilistic guarantee.
In contrast, we are interested in the entire distribution rather than
just the tail end of the distribution.

Instruction caches have been modeled for WCET estimation in
hard real time system. Alt et al. [1] use abstract interpretation to
model the cache behavior, while Li et al. [13] use cache conflict
graph and propose an Integer Linear Programming(ILP) solution.
Another technique based on categorization of cache accesses is pro-
posed in [2, 15]. Lim et al. models instruction cache using timing
schema in [14]. As these techniques have been developed in the
context of WCET analysis, the instruction cache is modeled for the
worst-case scenario. Given an address trace, [4, 17] propose ana-
lytical models to compute cache miss probability. In contrast, ours
is a static analysis method that works on the program control flow
graph to generate cache miss probability across multiple inputs and
does not require address traces.

3. PROBABILISTIC TIMING ANALYSIS
The inputs to our analysis are the executable program code, cache

parameters and program statistical information. We assume that the
statistical information about the loop bounds and the truth prob-
ability of the conditional branches are provided as inputs to our
analyzer. This information can be derived through either program
analysis [7], user annotation, comprehensive profiling, or a combi-
nation of these approaches, which is beyond the scope of this paper.
In the following, we use E[X], V ar[X], Cov[X,Y ], Pr (where
X and Y are random variables) to represent the expected value,
variance, covariance, and probability, respectively.

Given a program, we first construct the loop-procedure hierarchy
graph (LPHG) for the whole program [12]. The LPHG represents
the procedure call and loop nest relations in the application. We
assume that the loop or procedure body corresponds to a directed
acyclic graph (DAG). The nodes of a DAG are the basic blocks
within that loop or procedure. If a loop (procedure) contains other
loops (procedures) within its body, then these inner loops (proce-
dures) are represented by dummy nodes. The control flow graph
within a loop is transformed such that every loop has a loop pre-
header and a post-loop node. In addition, there exists a unique start
and end basic block corresponding to each such DAG (Figure 2).

Given a Basis block B, its execution frequency NB is defined
relative to the start basic block of the innermost loop or procedure
it is in. Given the truth probability of the conditional branches, it
is easy to compute E[NB ]. For control flow edge B′ → B, the
edge frequency f(B′ → B) is defined as the probability that B is
reached from B′. Again edge frequencies can be easily derived by



propagating the branch truth probabilities. As shown in Figure 2,
f(B3 → B4) can be obtained from branch truth probability. By
definition of edge frequency,

∑
e∈In(B) f(e) = 1, where In(B)

represents the incoming edges of B.
For each loop L, we define both relative loop bound NL and ab-

solute loop bound N ′L. Relative loop bound is the execution count
of the loop in one execution of its preheader, while absolute loop
bound is the total execution count of the loop in one complete exe-
cution of the program. For a procedure L, we only define the total
number of invocations N ′L. Relative loop bound is used to derive
the probabilistic cache states. Absolute loop bound is used to com-
pute program execution time. Usually the loop bound of inner loop
and outer loop are not independent. The expected value of loop
bounds(E[NL], E[N ′L]), the variance of loop bounds(V ar[N ′L])
and the covariance between two loop bounds (Cov[N ′L, N

′
L′ ]) are

input to our analyzer.

Mean Execution Time. Let us use L to represent the set of loops
and procedures of the program. Let us use random variable T to
represent the program execution time. Then the mean execution
time of the program can be defined as

E[T ] =
∑
L∈L

E[TL] =
∑
L∈L

(
E[N ′L]× E[tL]

)
(1)

where TL is the total execution time and tL is the execution time
per iteration of L. Let B be the set of basic blocks (excluding the
dummy nodes for inner loops and callee procedures) in L and tB
be the execution time of basic block B per execution. Then

E[tL] =
∑

B∈B
E[NB ]× E[tB ] (2)

As E[N ′L] and E[NB ] are known, the computation of E[T ] boils
down to the computation of E[tB ].

