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Abstract

3D models have become an essential element of multimedia applications because
they provide visual effects that permit interactive exploration. As in other media types,
efficient compression of 3D models is essential to reduce the associated storage and
processing cost. Triangle mesh is the prevailing geometric representation for 3D scene
models. Despite significant research on compression algorithms for triangle mesh in
recent years, most 3D model editing tools still manipulate triangle meshes in their
uncompressed representation. This paper presents a novelcompression-domain mesh
editing (CDE) technique, which supports an efficient lossless mesh compression al-
gorithm called BFT and allows 3D models to be directly edited based on the BFT-
compression form. Experimental results from real-world complex 3D models run-
ning on a fully operational CDE prototype demonstrate that compared to the editing
of uncompressed triangle mesh, the CDE technique achieves a reduction in run-time
memory requirements during the editing process by a factor of 14, while keeping the
average edit operation latency under 2 msec regardless of the size of the 3D models.

1 Introduction

Triangle mesh, a connected set of triangles, is the prevailing representation of 3D graphics
models. The increasing complexity of 3D graphics models translates to escalating mesh
size, which often times could overwhelm the underlying hardware’s capability. The general
solution to this problem is to compress 3D models as much as possible and to keep them in
the compressed form for as long as possible. In recent years, there has been a considerable
amount of research on fast and efficient compression/decompression algorithms for triangle
mesh. However, the focus of these research has invariably been on minimizing the size of
the compressed triangle mesh only. The issue of keeping triangle mesh in the compressed
form as long as possible is largely left unexplored. In many cases, when applications such
as authoring or simplification tools manipulate triangle mesh, it is desirable to operate
directly on their compressed representation to reduce the total memory footprint. However,
to the best of our knowledge, all existing triangle mesh editing tools available today work on
triangle mesh representations that maintain explicit information about the vertices, edges,
and triangles. Such representations are usually too memory-intensive, resulting in virtual
memory thrashing and sometimes even system crash.
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In this paper, we present a novel compression-domain triangle mesh editing technique
(CDE) that is able to keep triangle mesh-based 3D models in the compressed form across
various types of editing operations. CDE allows editing operations to be performed directly
on a compressed mesh representation. More concretely, a CDE editor takes as input a com-
pressed mesh representation and the requested editing operations, and generates the edited
version of the compressed meshwithout explicit decompression/recompression of the entire
mesh. CDE provides two major advantages: (1) the editing tool does not need to maintain
a decompressed representation in memory, thereby reducing the memory consumption in
the editing process and (2) it improves editing interactivity since a compressed mesh can
be rendered faster than its uncompressed counterpart [11] by exploiting the vertex/edge
sharing property of triangle meshes.

2 Related Work

There has been a considerable amount of research on compressing the topological infor-
mation of triangle mesh. The pioneering work on mesh compression was done by Deer-
ing [3]. This work has been followed by several more efficient triangle mesh represen-
tations [2, 13, 7, 10, 12, 14]. In triangle mesh editing, previous research has mostly fo-
cused on developing data structures for easier manipulation of topological information in
the triangle mesh such as Winged-Edge [1], Split-Edge [4], and Hybrid-Edge [8] model.
Hierarchical/multi-resolution editing allows an user to modify a model at different reso-
lutions. The different approaches of hierarchical editing include H-splines [6], wavelet
representations [5], and subdivision surfaces [15]. The CDE technique proposed in this
paper is the first known compression-domain processing example for 3D models in general
and for triangle mesh in particular.

3 Triangle Mesh Compression

In this section, we briefly describe theBreadth-First Traversal (BFT)[10, 9] algorithm
for triangle mesh compression. A triangle mesh is represented withgeometry(a set of
vertex positions, color, and other attributes) andconnectivity(the incidence relations among
vertices, edges, and triangles). Traditionally, each triangle in a triangle mesh is represented
independently in terms of the geometry of its three vertices. Triangle mesh compression
consists of (1) lossless connectivity compression and (2) lossy geometry compression. BFT
is a connectivity compression algorithm. However, any efficient geometry compression
algorithm can be trivially integrated with the BFT algorithm.

