Cache-Aware Timing Analysis of Streaming Applications

Samarjit Chakraborty Tulika Mitra! ~ Abhik Roychoudhury
Lothar Thielé Unmesh D. Bordoldi Cem Derdiyok
!National University of Singapore
2Eidgenossische Technische Hochschule Ziirich
3Ecole Polytechnique Fédeérale de Lausanne
{samarijit, tulika, abhik, unmeshg@comp.nus.edu.sg, thiele@tik.ee.ethz.ch, cem.der@ggkl.ch

AbStl’aCt receive packet

Of late, there has been a considerable interest in models, hei;‘:s'sgif::ﬁ&
algorithms and methodologies specifically targeted toward
designing hardware and software for streaming applica-
tions. Such applications process potentially infiniteatns non-real-time VoIP processing
of audio/video data or network packets and are found in " B
a wide range of devices, starting from mobile phones to
set-top boxes. Given a streaming application and an ar-

. L . . . route lookup &
chitecture, the timing analysis problem is to determine the CRC computation
timing properties of the processed data stream, given the
timing properties of the input stream. Most of the previ-
ous work related to estimating or optimizing these timing
properties take a high-level view of the architecture and ne
glect microarchitectural features such as caches. In this domains are centered around the notion of a “stream”, and
paper, we show that an accurate estimation of a stream- it is now increasingly being realized that conventional mod
ing application’s timing properties, however, heavilyiesl els, languages and design methodologies developed in the
on an appropriate modeling of the processor microarchitec- embedded systems domain do not adequately exploit this
ture, such as its instruction cache. Towards this, we presen notion. To address this shortcoming, recently there has
a novel framework for timing analysis of stream processing been a number of developments in the form of new “stream-
applications. Our framework accurately models the evo- centric” programming languages and compiler support [6],
lution of the instruction cache of the underlying processor processor architectures [17] and design methodologies.
as a stream is processed, and the fact that the execution |, this paper, we follow this line of development and ad-
time involved in processing any data item depends on all yress the following problem. We are given a block of code

the previous data items occurring in the stream. We have ¢ responding to an application which processes a stream of
implemented a prototype of this framework partly in C and yat4 items or events (the arrival of a data item may consti-

partly in Mathematica and plan to integrate itinto a design- te an event and henceforth we will only refer to a stream
space exploration tool for system-level design of hardware ¢ events). The events belonging to the streamtpped

Figure 1. Task graph corresponding to a simple software-
based router which processes packets of two different types

software architectures for streaming applications. and the processing of events of different types requires the
. execution of different, but partially overlapping partsioé
1 Introduction code. The task graph corresponding to such a code, im-

Today, stream processing applications are widespread irplementing a simple software-based router is shown in Fig-
several domains ranging from networked hand-held devicesure 1. It processes two different types of packets: \VolP
playing streaming audio and video, to mobile phone basepackets, which have real-time constraints on their precess
stations and network routers implementing complex packeting time, and packets which need to be encrypted and which
processing functionality at high line speeds. Many of these do not have any constraints on their processing time. The
domains have very stringent constraints pertaining to, cost processing of any VoIP packet follows the right hand side
performance and power consumption and have posed sevpath in this task graph and the processing of all other pack-
eral challenges in terms of developing appropriate models,ets follows the left hand side path in this graph. The arrival
methodologies and design tools. Most applications in theseof any packet causes an interrupt, which is processed by

thereceive packetask. This is followed by packet header input butter 1 rocessor +
parsing and classification, after which the packet type is w’:ﬂ]ﬂ]—' instruction
known and based on this type the code corresponding to ab aa b size B cache
either the right or the left hand side of the task graph is
executed. Given the arrival process (timing properties) of
a stream of incoming packets, we would like to determine
the timing properties of the packet stream after it has been
processed by this code. Assuming that the worst case ex-
ecution time (WCET) associated with each packet type is
been addrossed n (3. However, 11 problem becomes sg/10 PIOPeries of alassof arival pateerns, rather than one
nificantly more complicated if we take into account the fact conc_rete instance of a str_eam (or a trace), the speC|_f|cat|on
thatthe execution time involved in processing two packets Ofprowdesboundson the a”"’?' Process. Fo_r example, in the
; L case of our router, the maximurate at which packets ar-

the same type also might varphis is becaL_Jse the sequence rive would typically be bounded. Such a bound might be
el e tecl . Specfed n o frm o e maximum possil bursts
time involved in processing any packet. Thus, the execution!:rvr\;\?gl cr);/tee ' g;ftfﬁgen;glzﬁsmltﬁrt\ﬂ lf:r?w::lsj’n?cna(iigr:%l%;?):?s
time as_sociated with any packet might vary considerably, domain. such a sr?ecificat.ion is based on the theonyenf
depending not only on the type of th_e packet but also_ on thework calculug5, 8]. We formally describe this specification
sequence of packets processed prior to the packet in queslh Section 2
tion. By computing the timing properties of the processed

Given a setup such as the one described above, in thissyent stream from those of the input stream, we show
paper we solve the above mentioned timing analysis prob-hoy to accurately compute important performance metrics
lem by obtaining tight bounds on the WCET incurred in pertaining to the application as well as the architecture.
processing any event by the streaming application. Towardstpese include (i) the minimum buffer siZe to guarantee
this, we take into account all possible sequences of eventspat it does not overflow, and (ii) the maximum delay

that might be processed prior to processing of any event ineyperienced by any event from its arrival, till the time it is
question, and how such possible sequences might modifycompletely processed.