Execution Time Variance. The variance can be computed as [8]

V ar[T ] =
∑
L∈L

V ar[TL] +
∑∑

L,L′
Cov[TL, TL′ ] (3)

V ar[TL] = V ar[N ′L]× V ar[tL] + E[N ′L]2 × V ar[tL]
+E[tL]2 × V ar[N ′L]

(4)

By assuming V ar[tB ] = 0 and ignoring the covariance between
basic blocks, V ar[tL] can be simplified as

V ar[tL] =
∑

B∈B
V ar[NB ]× E[tB ]2 (5)

The covariance between TL and TL′ can be approximated by

Cov[TL, TL′ ] = E[tL]× E[tL′ ]× Cov[N ′L, N
′
L′ ] (6)

V ar[N ′L], V ar[NB ] and Cov[N ′L, N
′
L′ ] all are known statistical

information. Therefore, if E[tB ] can be computed, both E[T ] and
V ar[T ] can be easily estimated. In the following, we illustrate how
to estimate E[tB ] based on our probabilistic cache modeling.

4. CACHE MODELING

Cache Terminology. A cache memory is defined in terms of four
major parameters: block or line size L, number of sets K, associa-
tivity A, and replacement policy. The block or line size determines
the unit of transfer between the main memory and the cache. A
cache is divided intoK sets. Each cache set, in turn, is divided into
A cache blocks, where A is the associativity of the cache. For a
direct-mapped cache A = 1, for a set-associative cache A > 1,

and for a fully associative cache K = 1. In other words, a direct-
mapped cache has only one cache block per set, whereas a fully-
associative cache has only one cache set. Now the cache size is
defined as (K × A × L). A memory block m can be mapped to
only one cache set given by (m modulo K). For a set-associative
cache, the replacement policy (e.g., LRU, FIFO, etc.) defines the
block to be evicted when a cache set is full.

Assumptions. Due to space limitations, we will limit our discus-
sion to a fully associative cache. A set-associative cache with asso-
ciativity A can be easily modeled by modeling each cache set as a
fully associative cache containing A blocks. Let Mi denote the set
of all the memory blocks that can map to the ith cache set. Clearly⋂K−1

i=0 Mi = φ. Thus, there is no interference between the cache
sets and they can be modeled independently.

In this paper, we assume LRU (least recently used) replacement
policy, where the block replaced is the one that has been unused
for the longest time. However, the technique presented in this work
is general enough that it can be easily used for other replacement
policies such as FIFO (first-in first-out).

More concretely, in the following, we consider a fully-associative
LRU cache with A cache blocks and the program store as a set of
memory blocks M . To indicate the absence of any memory block
in a cache line, we introduce a new element ⊥.

4.1 Concrete Cache States
Let us first formally define the concrete cache states and the op-

erations involving concrete cache states. These definitions will be
used later to introduce the notion of probabilistic cache states.

DEFINITION 1 (Concrete Cache States). A concrete cache state
c is a vector 〈c[1], . . . , c[A]〉 of lengthA where c[j] ∈M ∪{⊥}. If
c[j] = m, thenm is the jth most recently used memory block in the
cache. Ω denotes the set of all possible concrete cache states. We
also define a special concrete cache state c⊥ = 〈⊥, . . . ,⊥〉 called
the empty cache state. Figure 2 shows some of the concrete cache
states corresponding to the loop body.

DEFINITION 2 (Cache Hit). Given a concrete cache state c ∈
Ω and a memory access m ∈M

hit(c,m) =

{
1 if ∃j (1 ≤ j ≤ A) s.t. c[j] = m
0 otherwise

DEFINITION 3 (Concrete Cache State Update). We define �

as concrete cache state update operator. Given a concrete cache
state c ∈ Ω and a memory block m ∈M ∪{⊥}, c�m defines the
cache state after memory access m following LRU policy.

c�m =


c, if m =⊥
c′, where c′[1] = m;

c′[j] = c[j − 1], 1 < j ≤ k
c′[j] = c[j], k < j ≤ A if ∃k s.t. c[k] = m

c′, where c′[1] = m;
c′[j] = c[j − 1], 1 < j ≤ A otherwise

4.2 Probabilistic Cache States
At any program point, the concrete cache state is dependent on

the program path taken before reaching this program point. In gen-
eral, a program point can be reached through multiple program
paths leading to a number of possible cache states at that point. We
have to model the probability of each of these cache states in prob-
abilistic execution time analysis. For this purpose, we introduce the
notion of probabilistic cache states.