The basic idea of the BFT algorithm is to traverse a triangle mesh in a breadth-first
order from aseed triangle. The vertices of the seed triangle form afrontier. A frontier
is a circular buffer of vertices. BFT visits each edge — consisting of two consecutive
vertices — of the frontier and enumerates the unvisited triangle, if any, that is incident on
that edge by specifying itsthird vertex. At the same time, it incrementally modifies the
frontier to delete the vertices whose incident triangles have all been visited, and to add the
new vertices. BFT continues to enumerate the triangles and modify the frontier till either
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Figure 1:BFT compression algorithm

there is only one vertex left in the frontier, or a frontier left withn vertices has not been
modified forn consecutive steps. Figure 1 illustrates this traversal process with a small
triangle mesh. The shaded portion in the figure is a hole in the triangle mesh. The bold
lines indicate the frontier. The ordering of the triangles represents the order in which the
triangles are enumerated during the BFT traversal.

The edge for which BFT attempts to find an incident and not-yet-visited triangle is
called thecurrent edge. A current edge for which BFT cannot find any unvisited triangle,
because either it is a boundary edge or both of its incident triangles have been visited, is
called anull edge. The third vertex used to form a triangle with the current edge can be
represented either explicitly in terms of its geometric coordinates or implicitly as a pointer
to some vertex in the frontier, specified as an offset from one of the current edge vertices.

Given an input triangle mesh, BFT performs the following two steps: (1) it pre-processes
the triangle mesh to find out the visiting order of the triangles; and (2) it represents the mesh
as a variable-length command sequence, where each command encodes either a new trian-
gle in terms of the corresponding third vertex or the presence of a null edge. We store
geometry data for all the vertices separately as a vertex array sorted in the order in which
theyfirst appear in the BFT mesh. The BFT decompression algorithm dynamically recon-
structs the frontier of the BFT traversal and enumerates triangles on the frontier according
to the information encoded in the command sequence.

4 Compression-Domain Mesh Editing

When a 3D mesh is imported for editing, the CDE editor first builds meta-data to facilitate
the mapping between user-clicked regions and the underlying geometric objects. Then it
allows users to interactively edit the compressed mesh and visualize the corresponding ren-
dered image until the result is satisfactory. Periodically the system also needs to recompress
the edited mesh to make up for the compression efficiency lost during editing.

3



containing vertex

3rd iteration
2nd iteration
1st iteration

First Apperance
of Vertex

Figure 2:Distance between a vertex and its incident edges and faces in a BFT mesh.

4.1 Mesh Edit Primitives

CDE supports a set of fundamental edit primitives that are representative of those that
standard 3D model editors support: (1)move-vertex(v):change the coordinate of v (2)
delete-vertex(v):delete v and its incident faces, (3)delete-edge(e):delete e and its incident
faces, (4)delete-face(f): delete face f but do not delete the constituent edges of f, and (5)
add-face(v1, v2, v3):add a new face consisting of vertices v1, v2, and v3.

The success of a CDE editor is dependent on an efficient implementation of each funda-
mental edit primitive in compression domain. Any efficient implementation should be able
to (1) quickly find the portion of the BFT mesh that needs to be modified, and (2) locally
modify/edit that portion to generate the BFT representation of the resulting mesh.

4.2 Where to Edit

The portion of the BFT mesh where an edit primitive operates is called thetarget mesh
point. A naive way to implement an edit operation is to decompress the input BFT mesh
up to the target mesh point, and then make the necessary modifications. But for each edit
primitive, this implementation takes time proportional to the distance of the target mesh
point from the beginning of the BFT mesh which may become prohibitively slow if the
target mesh point corresponds to the end of the BFT command stream. To address this
problem, CDE uses a data structure called thelocation map, which maps an edit primitive
to a position close to the corresponding target mesh point. The position returned by the
location map is thesource mesh point. Given an edit operation, CDE quickly homes in to
the target mesh point by performingincremental decompressionof the edited mesh from
the source mesh point.

