
An FPGA Implementation of Triangle Mesh Decompression

Tulika Mitra
School of Computing

National University of Singapore
Singapore 117543

tulika@comp.nus.edu.sg

Tzi-cker Chiueh
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

chiueh@cs.sunysb.edu

Abstract

This paper presents an FPGA-based design and imple-
mentation of a three dimensional (3D) triangle mesh de-
compressor. Triangle mesh is the dominant representation
of 3D geometric models. The prototype decompressor is
based on a simple and highly efficient triangle mesh com-
pression algorithm, called BFT mesh encoding [10, 11]. To
the best of our knowledge, this is the first hardware imple-
mentation of triangle mesh decompression. The decompres-
sor can be added at the front-end of a 3D graphics card
sitting on the PCI/AGP bus. It can reduce the bandwidth
requirement on the bus between the host and the graphics
card by up to 80% compared to standard triangle mesh rep-
resentations. Other mesh decompression algorithms with
comparable compression efficiency to BFT mesh encoding
are too complex to be implemented in hardware.

1 Introduction

Three dimensional triangle mesh is the dominant rep-
resentation of 3D geometric models. However, explosive
growth in the complexity of mesh-based 3D models over-
whelms the storage, transmission, and computing capabil-
ity of existing graphics subsystems. In particular, one of
the major bottlenecks of 3D graphics architectures is the
bandwidth available on the system bus connecting the host
CPU and the graphics processor [9, 12]. For a large triangle
mesh, the bandwidth required by current triangle mesh rep-
resentations may exceed the bandwidth available between
the host CPU and the graphics processor. For example, the
host processor requires about 38MB per frame to transfer
the “Blade” model (in Table 1) using the standard triangle
representation. In addition, the host processor may need
to transfer texture images to the graphics processor. But,
the two high-speed standards available for computer system
bus, PCI and AGP, support peak bandwidth of only 528MB
and 1024MB per second. In practice, the sustained band-

width available is much less, which makes interactive ren-
dering at thirty frames per second quite difficult, if not im-
possible.

An effective solution to the problems with large 3D
meshes is to compress the mesh as much as possible on
the host processor and to send the compressed mesh to the
graphics processor. In fact, in recent years, a consider-
able amount of research efforts have been spent in devel-
oping efficient compression/decompression algorithms for
3D meshes. However, the focus of the previous research
has been oriented mainly towards minimizing the size of
the compressed mesh to save the network bandwidth or
disk storage capacity. The issue of using compressed 3D
mesh in the graphics processor in order to reduce PCI/AGP
bus bandwidth requirement is largely unexplored. This is
because rendering with compressed mesh requires decom-
pression in hardware and the current triangle mesh com-
pression algorithms are too complex to be decompressed
in hardware. We have earlier developed an efficient mesh
compression/decompression algorithm, called Breadth First
Traversal (BFT) mesh encoding [10, 11]. In this work, we
present the design and implementation of the first (to the
best of our knowledge) FPGA-based hardware prototype for
mesh decompressor. This decompressor can be added at the
front-end of a graphics processor so as to render a com-
pressed mesh encoding and thereby reduce the bandwidth
requirement between the host and the graphics processor by
as much as 80% compared to existing mesh representations.

2 Related Work

A triangle mesh is a piecewise linear surface, consisting
of a set of triangular faces, such that any two faces either are
disjunctive or share an edge or a vertex. A triangle mesh is
represented withgeometry(a set of vertex positions, color,
normal, texture, and other attributes) andconnectivity(the
incidence relations among vertices, edges, and triangles).

Traditionally, each triangle in a triangle mesh is repre-
sented independently in terms of the geometry of its three
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vertices. Assuming 32 bytes of geometry information per
vertex, theindependent trianglesrepresentation requires
32 × 3 = 96 bytes per triangle. An improvement over this
representation isindexed independent triangleswhich con-
sists of avertex arraycontaining the geometry information
for all the vertices, plus a set of triangles, each represented
by three indices (each 4 bytes) into the vertex array. How-
ever, for a large triangle mesh, the entire vertex array cannot
be stored in either on-chip or off-chip memory of a graphics
processor; it is stored in host processor memory. When the
graphics processor receives a vertex index, it has to fetch
the corresponding geometry information from host memory
over the system bus. This makes the total bus bandwidth
requirement as high as 108 bytes per triangle.