DEFINITION 4 (Probabilistic Cache States). A probabilistic
cache state C is a 2-tuple: 〈C,X〉, where C ∈ 2Ω is a set of con-
crete cache states and X is a random variable. The sample space
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Figure 2: A loop with pre-header and post-loop node. The expected
loop boundE[NL] = N and the truth probability of the branch at B1 is
0.5. The illustration is for a fully-associative cache with 4 blocks. m0–
m4 are the memory blocks. Probabilistic cache states, merging and
update operation are shown for B4 in the first loop iteration starting
with empty cache state Cin

L = C⊥ at loop pre-header.

of the random variable X is the set of all possible concrete cache
states Ω. Given a concrete cache state c, we define Pr[X = c] as
the probability of the cache state c in C. If c /∈ C, then Pr[X =
c] = 0. By definition,

(∑
c∈Ω Pr[X = c]

)
= 1. Finally, we define

a special probabilistic cache state C⊥ denoting the empty cache
state. That is C⊥ = 〈{c⊥}, X〉, where Pr[X = c⊥] = 1.

DEFINITION 5 (Cache Hit/Miss Probability). Given a prob-
abilistic cache state C = 〈C,X〉 and a memory blockm, the cache
hit probability PHit(C,m) of memory access m is

PHit(C,m) =
∑

c∈C,hit(c,m)=1

Pr[X = c]

In other words, we add up the probability of all the concrete cache
states c ∈ C that contain the memory block m. The cache miss
probability can now be defined as

PMiss(C,m) = 1− PHit(C,m)

DEFINITION 6 (Probabilistic Cache State Update). We define
� as the probabilistic cache state update operator. Given a prob-
abilistic cache state C = 〈C,X〉 and an access to memory block
m ∈M , C �m defines the updated probabilistic cache state.

C �m = C′ where C′ = 〈C′, X′〉
C′ = {c / m|c ∈ C}
Pr[X′ = c′|c′ ∈ C′] =

∑
c∈C,c′=c�m

Pr[X = c]

For example, in Figure 2, the probabilistic cache state at the end
of basic block B4 after the first loop iteration (starting with empty
cache state) consists of two concrete cache states c3 and c4 with
equal probability 0.5. The cache miss probability of memory blocks
m1–m3 in this probabilistic cache state is 0.5 whereas the miss
probability of m0 and m4 are 0.

4.3 Analysis of Loops
In this subsection, we describe cache analysis for a loop in iso-

lation, i.e., we assume an empty cache state at the loop entry point.
Subsequently, we will extend this analysis to the whole program. In
the following, we consider the control flow graph (CFG) to be a di-
rected acyclic graph (DAG), representing the body of the loop. We
first perform the analysis on the DAG to model cache behavior for
a single iteration of a loop. This will be followed by probabilistic
cache state modeling across iterations.

4.3.1 Analysis of DAG
Let Cin

B and Cout
B be the incoming and outgoing probabilistic

cache states of a basic block B. Similarly, Cin
L and Cout

L denote
the incoming and outgoing probabilistic cache states of a loop L.
Let start and end be the unique start and end basic blocks of the
DAG corresponding to the loop body. Then Cin

L = Cin
start and

Cout
L = Cout

end. As we are analyzing the loop in isolation at this
point, Cin

L = C⊥. We relax this constraint in the next section.
Let genB = 〈m1, . . . ,mk〉 be the sequence of memory blocks

accessed within a basic block B. Then

Cout
B = Cin

B �m1 � . . .�mk (7)

That is, the outgoing probabilistic cache state of a basic block can
be derived by repeatedly updating the incoming probabilistic cache
state with the memory accesses in B. Now in order to generate the
incoming cache state of B from its predecessor cache states, we
need to define the following new operator.