the state of the instruction cache. As part of the problem

specification, we are given a mapping of the different mem- pejated work: The work reported in this paper is closely
ory blocks corresponding to the code processing the eventsyg|ated to the problem of statically analyzing the WCET
onto a cache. We are also given a specification of the possiyf 5 program, which is an important problem in the do-
ble sequences of events that might arrive, for exampleginth ,5in of real-time and embedded software design. Note
form of afinite state transition system. In other words, such {pat WCET analysis techniques are conservative, that is,
a transition systgm describes thg possible compositions Ofthey compute an upper bound on the program’s actual worst
an event stream in terms of the different event types. Such &ase execution time. Usually this involves a path analysis
s_pemﬂcatlon can be used to rule out certain sequences of arg, find out infeasible paths in the program’s control flow
nvals,_ for example, that there_can not be more than 10 CoON-graph, and microarchitectural modeling. Both path analysi
secutive VoIP packets at the input of the task graph shownang micro-architectural modeling have been studied exten-
in Figure 1. This problem specification will enable us to sively [9, 10, 13, 14, 18, 19] because of the inherent impor-
rule out certain “worst-case states” of the cache and tyereb {4 ce of deriving WCET estimates for schedulability analy-
bound the WCET in processing any packet of a particular sis. However, we are not aware of any work specifically
type. on the WCET analysis of streaming applications. In fact,
The system model we consider in this paper is shown most of the previous work on WCET analysis consider the
in Figure 2. The incoming stream of events get stored uninterrupted execution of a program, which is similar to
in a FIFO buffer of sizeB, which is read by the proces- processing aingle event in our setup. In this paper, we
sor running the stream processing application, such as theeompute the WCET of atreamof events, where, to esti-
software-based router shown in Figure 1. Apart from the mate the processing time of any single event we consider
code layout (mapping of the memory blocks onto the in- the micro-architectural state resulting from the proaessi
struction cache) of the application, and a specification of of all previous events.
the possible sequences of events, we are also given the ar- As mentioned earlier, our work is also related to the
rival process or the timing properties of possible incoming system-level timing analysis problems studied in [3, 1%, 16
streams to be processed. Since we are interested in the timAlthough, these papers also deal with end-to-end delays

processed
event stream

t
Figure 2. A processor with an instruction cache, on which
the code (for example, that shown in Figure 1) processing
an event stream is executed. Incoming events are stored in
a buffer of sizeB, which is read by the processor.

experienced by event streams and the computation ofstream can only be generated as follows. The system starts
maximum buffer fill levels, their focus is on multiprocessor in an initial state, and if = s’ then the system can change
architectures and the modeling of resource sharing. Theyits state froms to s’ and generate an event of type The
do not consider an extended task model and do not focus ortransition systen¥ can be used to model constraints on al-
the distinction between different event types, as we do inlowable sequences of event3. can either be determined
this paper. More importantly, none of these papers considerby analyzing the device or the system which generates the
the role of the processor microarchitecture on the exeautio stream, or by analyzing a sufficiently large number of rep-
time of the different events. In this context, the imporanc resentative input streams.
our work stems from the fact that in many cases on-chip 3) The second part of the stream specification is con-
buffer/memory is available only at a premium because of cerned with its timing properties. Towards this, we are
its high area requirements. In such cases (e.g. in portablegiven a functiorr : RZ% — Z=°, which bounds the maxi-
multimedia players) an accurate estimation of delay and mum number of events that can arrive within any time inter-
buffer requirements is essential, and therefore calls fior a val of a given length. We will refer ta as ararrival curve
appropriate modeling of the processor microarchitectare a For a stream bounded by, let R(¢) denote the number of
we attempt to do in this paper. events that arrived during the time intery@l¢]. Then, the
inequality R(t + A) — R(t) < @&(A) holds for allt > 0
Organization of this paper: The rest of the paper is orga- andA > 0, for any concrete arrival proces®(t). As an
nized as follows. In the next section we formally state our example.a = b + rA specifies a stream with laurst size
problem and describe the underlying models used in this pa-b (i.e. the number of events that can arrive at any instant
per. This is followed by our cache modeling in Section 3. in time) and a long-term arrival rate ef As mentioned
We then make use of this cache model to bound the WCETin Section 1, such an abstraction of the arrival process of
involved in processing aingleevent of any specified type. streams (more specifically, packet flows) is common in the
In Section 4 we then show how to use such WCET estimatesdomain of communication networks [5, 8]. It may also be
for single events to perform a WCET analysis ofteeam noted here that this specification is more general than the
of events, i.e. solve our timing analysis problem. More event models traditionally studied in the real-time sysem
specifically, we show how to compute the maximum buffer literature, such as periodic, periodic with jitter or thesp
fill level and the maximum delay experienced by a stream radic event model [1, 2, 12], and can more accurately model
of events. Some implementation issues to improve the run-streams exhibiting a high degree of burstiness (see [3]).
ning times of the algorithms presented in Sections 3 and 4 4) Lastly, for each event type i we are given the exe-
are then discussed in Section 5. A case study is presented iution path (or a set of paths) through the control-flow graph
Section 6 to illustrate the utility of our proposed framelwor of the application. We are also given the worst case execu-
Finally, in Section 7 we conclude by summarizing the im- tion time for each of these execution paths, i.e. the exe-
plications of this work and then outlining some directions cution time corresponding to the case where the cache is

for future work. empty before the processing of any event starts. In other
words, the first references to all memory blocks always re-
2 Problem Formulation sult cache misses. Finally, we are also given the cache miss