Location Map Because the BFT compression algorithm performs a breadth-first traver-
sal of the input mesh,the BFT command that enumerates an edge or a face that contains
a particular vertex appears at most a few iterations away from the first appearance of that
vertex in the command stream. Figure 2 illustrates this observation. To identify the first ap-
pearance of a vertex, CDE divides a BFT command stream into multiple non-overlapping
command substreams. The location map is an array with each entry corresponding to a
command substream. Figure 3 shows the location map’s structure. Each entry in the lo-
cation map contains three fields: (a) Location: location of the first command in the sub-
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Figure 4:Incremental decompression: The dotted lines indicate the dummy frontier with 10
vertices. All new vertices encountered in incremental decompression have valid attributes.

stream, (b) Frontier-size: size of the frontier immediately before the first command in the
substream, and (3) Vertex-index: index of the first vertex that is explicitly represented in
the substream.

Note that the vertex array is sorted in the order in which the vertices appear in the
command stream. The location map is sorted with respect to the location field; so it is also
sorted with respect to the vertex-index field. Given a vertex index, CDE performs a binary
search through the location map to identify the command substream that contains the first
appearance of the vertex. For a vertex edit operation, CDE looks up the location map with
the vertex index. For an edge (face) edit operation, BFT uses the smallest vertex index of
the edge (face) as the input to location map lookup.

Incremental Decompression Decompression of a BFT command depends on all the pre-
vious commands in the stream. However, with the help of thefrontier-sizefield in the loca-
tion map, it is possible to restrict decompression to the command substream that contains
the BFT command in question. The idea is to form adummy frontiercontaining as many
vertices as indicated by the frontier-size field, and to start decompression based on this
dummy frontier. Each of the vertices in this dummy frontier is unknown and is represented
by -1. Fortunately, CDE does not need to know the exact vertices on the dummy frontier
because the edit primitive by construction cannot be edges/faces that involve dummy fron-
tier vertices. As the traversal progresses, eventually all the vertices associated with the edit
primitive in question will appear in the frontier, as illustrated in Figure 4. This incremental
decompression continues till the desired vertex, edge, or face in encountered.
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Dataset Vertex Triangle Edge
Skull 20,002 40,000 60,000

Bunny 34,834 69,451 104,288
Horse 48,485 96,966 145,449
Hand 327,323 654,666 981,999

Dragon 437,645 871,414 1,309,256
Buddha 543,652 1,087,716 1,631,574
Blade 882,954 1,765,388 2,648,082

Table 1:The characteristics of the triangle mesh models used in our study.

4.3 How to Edit

The semantic of the three delete primitives requires only the deletion of one or more faces.
It is possible to replace the command that enumerates a face with a different command so
as to delete the face. For CDE, however, there is a problem with this approach. BFT com-
mands use variable-length encoding. Therefore, if CDE changes a command in the middle
of the command stream, it has to shift all the following commands — an operation that
incurs significant I/O overhead. To support local editing of a BFT mesh, we add an extra
status bitto all the BFT commands that enumerate a face. CDE initializes all the status bits
to 0 before the editing session starts. As faces are deleted, CDE changes the corresponding
status bits to 1. For software rendering, if the status bit is 0, the decompressor sends the
corresponding triangle to the rendering pipeline; otherwise it does not send the triangle. In
addition, a flag at the beginning of the BFT mesh indicates whether the command stream
includes status bits. The status bits add 1-bit overhead per triangle to the BFT meshdur-
ing editing. But CDE removes the status bits from the final BFT mesh after all the edit
operations for that mesh are complete.

The last edit primitive adds a face to the BFT mesh. To avoid modification in the mid-
dle of the BFT mesh, we append a component mesh containing only that face to the BFT
representation. But the vertices of the face may already be present in the BFT representa-
tion leading to multiple explicit representations. To avoid inconsistency, CDE maintains a
vertex instancetable to quickly find all the explicit vertex instances. The table, sorted with
respect to the vertex index, contains pointers to the multiple explicit representations of the
vertex in the BFT mesh. As CDE performs recompression of the edited mesh periodically,
the vertex instance table cannot grow to infinite size.