DEFINITION 7 (Probabilistic Cache States Merging). We de-
fine

⊕
as the merging operator for probabilistic cache states. It

takes in n probabilistic cache states Ci = 〈Ci, Xi〉 and a cor-
responding weight function w as input s.t.

∑n
i=1 w(Ci) = 1. It

produces a merged probabilistic cache state C as follows.

⊕
(C1, . . . , Cn, w) = C where C = 〈C,X〉, C =

n⋃
i=1

Ci,

Pr[X = c|c ∈ C] =
∑
∀i,c∈Ci

Pr[Xi = c]× w(Ci)

In other words, the concrete states in C is the union of all the con-
crete cache states in C1, . . . , Cn. The probability of a concrete
cache state c ∈ C is a weighted summation of the probabilities of
c in the input probabilistic cache states.

Let in(B) define the set of predecessor basic blocks. Then, we
can derive the incoming probabilistic cache state of B by employ-
ing the merging operation

⊕
on the outgoing probabilistic cache

states of in(B). We define the weight function w as w(Cout
B′ ) =

f(B′ → B), where B′ ∈ in(B) is a predecessor of block B.
Then given in(B) = {B′, B′′, . . .}

Cin
B =

⊕
(Cout

B′ , Cout
B′′ , . . . , w) (8)

Figure 2 shows the merging operator at the input of B4. There
are two concrete cache states c1 and c2 at the entry of B4. As
the two incoming edges to B4 have equal probability, the resulting
probabilistic cache state at the entry of B4 contains c1 and c2 with
equal probability. This probabilistic cache state is updated with
memory block m4 inside B4 to obtain the concrete cache states c3
and c4 with equal probability at the end of B4.

4.3.2 Mean Execution Time of Basic Block
Recall that genB = 〈m1, . . . ,mk〉 is the sequence of mem-

ory blocks accessed within a basic block B. Now let us define k
random variables Y1, . . . , Yk corresponding to the memory blocks
m1, . . . ,mk in genB . Yi denotes the cache hit/miss event for the
access of memory block mi. Now Yi can be modeled as a random
variable with Bernoulli distribution by assuming Yi = 1 if mi is a
cache miss and Yi = 0 otherwise.

Pr[Y1 = 1] = PMiss(Cin
B ,m1)

Pr[Yi = 1] = PMiss(Cin
B �m1 . . .�mi−1,mi), 1 < i ≤ k

Pr[Yi = 0] = 1− Pr[Yi = 1], 1 ≤ i ≤ k

By definition of Bernoulli distribution, E[Yi] = Pr[Yi = 1]. Let
eB be a constant denoting the execution time of basic block B as-
suming all cache hits. As defined in Section 3, tB is the random



variable denoting the execution time of B when the cache is mod-
eled. Then

E[tB ] = eB +

(
k∑

i=1

E[Yi]

)
× δ (9)

where δ is a constant denoting the cache miss penalty.

4.3.3 Extension to Loop Iterations
In the previous subsection, we have derived the incoming and

outgoing probabilistic cache states of each basic block for a sin-
gle iteration of the loop body starting with the empty cache state
Cin

L = C⊥. However, for a loop iterating multiple times, the in-
put cache state at the start node of the loop body is different for
each iteration. More concretely, let us add the subscript 〈n〉 for the
nth iteration of the loop. Then Cin

start〈n〉 = Cout
end〈n−1〉 for n > 1.

However, in order to compute Cin
start〈1〉, . . . , Cin

start〈N〉 as shown in
Figure 2, where N = E[NL] is the expected loop bound, we do
not need to traverse the DAG N times. Instead, we introduce two
new operators.