.) penalty, using which we can compute the processing time

Our problem specification has the following components: ¢ 5, event in the case where some of the first memory ref-
1) Atask graph, s_uch as the one shownin Figure 1, whl_ch erences result in a cache hit.

models the streamlng_ appllc_atlo_n and the correspondlng Given the above, we would like to compute the max-

program or code. This application executes on a smgleimum number of backlogged events (i.e. the maximum

processor and we are also given its code layout in the mMeMy, ter size required) and the maximum delay experienced

ory, i.e.,_the mappi”Q of the _different memory blocks of the by any event. As discussed in Section 1, the main difficulty
application onto the instruction cache. :

2 Th ificati fh b JQ this problem arises from the fact that the WCET of any
) The Spec |ca_1t|on of the event stream to be Processelayent depends on the state of the cache, and hence on all the
by the application is composed of two parts. As mentioned

: . q hatth events that arrive prior to this event. To compute the maxi-
In Section 1, event; a_type Letus a_lssumet atthetypes mum delay and buffer size, the evolution of the cache state
are drawn from a finite séf. The first part of the stream

. " has to be linked to the arrival process of the events, which
specification is a transition systed = (S,S5y,%,7)

which captures all possiblsequences of event typtmt 's bounded byx.
might occur in the stream. Heré, is finite set of states, .
So C S is a set of initial states, andf C S x ¥ x S is 3 Cache MOde“ng

a set of transitions. Henceforth, we denote any transition The basic technique used in this section bears some sim-
(s,0,8') in U by s % s'. Any sequence of events in the ilarity with that used for computing cache related preemp-

tion delays in [13]. However, in this paper we do not con- cache states wheR® completes execution. These quan-
sider task preemptions—we deal with a single stream, andtities are computed by propagation; th2€ SLV will be
events from this stream are processed to completion in acomputed using th&C S°UT estimates of the basic blocks
FCFS manner. from where there is an incoming edge to bldgKfor more

By “cache state”, we refer to the contents of all the details the reader is referred to [13]). Since the contrael flo
cache blocks. For simplicity of exposition, in this paper graph containsloops, the RCS computation will be iterative
we only consider direct-mapped caches. However, the techwhere the RCS estimates for each basic block gets updated
nigues we present below can easily be generalized to setin every iteration. This is continued until a (least) fixed-
associative caches. Létl denote the set of all memory pointis reached. Convergence to a fixed point is guaranteed
blocks. For a direct mapped cache wittblocks, acache because the RCS estimates must monotonically increase for

stateis a vectore of n elements[0],...,c[n — 1] where the fixed-point iterations to continue, and the total set of
cli] = m if the cache block holds the memory blocka. cache states is finite. After the fixed pointis reached, we set
If the ith cache block does not hold any memory block, we RCS(o) = RCSOY(), whereend(o) is the sink node in

denote this ag[i] =L. Hence, a cache state is a vector the control flow graph (o).

of lengthn, where each element of the vector belongs to The computation ofLCS(o) is similar to comput-
M U {L}. We assume that any operatieroverM U { L} ing RCS(0). We setLCS(o) to LOSLY) where

start(o

can be applied to the cache states, by applying this operayq,t(s) € B, is the start node in the graptto)

tion pointwise to its elements. For example:ifis a bi- RCS(0) is therefore the set of possible cache states af-
nary operation ovek/ U { L} andc, ¢’ are cache states then gy the processing of any event of typeand LC'S (o) cap-

/ /! A - /s o .
c©c = " denotes”[i] = c[i] © c[i] forall0 < i < n. To tures the possible usages of a cache state at the start of the

compute the WCET that might be incurred in processing an processing of an event of type
event, and the state of the cache after this eventis pratesse

we will rely on the following two functions. 3.1 Computing the WCET of a Single Event

Definition 1 (Reaching Cache StatesReaching cache We can now use the notion of cache states to compute the
states of an event, denoted asRCS(o), is the set of WCET of a single event (while considering the events ex-
possible cache states when the end of the last basic blockecuting prior tar). We first define two operations on cache
corresponding to any of the execution paths associatedstates, namely merge and equality.

with the processing of is reached. We suppose that the We define the operatios is over memory blocks as:

cache is initially empty.
_— . _ def [m/ ifm/ #£L
Definition 2 (Live Cache States)Live cache states of an mem' = { 7

events, denoted ad.CS (o), is the possible first memory
references to cache blocks via any execution path associ-The mergeof two sets of cache state$ andY is defined
ated with the processing of asXaoY ={zdy|ze X A yecY}wherez®

RCS (o) andLCS () can then be computed as follows. y is calculated over cache states by applying the operation

Let (o) be the task graph associated with the process—@l (definedfeﬁrlier or:/er memory blocks) to the individual
ing of an event typer, i.e. 7(o) contains only the basic elements of the cache states. .
The equalityof two sets of cache staté§ andY is de-

blocks and the control-flow relevant ta Therefore, the finedasX ©Y = {z Gy |z € X A y€ Y} where
basic blocks inr(o) are a subset of all the basic blocks in eyl y '
our stream processing application which proceafies/ent 1
types. Further, some of the basic blocks-{&r) might also zlil © y[i] = {
be inT(c"), which is the task graph for another event type
o’. Examples of such common basic blocks are those in theFor a cache with. blocks,X @Y is a set of boolean vectors
nodesreceive packetheader parsing & classificatioand of lengthn. Observe that for any two cache statesc
route lookup & CRC computation the task graph in Fig- RCS(c) andy € LCS(¢’), x ® y records the “useful”
ure 1. Note that each of the nodes in this task graph mightcache blocks for some execution path in the processing of
contain multiple basic blocks, conditional branchesasd al ¢’, due to the prior processing ef Using this observation,
loops. we will now show how to obtain a more accurate estimate