5 Performance Evaluation

Based on a prototype implementation of the proposed compression-domain triangle mesh
editor, we compare the peak memory requirement and edit performance of the CDE editor
and a traditional mesh editor. The 3D models used in this study and their characteristics
are shown in Table 1. All measurements are taken on a Pentium II 300-MHz machine with
320 MBytes of memory running Linux.
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Figure 5:Distribution of the time required for the edit primitives.

Dataset Additional Data-Structure Peak Memory
Winged Adj. CDE Winged Adj. CDE

Edge (% of Adj.) Edge (% of Adj.)
Skull 2,160 640 9(1.4%) 2,800 1,280 190(14.8%)
Bunny 4,312 1,112 13(1.1%) 5,424 2,224 325(14.6%)
Horse 5,236 1,551 16(1.0%) 6,788 3,103 453(14.6%)
Hand 40,589 10,475 89(0.8%) 51,064 20,949 3,033(14.5%)

Dragon 54,078 13,958 128(0.9%) 68,036 27,916 4,108(14.7%)
Buddha 67,434 17,402 155(0.9%) 84,836 34,803 5,114(14.7%)
Blade 109,118 28,248 256(0.9%) 137,366 56,497 8,236(14.6%)

Table 2: Additional data-structure size and maximum memory requirement for winged-
edge, adjacency, and CDE (in KBytes)

5.1 Memory Requirement

The key advantage of the CDE editor is its smaller memory requirement compared to tra-
ditional 3D model editors based on an uncompressed mesh representation. Traditional
editors require additional data structures to quickly retrieve the adjacency relations. We
choose thewinged-edgedata structure [1] because other data structures are just variants of
winged-edge. Winged-edge requires large memory footprint because it is meant to handle
polygonal as well as triangle mesh. For a fair comparison with CDE, we use another data
structure for traditional editors, calledadjacency, which maintains pointers from each ver-
tex to all the incident faces. Adjacency works only for triangle mesh, but it entails smaller
memory footprint requirement and can easily retrieve adjacency relations.

First, we compare the memory requirements for auxiliary data structures between the
CDE editor and traditional editors. The auxiliary data structures of the CDE editor include
the the location map, the vertex instance table, and the maximum size of frontier memory.
In the CDE prototype, we use one location map entry per 100 BFT commands. Table 2
shows that the CDE editor’s memory requirement for auxiliary data structure is under 1.4%
of that of a traditional mesh editor using adjacency data structure, and only 0.25% of that
of winged-edge based editors. The peak memory requirement of a 3D model editor in-
cludes, in addition to auxiliary data structures, the connectivity and the geometry of the
triangle mesh being edited. Both the adjacency editor and winged-edge based editor use
the indexed independent triangle representation. CDE, on the other hand, uses the BFT
representation whose connectivity cost is only 2-3% of that of the uncompressed mesh rep-
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Delete-face Delete-vertex Delete-edge
Dataset CDE GEN CDE GEN CDE GEN
Skull 113 2.89 130 2.32 133 3.11
Bunny 88 2.99 105 2.32 106 3.23
Horse 152 2.97 183 2.32 183 3.33
Hand 215 3.19 253 2.33 256 3.31

Dragon 397 3.22 453 2.33 462 3.43
Buddha 758 3.22 866 2.33 881 3.44
Blade 758 3.20 881 2.33 885 3.32

Table 3:Average time (µsec) required for an edit primitive. GEN stands for Generic.

resentation [9]. We use 8 bytes for per-vertex geometry information: 16-bit coordinates and
15 bit color values [3]. Table 2 shows that CDE needs about 14% of the memory required
by an adjacency-based editor, and 7% of that of a winged-edge based editor.