To reduce this bandwidth requirement, virtually all com-
mercial graphics processors support a more succinct repre-
sentation, calledtriangle strip. It encodes a sequence of tri-
angles such that every triangle, except for the first, shares an
edge with its immediate predecessor. Therefore, except for
the first triangle, all others can be represented by one ver-
tex each. The graphics processor deploys a two-entry vertex
buffer for temporary storage of the shared edge. Deering [2]
extended this idea to a 16-entry FIFO vertex buffer, so that
an already visited vertex need not be respecified if it exists
in the buffer. This is known asgeneralized triangle mesh
and it can potentially encode a mesh by specifying each ver-
tex exactly once. Chow [1] proposed various algorithms to
construct generalized triangle meshes so as to maximize the
vertex buffer hit rate. Finally, Hoppe [7] proposedtranspar-
ent vertex cachethat is similar to a general-purpose proces-
sor cache. Vertex cache stores vertex index as tag, geome-
try as data, and achieves hit rate similar to the vertex buffer
for generalized triangle mesh. However, none of these tech-
niques can achieve bandwidth reduction comparable to BFT
as we will see in Section 5.

The overwhelming size of traditional triangle mesh rep-
resentation has also lead to sophisticated, triangle mesh
specific compression/decompression algorithms. Triangle
mesh compression consists of (1) lossless connectivity com-
pression and (2) lossy geometry compression. In this pa-
per, we will only concentrate on connectivity compression.
Geometry compression uses quantization and predictive en-
coding, which are well studied solutions in image process-
ing with highly efficient hardware-based implementation
of decompression logic. Connectivity compression algo-
rithms on the other hand are purely software based tech-
niques [15, 6, 13, 16] aimed to reduce the network band-
width and storage requirements for triangle meshes. They
opt for higher compression efficiency, which leads to de-
compression algorithms that are too complex to be easily
implemented in hardware. As a result, we need to use
highly compressed 3D models during download and con-
vert them to not so efficient representations such as triangle
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Figure 1. BFT mesh traversal.

strip or generalized triangle mesh for rendering. In con-
trast, BFT combines high mesh compression efficiency with
hardware-amenable decompression scheme that makes it a
true end-to-end triangle mesh representation.

3 BFT Mesh Compression

In this section, we briefly describe theBreadth-First
Traversal (BFT)[11, 10] algorithm for triangle mesh con-
nectivity compression. BFT does not perform geometry
compression. However, any efficient geometry compression
algorithm can be easily integrated with BFT algorithm. The
mesh decompressor, in that case, should include a decoder
for predictive-encoded geometry data as shown in [2].

The basic idea of BFT algorithm is to traverse a triangle
mesh in a breadth-first order from a chosenseed triangle.
The vertices of the seed triangle form afrontier. A frontier
is a circular buffer of vertices. BFT visits each edge —
consisting of two consecutive vertices — of the frontier and
enumerates the unvisited triangle, if any, that is incident on
that edge in terms of thethird vertex. At the same time,
it incrementally modifies the frontier to delete the vertices
whose incident triangles have all been visited and to add the
new vertices. BFT continues to enumerate the triangles and
modify the frontier till either there is only one vertex left in
the frontier, or a frontier left withn vertices has not been
modified forn consecutive steps. Figure 1 illustrates this
traversal process with a small triangle mesh. The shaded
portion in the figure is a hole in the triangle mesh. The
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Figure 2. BFT encoding commands.

bold lines indicate the frontier. The ordering of the triangles
represents the order in which the triangles are enumerated.

The edge for which BFT attempts to find an incident and
not-yet-visited triangle is calledcurrent edgeand the two
vertices of the edge, in order of their appearances in the
frontier, are calledleft vertexandright vertex, respectively.
A current edge for which BFT cannot find any unvisited
triangle, because either it is a boundary edge or both of its
incident triangles have been visited, is called anull edge.

The third vertex used to form a triangle with the current
edge can be represented either explicitly in terms of its ge-
ometry or implicitly as a reference to some vertex that ap-
peared previously. In case of BFT, this reference is a pointer
into the frontier, specified as an offset from the right vertex
or the left vertex, depending on which offset is smaller.