Now, let B, be the set of basic blocks appearing in onthe WCET involved in processing an event, compared to
7(o). For any basic blockB € B,, we can now com- the case where the initial cache state before processing the
pute two quantitieRCSLY andRCSYUT. RCSLN isthe eventis considered to be empty.
set of possible cache states whBris reached via any in- Let us consider the processing of a sequence of consecu-
coming program path anC'S§UT is the set of possible tive eventsioy, -+ , o). For simplicity, we use; to refer

m otherwise

if z[i] = yi]
0 otherwise

to both an event and its type, and the actual meaning shouldand the transition systef, we derive a transition system

be clear from the context. In the absence of cache state mod7’ = (', 5}, D’, ¥’) which capturesll possible evolu-
eling, i.e. with a completely empty cache, let us assume thattions of the cache state, as a stream of events is processed.
the WCET ofoy is given by the functiodlVCET (o, L), Each state’ € S’ is a tuple(s, cs) wheres € S andes is a
where L denotes the set of cache states that contains only arset of possible cache statessafA transition from(sy, ¢s1)
empty cache. However, if the task graptis:), ..., 7(on) to (s2, cs2) belongs to¥’ if and only if there exists a tran-
share some common memory blocks and the effects of thesitions; % s, in 7 andcsy = NSTATE(o, cs1). The set
cache is taken into account, then our estimate of the WCETof initial statesS}, contains all tuplegs, 1) wheres € Sj.

of o can possibly be improved. More specifically, the Finally, any transition) from (sy,cs;) to (s, cs2) in ¥/,
WCET of oy will be reduced if during the processing of wheres; % s,, is annotated withVCET (o, cs1). We de-

the eventgoy, - ,on_1) Some memory blocks are leftin pote this ad)’ (1) = WCET (o, cs1).
the cache, which are then referenceddfy). We next Again, recall from Section 2 that we are also given a
show how to compute this reduced WCET using the mergefunctiona, which bounds the maximum number of event ar-
and equality operators defined above. rivals over any time interval. More specifically(A) is the

If we start with a set of cache states, and process a maximum number of events that can arrive over any time
sequence of events:, -+ ,on—1), thenthe set of possible interval of lengthA. a(A) therefore specifies the timing
cache states after this sequence of events is processee can Broperties of alassor family of arrival processes of event
given by the function streams that are to be processed by the streaming applica-
NSTATE((o1, ..., on_1), c5) = tion. To compute similar bounds on t_he timing properties of

s @ RCS(01) @ ... ® RCS(on_1) any processed stream and the maximum delay and backlog

(which is a measure of the maximum buffer requirement)
Note that the operatap is associative. Now, if the event experienced by any input event stream, we need to com-
on is to be processed, then the set of possitsiefulcache pute the maximum processing requirement arising from the
blocks foroy is given by the function a(A) events. Towards this, let us define a functipit)
whose argument is an integeand it returns the maximum
usefullon, NSTATE((01, -+ ,0N-1),5)) = processingg time that can bgb;jemandeabysequence of
NSTATE({o1,-+ ,on-1),¢s) © LOS(oN) consecutive events belonging to the stream. We next show

In other words, the functioruseful returns a set of ~NOw to obtain this function. N
boolean vectors. In any vector belonging to this set, a“1”in Consider our transition systefi, where each transition
the position of any cache block indicates that the contents o ¥ from (s1, ¢s1) to (s2, cs2) represents the processing of an
this cache block might be used while processing while event of the typer, wheres; = s, € 7. The annotation
a “0” indicates otherwise. Therefore, based on this set of On €ach such transition, i.€)’(+)), denotes the maximum
boolean vectors, our revised estimation of the WCEFof ~ processing time of the event given that the cache state
is given byW CET (o, ¢s'), defined as follows. before the start of this processingis . Hencey(k) is the

weight of the maximum-weight path of lengttin the tran-

WCET(on,cs') = WCOET (on, L)— sition systent7’. Given a parametes, we can efficiently
penalty - min {[v| : v € useful(on, cs')} computey(k) for all 1 < k < n by traversing the graph,
cs' = NSTATE((c1, - ,0N—-1),CS) and storing/updating the maximum weight path of length
ending at: for all nodesr in the graph. Details are omitted.

Itis easy to see that the functiofiA) = v(a(A)) there-
fore represents the maximum processing requirement that
can arise from the event stream witl@nytime interval of
lengthA, for VA > 0. Using the results derived in [3], itis
4 Timing Analysis of Event Streams possible to show that worst case deldCD (i.e. the maxi-

In this section we will make use of our revised estimation Mum length of time between the arrival of any eventand the

of the WCET of a single event to solve our timing analysis ime when it is completely processed) experienced by any
problem. More specifically, we use this revised estimation €Vent stream whose arrival process is bounded () is

to accurately compute the maximum delay and backlog ex-91Vén by:

Herepenalty is the cache miss penalty associated with any
memory block andv| denotes the number of 1s in the

n—1

boolean vector, i.e. |v| = > """ vli].

perienced by a stream of events. WCD = Zi%{ir;fo{r ca(A) <A+
Recall from Section 2 that we are given a transition sys- -
tem7 = (5,S50,%,¥) which captures all possible se- Intuitively, WCD can be interpreted as the maximum

quences of event types that might occur in a stream. Us-horizontal distance between the curvg\) and the straight
ing the cache modeling technique described in Section 3,line representing the processor availability.