5.2 Edit Operation Performance

We compare the edit performance between the prototype CDE system and a generic 3D
model editor that uses the adjacency data structure. For small models the CDE editor allows
interactive editing although it is slower than the generic editor, but for large 3D models, the
CDE editor still allows interactive editing whereas the generic editor is completely halted.
A 3D model is large if it leads to excessive paging at run time.

Table 3 compares the edit operation performance between the CDE and the generic
editor in terms of theaveragetime required to perform the three edit primitives: delete-
face, delete-vertex, and delete-edge. The other two edit primitives, move-vertex and add-
face, do not involve incremental decompression and thus require almost the same time in
CDE as in the generic editor. We measure the time taken by an edit primitive when it is
applied toeachface, vertex, and edge in the input triangle mesh and report their average.
Even though the average edit operation latency of the CDE editor is longer than that of
the generic editor, it is less than 1 msec, which is quite reasonable for interactive editing.
Figure 5 shows the distribution of latency for the three edit primitives in the CDE editor.
The X axis represents the time required for a single edit primitive. The Y axis represents
the cumulative percentage of edit primitives whose measured latency is smaller than the
amount of time represented on the X axis. For all the test triangle meshes, 99.9% of the
edit primitives can be performed within 2 msec.

An important optimization that the CDE editor can incorporate is to perform a sequence
of edit primitives in a batch. For example, if a user deletes a small portion of the triangle
mesh, the CDE editor can performonly oneincremental decompression to delete all the
faces, thus amortizing the per-edit incremental decompression overhead over a larger num-
ber of edit primitives and decreasing the average edit primitive latency. Figure 6 shows how
batching of delete-vertex primitives decreases the per-operation latency by more than 50%.
We believe that this approach can further bring closer the gap between the edit primitive
latencies of the CDE and the generic editor.

To emulate paging effects of large 3D models, we restrict the physical memory of the

8



0 20 40 60 80 100 120 140 160 180 200
Batch Size

0

5

10

15

20

25

30

35

40

T
im

e 
pe

r 
O

pe
ra

ti
on

 (
us

ec
)

Skull
Bunny
Horse
Hand
Dragon
Buddha
Blade

Figure 6:Batching of delete-vertex primitives. X-axis shows the number of delete-vertex
primitives in a batch. Y-axis shows per-operation latency in µsec. We choose 1000 random
regions for each batch size and report the average edit time.
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Figure 7:The paging effect for large triangle mesh: Blade, Buddha, and Dragon.

experimental machine to 64MB and 32MB. We perform the same set of face, vertex, and
edge delete operations using CDE and the generic editor for three largest triangle meshes:
“Dragon”, “Buddha”, and “Blade”. Figure 7 shows the average time required for edit
primitives for two memory sizes. With 32MB memory, the CDE editor is significantly
faster than the generic editor for all the three triangle meshes. The CDE editor is able
to keep its memory footprint smaller than 32MB, and thus avoids almost all the paging
cost. With 64MB of memory, the average edit operation latency of the CDE editor is still
less than the generic editor for “Blade” and “Buddha”, and is comparable to the generic
editor for “Dragon.” As expected, the larger the 3D model, the more the performance
improvement of the CDE editor because of the reduction in paging overhead.

Overall the CDE editor is more scalable than the generic editor because its perfor-
mance is more stable with increasing 3D model size. The average edit operation latency of
the CDE editor increases from 1 msec to 1.5 msec as the memory size is decreased from
320MB to 32MB. For the same change in memory size, the average edit latency of the
genetic editor increases from 3µsec to 100 msec, a 4 to 5 orders of magnitude difference!
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6 Conclusion

We present the design, implementation, and evaluation of a novel compression-domain tri-
angle mesh editing technique. The CDE technique, based on an efficient lossless mesh
compression algorithm called BFT, allows common triangle mesh editing operations to be
performed directly on compressed triangle meshes. The CDE prototype implementation
is able to achieve a significant reduction in memory requirement during the mesh editing
process without incurring noticeable computation overhead. Given the increasing impor-
tance of 3D graphics in Internet multimedia applications, the CDE technology is expected
to have a significant impact on the future development of media content authoring systems.
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