3.1 Encoding Commands

Given an input triangle mesh, BFT performs the follow-
ing two steps: (1) it pre-processes the triangle mesh to find
out the visiting order of the triangles; and (2) it encodes
the mesh as a command sequence, where each command
encodes either a new triangle in terms of the correspond-
ing third vertex or the presence of a null edge. Figure 2
illustrates the different commands used by BFT compres-
sion algorithm: first five encode the cases when a triangle is
enumerated with a third vertex and the last three encode the

different null edge cases. The left hand and right hand side
of the figure represent the frontier before and after visiting
the current edge{1,2}. The bold line indicates the current
edge, and the broken lines are incident to the third vertex.

1. New-Vertex (New): BFT enumerates a new tri-
angle by pairing up the current edge with a third ver-
tex, which is represented explicitly. This command
adds the third vertex to the frontier, thereby deleting
the current edge and adding two new edges to the fron-
tier. The current edge moves to the next edge in the
frontier.

2. Right-Frontier-0 (RF0): BFT enumerates a
new triangle by pairing up the current edge with the
immediate neighbor of the right vertex. This is a case
of 0 offset value for the pointer. The right vertex is
deleted, which adds a new edge between the left and
the third vertex.

3. Left-Frontier-0 (LF0): This command is a
mirror of the previous command.

4. Right-Frontier 〈offset 〉 (RF): BFT enu-
merates a new triangle by pairing up the current edge
with a third vertex that is implicitly represented with
an offset value greater than 0 for the pointer. The off-
set value gives the distance of the third vertex from the
right vertex. This command modifies the frontier in a
similar fashion asNewcommand.

5. Left-Frontier 〈offset 〉 (LF): This com-
mand is a mirror of the previous command.

6. Null (Null): There is no unvisited triangle inci-
dent on the current edge. However, both the right- and
left vertex have some unvisited incident triangles. The
frontier is kept as it is and the current edge moves to
the next edge in the frontier.

7. Delete-Left-Vertex (DL): This command
deletes the left vertex. It is used if the left vertex has
no unvisited incident triangles. This command mod-
ifies the frontier exactly in the same manner asLF0
command, but does not enumerate any triangle.

8. Delete-Right-Vertex (DR): This command
is a mirror of the previous command.

The compressed triangle mesh should contain geometry
information in addition to BFT-encoded connectivity infor-
mation. We store geometry data for all the vertices sepa-
rately as a vertex array sorted in the order in which they
appear in the BFT mesh withNewcommands.
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Figure 3. BFT rendering pipeline.

4 BFT Mesh Decompressor

The BFT decompression algorithm dynamically recon-
structs the frontier of the BFT traversal and enumerates
triangles on the frontier according to the information en-
coded in the command sequence. This section describes the
mapping of the BFT mesh decompression algorithm to an
FPGA implementation. But first we describe how the de-
compression process is integrated with 3D graphics render-
ing pipeline.

4.1 Integrating Decompression in Rendering

The 3D graphics rendering pipeline consists of two dis-
tinct stages:geometric transformationandrasterization[5].
The geometric transformation stage maps triangles from a
3D coordinate system (object space) to a 2D coordinate sys-
tem (image space). The operations in geometric transforma-
tion stage are per-vertex operations (i.e., they require only
the vertex array and not the command stream); where the
operations in rasterization stage are per-triangle operations
(i.e., they require both the vertex array and the command
stream). Currently, the rasterization stage is almost always
implemented in dedicated graphics processor sitting on the
PCI/AGP bus. The geometric transformation stage on the
other hand can either be implemented in the graphics pro-
cessor or as a software running on the host processor. In
both cases, a major concern is the bandwidth required to
transfer the triangle mesh (transformed or untransformed)
from the host to the graphics processor. This bandwidth re-
quirement is reduced by using a BFT-mesh representation,
which in turn requires a hardware BFT mesh decompressor
as the front end of the graphics processor.