To compute the maximum backlog, we first need to as well asy’ requires an iteration over all > 0. To avoid
define a functiony™!, which can be considered as the such an iteration over an unbounded range, we can approx-
pseudoinvers®f the functiony that we already defined imate the function&(A) and~(k) by a sequence of linear
above. We definey=1(A) = infrso{k : v(k) > A} segments. Using such an approximation, we can then com-
Hence;y~!(A) returns the minimum number of events that pute aA,,... such that it would be sufficient to iterate only
can generate a processing requiremen ofn other words, till this value for the computation oW CD, WCB andéa’.
at leasty~!(A) events from the stream are guaranteed to Note that while the first and the third techniques men-
be processed within a time interval of length Within this tioned above will lead to a (safe) approximationldiCD,
time interval, at mostv(A) events might arrive. Hence, the W(CB anda’, the second technigque will not lead to any loss

backlog generated within this intervald§A) — v~ (A). of accuracy in our estimation of these quantities.
Therefore, the maximum or worst case backldg’'B is
given by: 5.1 Partial Construction of 7’
WCB = sup{a(A) —y 1 (A)} Constructing the cache state annotated transition system
AZ0 T’ is computationally expensive. This is because for each

states in the transition systerir we need to compute the
npossible cache states with whigltan be reached; each of
these contribute to a state . Assuming a direct mapped
d cache withk cache lines and the program code of all event

stream, let us denote using(A) the maximum number types spread over contiguous memory blocks, the number

) . :
of processed events that can possibly be seen at the outpLﬂ_f poss;ble Ca_Cht?] statesgsn/ k;ﬂt .tTh;rle_?ds to_gnthqb-
of the processor (see Figure 2) within any time interval of E'IOUS owup in the ntumdfleon states ot. - 1o ?.VO' T’I'S
lengthA. a’(A) is therefore exactly of the same form as owup, we can construd’(U/), an approximation of

a(A) which bounds an input stream. Again, using the re- We assume th,df is a pre-(_jgfined constant..))
sults derived in [3], it may be shown that The basic idea for defining the approximation®f is

as follows. Clearly, a cache state is a function of the finite
&' (A) = sup{a(A + 1) — vy 1(7)} (but unbounded) execution history of events. We make the
7>0 following observations about cache state evolutions.

As in the case of computing’C D, intuitively, W CB can
be interpreted as the maximum vertical distance betwee
the curvesy(A) andy~1(A) (see Figure 3).

To compute the timing properties of the processe

The bounds on the timing properties of any processed e Givenabound/, the bounded execution history of the
stream and the maximum delay and backlog that we com- last U events may not be able to distinguish between
puted above, are more accurate compared to those com- different cache states, and

puted in [3], where the effects of the processor’s instarcti

cache was not taken into account. This difference primarily @ A cache state can be reached with various event histo-
stems from the use of the transition syst&min comput- ries.

ing the functiony(k). In contrast to this, the results in [3]
rely on a significantly simpler approach of scaling the func-

. . , he
tion @(A) by a constant representing the (same or constant);’r?t'?ns' In the fT” tc:honstructtlontgf ,Oe;/c(r}state ?]T t|stof ¢
processing time per event, in order to obtain the function € Ol’m(:sl,cs). n the construction (), each state o
a(A). this transition system is of the for(g, cs, seq) wheres and

cs are as defined in Section 8¢q is sequence of length at
. mostU over the event alphabEtdenoting the last/ events
5 Implementation Issues (if less tharl7 events have occurred, theey contains fewer
The running time of the algorithm presented so far would events). At first sight, our definition of the states@f(U)
depend on the number of states in the transition sysfem seems to blowup the state space even further (as compared
and the number of cache states generated from our applicato the full construction of7’). However, our construction
tion and its code layout in the instruction cache. For many of the transitions off’(U) is such that the reachable state
realistic problem instances, the number of such cachesstatespace of7’(U) is sparse.
might be very large, thereby our algorithm incurring a high ~ We now describe the constructiondf(U) (refer Algo-
running time. To get around this problem, there are threerithm 1). For this purpose, we use the algorithm for con-
possible techniques that we can adopt (they are not mutustructing7’ but with two important modifications. First
ally exclusive). (i) Partially constructing the transitigys- of all, when we construct the destination states for a state
tem7”. (ii) Instead of computing/(k) for all values ofk, (s, cs, seq) for evento, apart from applyingVSTATE on
exploit the fact that/ (k) becomes periodic beyond a certain ¢s, we also need to defin¥STATE on seq. Since the se-
value ofk. (iii) Note that the computation oV CD, WCB, guence associated with a state captures thellastents,

Our partial construction of is based on these two obser-

we define the following. Note thatdenotes concatenation, Algorithm 1 Constructing the transition systefri(U)

andseq = (01,02, ...,00). Input: Transition system¥ = (S, So, &, ¥), the functions
[seqoco if |seq| < U NSTATE and WCET and a positive integdy
NSTATE(0,U, seq) = { (02,...,0u,0) Iif [seq|=U Output: Transition systen¥’(U) = (S, Sy, D", ¥");