DEFINITION 8 (Concatenation of Concrete Cache States).
Given two concrete cache states c1, c2

c1 � c2 = c where c = c1 � c2[A] . . .� c2[1]

DEFINITION 9 (Concatenation of Probabilistic Cache States).
Given probabilistic cache states C1 = 〈C1, X1〉 and C2 = 〈C2, X2〉
C1
⊙
C2 = C where C = 〈C,X〉

C = {c|c = c1 � c2, c1 ∈ C1, c2 ∈ C2}
Pr[X = c] =

∑
c1∈C1,c2∈C2,c=c1�c2

(Pr[X1 = c1]× Pr[X2 = c2])

Let us assume the execution of two program fragments each start-
ing with an empty cache state. The probabilistic cache state after
the execution of the first and second program fragments are C1 and
C2, respectively. Then the probabilistic cache state after execution
of the two program fragments sequentially is C1

⊙
C2.

Now we can compute the outgoing probabilistic cache state of
a loop L for each iteration by applying the

⊙
operator. First, we

note that Cin
start〈1〉 = Cin

L = C⊥. Then for iteration n > 1

Cin
start〈n〉 = Cout

end〈n−1〉
Cout

end〈n〉 = Cin
start〈n〉

⊙
Cout

end〈1〉
(10)

The final probabilistic cache state after N = E[NL] iterations
starting with empty cache state Cin

L = C⊥, is denoted as Cgen
L

where
Cgen

L = Cout
end〈N〉 (11)

From Equation 9, the expected outcome of a cache access E[Yi]
is dependent on the input probabilistic cache state Cin

B of the corre-
sponding basic blockB, which in turn is dependent on Cin

start〈n〉 of
the loop L. Then the expected number of cache misses for memory
block mi (corresponding to Yi) is the summation of the expected
cache miss probabilities over N = E[NL] iterations. But comput-
ing these probabilities for each memory block in each iteration is
computationally expensive and is equivalent to complete loop un-
rolling.

Instead, we observe that we only need to compute an “aver-
age" probabilistic cache state Cavg

L at the start node of the loop
body. This captures the input cache state of the loop over N itera-
tions. That is, Cavg

L = 〈C,X〉 is defined in terms of Cin
start〈n〉 =

〈C〈n〉, X〈n〉〉 for 1 ≤ n ≤ N as follows.

C =
N⋃

n=1

C〈n〉

Pr[X = c|c ∈ C] =
1

N

N∑
n=1

Pr[X〈n〉 = c]

This can be alternatively defined as

Cavg
L = ⊕(Cin

start〈1〉, . . . , C
in
start〈N〉, w) (12)

where w(Cin
start〈n〉) = 1

N
. Now, in Section 4.3.1, we simply re-

place Cin
start = C⊥ with Cin

start = Cavg
L . The rest of the analysis for

the DAG remains unchanged.
The computation of Cavg

L and Cgen
L for direct mapped cache are

simpler. In direct mapped cache, the concrete cache state will not
change after the first iteration. Probabilistic cache state could be
changed only if {⊥} exists in it. Thus, closed form expressions
exist for computing the probability of concrete cache states in Cavg

L

and Cgen
L , which we do not show due to space constraints.

More importantly, for any cache configuration, the operator
⊙

need not be invoked E[NL] times in practice. The probabilistic
cache states converge very quickly for most loops. 70% of the
cache sets converge after the second iteration for all associativity
settings (for all loops in all our benchmarks) and almost 80% cache
sets converge within 10 iterations.

4.4 Analysis of Whole Program
In this section, we first show how to compute Cgen

L and Cavg
L for

all the loops and then present how to compute the “average" proba-
bilistic cache state for each basic block in the context of the whole
program. We first traverse the LPHG in bottom-up fashion, i.e., we
start with the innermost loops/procedures and compute Cgen

L and
Cavg

L for all such loops/procedures. Next, we replace the inner-
most loops/procedures with “dummy" nodes in the DAG of the en-
closing loop/procedure. While traversing the DAG of the enclosing
loop/procedure, special care is taken for the dummy nodes. Let Cin

L

be the input cache state for dummy node L during traversal of the
DAG. Then we treat the dummy node as a black box and compute
the output cache state of the dummy node as Cout