Figure 3 illustrates how the BFT mesh decompressor is
integrated into the rendering pipeline. BFT mesh consists of
a vertex array and a command stream. If geometric transfor-
mation is implemented in software, it operates on the vertex
array to create a transformed vertex array, and stores the
command stream and the transformed vertex array in host
memory. The graphics processor consists of a rasterizer and
a front-end decompressor. The decompressor DMAs the
transformed vertex array and the command stream over the

PCI/AGP bus into its vertex- and command buffer, converts
the command stream with the help of the frontier buffer
into independent triangles, and sends the resulting triangles
to the rasterizer. The decompression process is completely
transparent to the rasterizer.

If geometric transformation is implemented in hardware,
the host processor simply puts the vertex array and the com-
mand stream in host memory so that the mesh decompressor
can DMA them into its own buffers. The graphics proces-
sor in this case consists of a transformation engine, a raster-
izer, and the decompressor at the front-end. Vertices are not
transformed when they reach the graphics processor. The
decompressor sends a vertex buffer to the transformation
engine, receives back the corresponding transformed vertex
buffer, and then generates decompressed triangles for the
rasterizer. Again the decompression process is completely
transparent to both geometric transformation and rasteriza-
tion.

4.2 Architectural Design

BFT mesh encoding is designed to lend its decompres-
sion algorithm to direct hardware implementation because
(1) BFT mesh decoding logic is simple, and (2) BFT decod-
ing accesses the frontier of BFT traversal in a sequential,
localized, and completely predictable fashion. Even though
BFT requires a relatively large frontier buffer (16KB–64KB
for the test 3D models), the sequential access pattern per-
mits perfect prefetching of the required portion of the fron-
tier. Therefore, BFT decompressor rarely needs to wait for
a frontier buffer access to complete.

The FPGA-based decompressor consists of a frontier
buffer, which is equal to the maximum size of the frontier
during compression/decompression, and two pointers, the
begin-pointer and end-pointer, the entries between which
represent the frontier of BFT traversal during the decom-
pression process. Logically the frontier buffer is circular —
that is the begin-pointer is the successor of the end-pointer,
and the end-pointer is the predecessor of the begin-pointer.
Current edge is represented by the begin-pointer and its suc-
cessor. As the command for current edge is processed, the
frontier is modified. Figure 4 illustrates how the different
BFT commands modify the frontier and maintain the se-
mantic of the commands as explained in Figure 2.

Implementing the frontier as a linked list in hardware is
expensive because, when a vertex is deleted or added in the
middle of the frontier, the frontier buffer entries need to be
shifted in order to create or fill up the space for that vertex.
To avoid this problem, we append the vertices with unvis-
ited incident triangles after the end-pointer. The vertices
that do not have any unvisited incident triangle are deleted
from the frontier by simply advancing the begin-pointer to
the next entry. With this mechanism, the begin-pointer and
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its successor always represent the current edge, addition and
deletion of vertices always take place at the begin-pointer or
end-pointer, and no shifting of the frontier buffer entries is
necessary.

For all the BFT commands, the begin-pointer advances
by one, and the end-pointer advances by zero to two en-
tries at a time. When the end-pointer reaches the end of the
frontier buffer, it is wrapped around to the beginning. The
frontier buffer size is chosen as the smallest 2’s power that
is greater than or equal to the maximum frontier size. This
greatly simplifies the modulo operation for wrap around
from integer division to integer shift.

4.2.1 Prefetching of Frontier Buffer

The maximum size of the frontier buffer for BFT encoding
is proportional to the width of the breadth-first traversal tree
of the input mesh. For large triangle meshes, the size of the
frontier buffer may become too large to be maintained in
on-chip cache, thus leading to longer execution time than
expected due to off-chip memory access overhead. Fortu-
nately, BFT mesh decoding visits the vertices in a perfectly
predictable way, and therefore perfect prefetching of the
frontier buffer is possible. Also, the frontier buffer is small
enough to be stored on board (i.e., on the FPGA board) so
that BFT decompressor does not incur the extremely high
latency of fetching data from host memory over PCI/AGP
bus.