S// S// D// \I/// ,
Secondly, the check for whether a stété cs’, seq’) ex- %;;” s e(_So ?j(;_ - L

ists in.S” (see Algorithm 1) is done differently. The logical 1 Q1 Gy 1 .
disjunction in this membership check performs two kinds of grll/qiezgg%fz; iezg} . s, L9}
state merging. The two sources of state merging mentioned endofor 0 R

below exploit our two main observations about the cache while Q # 0 do

state evolution. (s,cs,seq) < dequeue(Q) ;

e Two states (s',cs’,seq’) and (s',cs”, seq’) are for all transitionss % s’ € ¥ do
merged. This is the main source of size reduction in cs' — NSTATE(o,cs) ;
the construction off '(U) since we are merging two seq’ «— NSTATE(o,U, seq) ;
states of7”. if ((s',es’,2) ¢ S")V ((s,_,seq) ¢ S"”)then
enqueue(Q, (s',cs’, seq')) ;
e Two states (s',cs’,seq’) and (s',cs’,seq”’) are S"— 8" U{(s, s, seq)) ;

merged. This ensures that the state space siZé(&f)

end if
is guaranteed to be bounded by the state space size of

pe U — oy {(s,cs,sgeq) (s’ cs' seq)}
D"((s,cs,seq) = (s',es'seq))
As we are no longer maintaining exact cache states in WCET (o, cs);
T'(U), we need to show that a safe upper bound on WCET end for
is obtained by analyzing” (U) as opposed t@”. If the end while

WCET associated to an eveatat a certaincs does not
decrease by removing the first eventfrom the event se-]
quence that leads tos, we can guarantee that analyzing the computation of(k) for & = 1,. .., n, where the value

the partially unrolled transition systeff(U) yields safe ~ ©f » would depend on the range f over which we need
WCET bounds. Therefore, the following condition must be to iterate. Here, we would like to point out that it is suffi-

satisfied by the functiob’ C ET (o, cs). cient to computey(k) fork = 1, .. N for somen = no,
and for all values of: larger tham, it would be possible to

determine the value of(k) without traversing the cache an-
notated transition systef’. Typically, no would be much
cs = NSTATE((01, 02, ..., 0%), 1) smaller than the maximum value &ffor which we will
cs' = NSTATE((02; . .., 0m), 1) need to determine (k) during our computation o#¥CD

That is, starting with an empty cache, executingfter and WCB, andn, would only depend on the transition sys-

o1,09,...,0, Should not produce more cache misses than tem7".]]
executings after oo, ..., 0,. This is indeed the case for The above observation stems from the fact the the weight

direct mapped as well as set-associative caches (with com©f the maximum-weight path of lengthin a graph eventu-

mon replacement policies such as LRU). To see why, con-ally becomes periodic with increasirg beyond a certain
sider the cached execution of an evenmnder two different ~ value ofk (see [4] and [7]). Let us denote this period as

WCET(0,cs) < WCET(o,cs’) forall o, where

historiesoy, 0, . .., 0, andos, ...,o,. What can be the P> and the increment in the sum of the edge weights within
effect of o, on the execution 05?2 The memory blocks of ~ this period ag;. Given a graph, the values pfandq de-
o1 which are replaced by, . .., o,, clearly have no ef- pend on the number of edges and the sum of the weights
fect ono’s execution. On the other hand, if some memory [N the cycle with the maximurmean(i.e. the sum of the
blocks ofo; do not get replaced bys, . . . , o,,, these mem- Weights divided by the number of edges). Boifandg can
ory blocks ofo; can onlyreducethe cache misses in's be efficiently determined (see [7]). .
execution. Therefore;y(k), forincreasing values df, is made up of

a prelude of length, followed by a periodic continuation.
5.2 Computingy For anyk > ng, (k) is given as:

Recall from Section 4 that (k) is the weight of the k—no+p

maximum-weight path of lengttt in the transition sys- V(k) = v((ro — p) + (k — no) mod p) + [———]q (1)

tem7’ = (5',5(, D', ¥'). Our computation of the max-
imum delay and backlog experienced by a stream requires The value ofry can be determined by traversifig and

A A —

max

Figure 3. ComputingAmax from the affine bounds on
~~!anda.

computingy(k) for all 1 < k£ < n wheren is sufficiently
large. We then test for periodicity. Towards this, we test if
Eqn. 1 holds for the lagt values ofy(k) from k = n, with

p andq determined from the cycle ii’ with the maximum
mean weight. For this test, we s&f = n—p-+ 1 and check

if Eqn. 1 holds for allng < k < ng+p — 1.

5.3 Approximating & and v

Note that in generaly and~ can be arbitrary functions.
In this subsection we show that by approximatingnd~y
using affine functions, it is possible to derive\a,., such
that it is sufficient to restrict our iteration df only till this

| |FS |DCT | Q | 1IQ [IDCT |
I {0 23204 | 12624 | 5177 | 16061
P | 285918 | 23307 | 15919 | 7258 | 15943
B | 134601 | 23307 | 11656 | O 0

Table 1. Experimental results: Task WCET under differ-
ent contexts.

The same value oA\, can also be obtained from the
computation of WCD, the maximum delay experienced by
any event of the stream, by computing the intersection point
of the affine bound om with the straight line representing
the processor availability.