L = Cin
L

⊙
Cgen

L .
At the end of this bottom-up traversal process, we reach the root
node (main procedure). Now we perform a top-down traversal to
compute the cache state at each basic block in the context of the
whole program. Suppose L is a dummy node in main with input
cache state Cin

L and start node start. Then we traverse the DAG of
L starting with Cin

start = Cin
L

⊙
Cavg

L and compute the probabilis-
tic cache state at each node of the DAG. This top-down process
continues till we traverse all the loops/procedures. At this point,
we have computed the “average" probabilistic cache state for each
basic block in the context of the whole program. We can now use
Equation 9 to compute mean execution time for each basic block.

5. EXPERIMENTAL EVALUATION
In order to evaluate the accuracy of our probabilistic cache mod-

eling, we should ideally compare our estimation result with the ac-
tual mean and variance of execution time of a program, based on
the given statistical information. However, given the statistical in-
formation, there is no way to determine the actual mean and vari-
ance (that is the exact problem we are trying to solve). Therefore,
we decide to compare our estimation results to the results obtained
from simulation. Given an application, we select multiple inputs
and profile the application to collect the statistical information we
state before. By simulating the application with multiple inputs,
we could get the actual mean and variance of execution time across
these multiple inputs. Then we apply our analysis technique based
on the statistical information of these multiple inputs. Finally, we
compare our estimation with the simulation results. We evalu-
ate our modeling technique with nine benchmarks from MiBench.
We provide for each benchmark multiple inputs with high variabil-
ity [10]. We use SimpleScalar toolset [3] for the experiments. The
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Figure 3: Est_mean (est_std) are estimated mean (standard deviation) and sim_mean (sim_std) are simulated mean (standard deviation). Est_mean
(est_std) should be compared to sim_mean (sim_std). S, B, A denote number of cache sets, block size, associativity respectively.
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profiling is done by sim-profile and cache simulation is done by
sim-cheetah. Our estimator first disassembles the executable to
construct CFG and LPHG, and then proceeds with the estimation.

Standard deviation is the square root of variance that measures
the average deviation from mean. In the experiments we compare
our estimated mean (standard deviation) to simulated mean (stan-
dard deviation). We fix a cache block size for each benchmark, but
consider different number of cache sets (8,16,32) and associativity
(1,2,4,8). So a total 12 cache configurations are simulated for each
benchmark. As our modeling is focused on the instruction cache,
we assume constant execution time for each basic block in the ab-
sence of caches. Figure 3 shows the mean and standard deviation of
the total number of cache misses corresponding to simulation and
estimation. Due to space consideration, we only show the values
for three cache configurations per benchmark. The results are sim-
ilar for other configurations. It is clear that our modeling is quite
accurate in estimating both the mean and the standard deviation.

As for execution time, our estimation is accurate for both mean
and standard deviation of execution time. Figure 4 shows our rel-
ative estimation error compared to simulation for all benchmark,
cache configuration pairs. The average relative error across all
the benchmark, cache configuration pairs are 0.05% and 0.7% for
mean and standard deviation, respectively. Our estimation tech-
nique is also very fast and robust w.r.t cache configuration and
benchmark size. The total runtime to estimate mean and variance
for all the benchmarks and configurations is about 34 seconds on a
3.0GHz Pentium 4 CPU with 2GB memory.

6. CONCLUSION AND FUTURE WORK
This paper presents, for the first time, an approach to instruction

cache modeling in probabilistic timing analysis. We introduce the
notion of probabilistic cache states and define operators to manip-
ulate probabilistic cache states at control flow merge points, across
loop iterations, and within the whole program. Finally, we show
how to compute the cache miss probability of a memory block at

any program point given the probabilistic cache states. This al-
lows us to include the variation due to cache behavior in estimating
the execution time distribution of a program. Our experimental re-
sults indicate that the cache modeling presented is both accurate
and scalable. In future, we plan to consider other architectural fea-
tures (e.g., pipeline, branch predictor) in probabilistic modeling.
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