The key observation behind frontier buffer prefetching
is that the third vertex, if represented as a reference to the
frontier buffer, falls within a small distance from the current
edge. As a result, only a small window of vertices around
the current edge needs to be present on chip. The small
window is organized as two FIFO caches, one for the left
neighbors of the current edge and one for the right neigh-
bors, as illustrated in Figure 6. The left cache holds the ver-
tices visited in the recent past and the right cache holds the
vertices to be visited in the near future. This window size
is a small percentage of the total frontier buffer size. More-
over, the fact that the current edge moves in a predictable
fashion through the frontier implies that this window can be
prefetched perfectly. Maintaining only the small active win-

dow on chip incurs a performance overhead. When the third
vertex falls out of the active window, it has to be brought in
from the off-chip frontier buffer, which will incur the la-
tency of off-chip memory access. Fortunately, most ver-
tices fall within the small active window. Figure 5 illustrates
how various BFT commands modify the two caches. All
the BFT commands require prefetching of one entry from
off-chip memory. New, RF, andLF require write-back of
two entries, whereasNull requires write-back of one entry
to off-chip memory. RF0, LF0, DR, and DL on the other
hand do not require any write-back. For most 3D models,
NewandRF0/LF0 constitute about 50% and 45% of all the
commands, respectively. Therefore, the BFT decompressor
requires a sustained rate of one memory read and one mem-
ory write operation per triangle. If the time to rasterize a
triangle is longer than the time to perform one read and one
write from off-chip memory, then the read/write delay can
be completely masked. A rasterizer with peak performance
of 20 million triangles/sec requires about 50ns to rasterize
one triangle. Assuming 16 bytes of quantized geometry in-
formation per vertex (6 bytes for three coordinates, 6 bytes
for three normals, and 4 bytes for color), the BFT decom-
pressor requires 32 bytes per 50ns or 640MB/sec of peak
memory bandwidth for frontier memory access. Because
the decompressor accesses the frontier in sequential fash-
ion, current generation memory that are optimized for se-
quential access instead of random access (e.g., 133 MHz
SDRAM with peak bandwidth of 1064MB/sec) can easily
support the bandwidth requirement of the decompressor.

4.2.2 Very Large Frontier Buffer

An FPGA decompressor can have only a fixed amount of
off-chip memory for the frontier buffer. The experimen-
tal evaluation section (see Table 5) shows that BFT re-
quires 16KB–64KB of frontier buffer for 3D models whose
size ranges from 40,000 to 1.8 million triangles. A 64-
KB frontier buffer can be easily fit into on-chip cache, not
to mention on-board memory. But there is no theoretical
bound on the maximum frontier size for very large triangle
meshes, because maximum frontier size is proportional to√
v, wherev is the number of vertices. For our test triangle

meshes, maximum frontier size varies from2.4
√
v–4.3

√
v.

Therefore, it is possible that a 3D model’s maximum fron-
tier size exceeds the amount of available off-chip memory.
One solution to this problem is to use the host memory to
store the entire frontier buffer and the on-board memory on
the graphics accelerator as a cache. But this solution will
require as much bandwidth between the host and the graph-
ics processor as traditional representations, thus defeating
the purpose of BFT mesh.

To address this problem, we modify the BFT compres-
sion program to accept the amount of available on-board
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frontier memory as a parameter. If at any point during com-
pression, the maximum frontier size exceeds the limit, the
bounding volume of the model is divided into four parts.
Then each part is compressed separately to generate four
BFT meshes. If the maximum frontier size of any part again
exceeds the limit, then that part is subdivided into four parts.
This recursive subdivision continues till each part can be en-
coded as a BFT mesh without exceeding the frontier mem-
ory size limit. The vertices shared by two adjacent parts
need to be duplicated. As a result, the compression effi-
ciency of a set of BFT submeshes is less than a single BFT
mesh. However, because shared vertices are only a small
percentage of the input mesh vertices, the increase in size
due to such mesh division is expected to be small. For our
test triangle meshes, if the bounding volume is divided into
four parts, then only 1% of the vertices are shared between
the subparts. One can also use a more sophisticated mesh
partitioning algorithm such as METIS [8].