Using the affine bounds amand~, it is also possible to
boundWWCD and WCB as follows:

WCD <ry+r5sy; WOCB <rg+max{r,ss, r—7}
Sy

The functiona’ can also be similarly bounded. Although
these bounds are computationally simpler, in general they
are not as tight as those derived in Section 4.

6 A Case Study

Our prototype implementation of the timing analysis
framework consists of three parts. The first part consists
of a cache state analyzewhich was implemented in C. It
involves the LCS/RCS computation elaborated in Section
3. The second part is the construction of the cache annota-

value, for the computation of the maximum delay and back- tion transition system. We use the improved method (Algo-
log experienced by a stream. In other words, the computa-rithm 1 in Section 5) which merges cache states to prevent

tion of WCD and WCB can now be given by:

WCD = sup {inf{7:a(A) <A+ 7}}
0SALApax 720

WoB = s {a(d) -y '(A)}
0<A<Amax

The approximation of any givenr and v using affine
functions involves the selection of constants s, r, and
s+, such that the following two inequalities hold:

a(A) < ra+A-ss, VA € R20
v(k) < ry+k-s,, VkeZ°

Using our approximations ai and~, it is possible to
derive affine bounds on andy~—! as well. These are given
by: a(A) < ro+A-s,, VA €R2C

7y HA) > 1o+ Ass o1, VA € R0 where,

Ty
Ta =Ty +TaSy, Sa = 8asy, Ty-1 = —— ands,—1 = —

Sy Sy

From our computation of the maximum backld§CB,

experienced by a stream, it is easy to see that, can be
the A-intercept of the intersection point of the affine bounds
ona andy~—! (see Figure 3). SuchA,,., is therefore given
by:
Ty + TaSy

Amax =

1— 555,

blow-up of the transition system. The final step involves
integrating the analysis of event streams (results deifived
Section 4) with the cache annotated transition system to ob-
tain tight delay/buffer size estimates. This part is imple-
mented in Mathematica [11]. The main motivation behind
using Mathematica is that it supports symbolic computa-
tions, using which it is possible computCD, WCB and

a' (whena, @ andy~! are represented as a sequence of lin-
ear segments, not necessarily only affine) without regprtin
to “pointwise” computations.

We now present a case study to illustrate how the esti-
mated timing properties of a streaming application are af-
fected when the instruction cache is modeled using our pro-
posed framework. This case study also serves to validate
our framework and shows that our modeling of the cache
behavior is efficient and scales to handle real-life setups.

Our application consists of an MPEG-2 encoder running
on a device such as a Personal Digital Assistant (PDA) or a
mobile phone, that has a small movie camera attached to it.
Many of these devices today have general-purpose proces-
sors running a light-weight operating system and multiple
applications. In our setup, the input to the encoder appli-
cation is a constant bit-rate raw video stream and its output
is a64 x 64 pixel MPEG-2 encoded clip. We assume that
such a clip would be played out at the rate of 30 frames

system-level view of a video
encoder in a video phone

r‘a:/ video MPEG-2 encoder encoded -
stream video stream hSE
:[[[l_, ; network b7 4
media processor + " o : ,
on-chip | instruction cache " -
h buffer video decoding
video and playout at the
capture receiver at a
1 specified frame-rate
minimum
buffer size
required?

Figure 4. Application scenario: MPEG-2 encoder in a video phone.

per second, which in turn determines the sampling rate of The worst-case execution times of the five different tasks
the camera capturing the video. Our setup is shown in Fig-(in terms of number of processor cycles), when process-
ure 4. The raw bitstream is stored in a small on-chip buffer, ing macroblocks of different frame types are given in Table
which is read out by the processor running the encoder ap-1. These numbers were obtained with an instruction cache
plication. Since the computational workload involved in miss penalty ofi00 cycles. As a sequence of macroblocks
encoding eaclmacroblockis dependent on the data being gets processed (or encoded), different tasks get executed
encoded, it is highly variable. Hence, the fill-level of the following the pattern given by the transition system in Fig-
on-chip buffer varies over time and it is important to choose ure 5(b). Note that for any two macroblocks belonging to
an appropriate buffer size at design time, especially sincedifferent frame types, there is a significant overlap betwee
on-chip buffers are expensive and occupy a significant frac-the tasks that get executed.
tion of the chip area. The results obtained from analyzing this setup using our
We modeled an encoder application consisting of five proposed framework are shown in Table 2. These results
different tasks These ardorward search(FS), discrete ~ were obtained with the processor frequency sédioMHz
cosine transforn{DCT), quantization(Q), inverse quanti- and an instruction cache penaltylol cycles. From this ta-
zation(1Q), andinverse discrete cosine transforffDCT). ble, it may be noted that modeling the effects of the instruc-
The layout of these tasks in the memory is shown in Fig- tion cache leads to substantially tighter estimates of both
ure 5(a). We consider a direct-mapped instruction cachethe on-chip buffer size and the maximum delay. The buffer
with 64 cache lines an@4 bytes block size. The incom- Size estimate reduces B$% and the delay estimate reduces
ing raw bitstream is encoded into a sequence of |, B and Pby 36%. Such tighter estimates directly translate into bet-
frames, where possible patterns of I, B and P are determineder resource dimensioning and improved system design. As
by the transition system given in Figure 5(b). This transi- mentioned before, the crux of our approach is in accounting
tion system is determined by the implementation of the en- for the fact that there is significant overlap in the code in-
coder application. We note here that the MPEG-2 standardvolved in processing the different frame types in the event
does not prescribe any particular encoder implementation.stream. We believe that this property can be exploited in a
The transition system we derive here, and the patterns it at-wide variety of streaming applications.
tempts to compress, is taken from earlier works on timing
analysis of event streams [20]. 7 Concluding Remarks