4.3 Mapping to FPGA Implementation

4.3.1 Hardware and Software Environment

We implemented the hardware BFT decompressor us-
ing DEC’s prototyping board called PCI Pamette [14].
PCI Pamette is a PCI card based on Xilinx 4000 series
FPGA (XC4010E). PCI Pamette board has four user pro-
grammable FPGAs (FPGA0, FPGA1, FPGA2, and FPGA3)
arranged in a 2×2 matrix. There is another FPGA that inter-
faces with the PCI bus and is known as PCI interface FPGA
(PIF). The interface FPGA is loaded at power-on from a
serial ROM. The host may then load the user FPGAs via
the interface FPGA. In addition, the board has two banks
of 64K× 16-bit SRAMs connected to FPGA0 and FPGA1,
respectively, and allows 4MB–256MB of DRAM to be at-
tached to FPGA3. Figure 7 illustrates how the different
components are connected together. PCI Pamette uses the
same clock frequency as the PCI clock (i.e., 33/66 MHz).
But a programmable clock generator can use the PCI clock
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as reference and can produce any frequency from 400KHz
to 100MHz.

We use Verilog hardware description language to de-
scribe the BFT decompressor and translate the high-level
design, using Xilinx tools, to a format that can be directly
downloaded into the FPGAs. In addition, PCI Pamette pro-
vides utilities that can directly transfer data between the host
and SRAM0/SRAM1, and a controller that allows one to
set the programmable clock generator and read/write out-
put/input of the user programmable FPGAs via the PCI in-
terface FPGA.

4.3.2 Datapath

The BFT decompressor prototype accepts the input BFT
mesh from the PCI bus and generates independent triangles
for the rasterizer module. The prototype decompressor can
be tightly integrated with a rasterizer to create a 3D render-
ing pipeline that can directly accept BFT mesh.

The physical layout of the prototype BFT decompressor
is shown in Figure 8. For ease of implementation, we down-
load the command stream over the PCI bus and store it in
SRAM0. The decompressor uses SRAM1 as the off-chip
frontier memory. The decompression logic is distributed
over the command module (FPGA0), which reads and de-
codes the variable-length BFT commands, and the fron-
tier module (FPGA1), which maintains the left- and right
cache, forms the triangles, and modifies the frontier and
left/right caches for each processed BFT command. Be-
cause PCI Pamette provides a limited 16-bit width data bus
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Figure 10. Detailed datapaths for command
and frontier modules.

between SRAM and FPGA, the geometry information asso-
ciated with a vertex is assumed to be 2-byte long for the pro-
totype implementation. Current generation memories can
provide 128-bit or 16-byte data bus to read/write the vertex
data in one memory access. The left- and right cache are
2 entries each due to the limited amount of logic on each
FPGA.

The decompressor is implemented as a simple pipeline
consisting of two stages: (1) command fetch and decode
stage and (2) frontier read/write stage. The first pipeline
stage is implemented in thecommandmodule and the sec-
ond pipeline stage is implemented in thefrontier module.
When the command module fetches and decodes command
i, the frontier module modifies the frontier corresponding
to commandi− 1. Figure 9 shows the substages in each of
these two pipeline stages. BFT uses variable-length com-
mands; therefore the command module maintains a small 4-
byte command buffer. The command fetch sub-stage is exe-
cuted to fetch 2 bytes from the command stream in SRAM0
only if there is space in the command buffer. The decode
substage maps the received bit string to a BFT command
and offset forRFandLF commands. If the BFT command
is Newthen the read vertex sub-stage fetches the next entry
from the vertex array.

The command, the offset, and the vertex (forNewcom-
mand) are sent to the frontier module in the next cycle. The
frontier module forms the triangle and then modifies the
frontier. The read frontier sub-stage is for prefetching from
SRAM1 and the two write frontier substages are for write-
back to SRAM1. If the third vertex is not present in the
on-chip frontier cache, then the pipeline is stalled for one

Dataset Vertex Triangle Edge
Bunny 34,834 69,451 104,288
Horse 48,485 96,966 145,449
Hand 327,323 654,666 981,999

Dragon 437,645 871,414 1,309,256
Buddha 543,652 1,087,716 1,631,574
Blade 882,954 1,765,388 2,648,082

Table 1. Characteristics of models.

Primitive Total Used Percentage
CLB 800 723 90%

Flip-flop 1600 381 24%
4-input LUT 1600 1313 82%
3-input LUT 800 165 21%

Table 2. Area requirement of decompressor.

cycle to fetch the vertex from the off-chip frontier memory,
i.e., SRAM1.