Given that the frame resolution in our casesis x 64 Currently, we are in the process of integrating this frame-
pixels, each frame is composedldf macroblocks, each of \ork into a design space exploration tool and evaluating it
size16 x 16 pixels. The encoding of macroblocks consti- ith large applications and cache configurations. In con-
tuting different frame types requires a different sequasfce rast to the prototype implementation reported in this pape
tasks getting executed. For example, all macroblocks be-ye will replace the Mathematica code with an equivalent

longing to an I-frame requires the tasks DCT, Q, 1Q and jmplementation in C and integrate it with ogache state
IDCT to be executed. This task set, along with the task setsanglyzer

corresponding to B and P frames are listed in the following
table: References

| Frame Type| Task Set |

[1] S. Baruah. Dynamic- and static-priority scheduling @fur-
I-Frame DCT, Q, IQ, IDCT ring real-time tasksReal-Time System®4(1):93-128, 2003.
P-Frame | FS, DCT, Q, 1Q, IDCT [2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
B-Frame | FS, DCT, Q multiframe tasksReal-Time System$7(1):5-22, 1999.

Frame types: | B P Memory
: I Blocks
]
: I FS 0-54
FS: Forward Search : . . sequence olff
. . : 1 DCT 55 - 65 16 macroblocks/frame
DCT: ?lscrete Cosine . I OO suess
ransform
Q: Quantization : Q 66 -77
) Inverse
1a: Quantization : Q 78 -84
IDCT: Inverse DCT 2
L]
I'ipct 85-123
: 1
\ A /
(a) (b)

Figure 5. (a) The MPEG-2 encoder’s code layout in the memory and theese of tasks executed for 1,B,P — the three different
frame types, and (b) Transition systémspecifying the possible frame patterns according to whidwavideo stream is encoded.

| | Maximum delay experienced by any macrobldck

With Cache Modeling 28 ms
Without Cache Modeling 44 ms
| | Estimated minimum buffer size required |
With Cache Modeling 13.30 macroblocks
Without Cache Modeling 20.68 macroblocks

Table 2. Experimental Results: Delay and Buffer Size estimatiolM®EG encoder application.

[3] S. Chakraborty, S. Kuinzli, and L. Thiele. A general fem [12] A. Mok and D. Chen. A multiframe model for real-

work for analysing system properties in platform-based em- time tasks. IEEE Transactions on Software Engineering
bedded system designs. Pnoc. 6th Design, Automation and 23(10):635-645, 1997. _
Test in Europe (DATE)pages 190-195, Munich, Germany, [13] H. Negi, T. Mitra, and A. Roychoudhury. Accurate estima
March 2003. tion of cache related preemption delay. @ODES+ISSS

[4] G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot. A linear- 2003. . .
system-theoretic view of discrete-event processes anssés 141 P- Puschner and C. Koza. Calculating the maximum execu-
for performance evaluation in manufacturin§EE Transac- tion time of real-time programsJournal of Real-time Sys-
tions on Automatic ContrpB0(3):210—220, March 1985. tems 1(2), 1989.

[15] K. Richter, M. Jersak, and R. Ernst. A formal approach to
MpSoC performance verification|EEE Computer 36(4),

2003.
. . [16] K. Richter, R. Racu, and R. Ernst. Scheduling analysis-i
exposed architectures. 19th Conf. on Architectural Support gration for heterogeneous multiprocessor sodEIEE Real-

for Programming Languages and Operating Systems (ASP- Time Systems Symposium (RTS8)3.

LOS) 2002. o o ~[17] M. Ruiten, J. van Eijndhoven, E. Jaspers, P. van der Wolf
[7]1 R. Karp. A characterization of the minimum cycle meanin a O. Gangwal, and A. Timmer. A heterogeneous multiproces-

digraph.Disc(:jrete Mgtherrrllgticg3(3):3ko9—l3l}, 1978. h sor architecture for flexible media processingEE Design
[8] J.-Y. Le Boudec and P. ThiramNetwork Calculus - A Theory & Test of Computersl9(4):39-50, July-August 2002.

[5] R. Cruz. A calculus for network delay, Parts 1 & 2EEE
Transactions on Information Theqr$7(1), 1991.
[6] M. Gordon et al. A stream compiler for communication-

of Deterministic Queuing Systems for the Intern&NCS [18] A. Shaw. Reasoning about time in higher level language
2050, Springer, 2001. software.|IEEE Transactions on Software Engineering?2),
[9] X. Li, T. Mitra, and A. Roychoudhury. Modeling control 1989.
speculation for timing analysisReal-time System29(1), [19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and pre-
2005. cise WCET prediction by separated cache and path analysis.
[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance estirioat Journal of Real Time Systepiday 2000.
of embedded software with instruction cache modeligM [20] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitativ
Transactions on Design Automation of Electronic Systems characterization of event streams in analysis of hardtiess-
4(3), 1999. applications. Inl0th IEEE Real-Time and Embedded Tech-
[11] Mathematica 5, Wolfram Research. nology and Applications Symposium (RTAf)ges 450-461,

http://www.wolfram.com/products/mathematica/indémh 2004.