Figure 10 shows register-level details of the command
and frontier modules. The begin-pointer and end-pointer
are the pointers to the begin and end of the frontier in
SRAM1. Command address and geometry address are the
pointers to the command stream and the vertex array in
SRAM0, respectively.

5 Performance Evaluation

In this section, we present the performance evaluation
of the BFT mesh decompressor and demonstrate the per-
formance advantage of integrating mesh decompression in
the 3D rendering pipeline. We use six triangle-mesh based
3D models of varying complexity for experimental evalu-
ation. Table 1 shows the characteristics of these datasets.
The quantized geometry information associated with each
vertex is 16 bytes (6 for coordinates, 6 for normals, and
4 for color). Using predictive encoding of the vertex ge-
ometry can further reduce the size of each vertex. Table 2
shows the number of different basic building blocks used in
the FPGA implementation of the BFT mesh decompressor.

5.1 Decompression Performance

PCI Pamette runs at a maximum clock speed of 100MHz.
At this clock rate, it requires 30ns to synchronously
read or write from an on-board SRAM chip (Samsung
KM68257C). Therefore the pipeline cycle (refer to 9) in
the prototype implementation is chosen to be 120ns and the
maximum achievable decompression rate with this proto-
type is 8.33 million triangles/sec. The actual decompres-
sion rate is smaller due to the presence of commands that
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Dataset Million Triangles/sec
Skull 7.867
Bunny 8.176
Horse 8.076
Hand 8.065

Dragon 7.785
Buddha 7.676
Blade 7.921

Table 3. Prototype FPGA decompression rate.

Dataset Tri Strip BFT
(% Tri) (% Tri)

Skull 1.920 0.931 (48.5) 0.331 (17.2)
Bunny 3.333 1.485 (44.5) 0.573 (17.2)
Horse 4.654 1.990 (42.8) 0.799 (17.2)
Hand 31.423 14.785 (47.0) 5.400 (17.2)

Dragon 41.827 20.336 (48.6) 7.259 (17.4)
Buddha 52.210 25.392 (48.6) 9.041 (17.3)
Blade 84.738 38.226 (45.1) 14.596 (17.2)

Table 4. Bandwidth required between host
and graphics processor in MB.

do not form any triangle and the stall for cache misses. Ta-
ble 3 shows the decompression rate for the test 3D models
running on the FPGA prototype.

5.2 Bus Bandwidth Reduction

Table 4 shows the bandwidth required between the
host and the graphics processor for three different triangle
mesh representations: independent triangles, triangle strips,
and BFT. Triangle strips are generated from the triangle
mesh models using Stripe version 2.0 [3], which is a non-
commercial software based on the stripification algorithm
proposed in [4]. Triangle strip requires some extra bytes
to distinguish one triangle strip from the next. We ignore
that cost in our evaluation. On an average, the bandwidth
requirement for triangle strip is 45% of that of independent
triangles, and the bandwidth requirement for BFT is 17%
of that of independent triangles. Again predictive encoding
of the geometry data can further reduce BFT’s bandwidth
requirement by as much as five times.

Since the triangle strip generation code for transparent
vertex caching [7] is not available, we cannot directly com-
pare BFT with the vertex caching approach. However, ver-
tex caching uses indexed triangle strip representation that
requires at least onelog(v) bit vertex index per triangle
(v is the number of vertices) for connectivity alone, com-
pared to 1.86–2.53 bits per triangle for BFT connectivity.

Dataset Frontier Frontier Vertex %
Vertices Buffer Array

Skull 605 16 320 5.00%
Bunny 541 16 557 2.87%
Horse 538 16 776 2.06%
Hand 1,650 32 5,237 0.61%

Dragon 2,148 64 7,002 0.91%
Buddha 2,383 64 8,698 0.73%
Blade 3,515 64 14,127 0.45%

Table 5. Storage requirement.

In addition, vertex caching has a miss rate of 0.65 per trian-
gle, which translates to 30% higher bandwidth requirement
compared to BFT.

5.3 Frontier Buffer size

A major concern with the FPGA implementation of the
BFT mesh decompressor is the size of the frontier buffer.
The frontier buffer, if larger than the on-chip cache, can re-
side in off-chip memory; but it should still reside on-board
— that is, local to the graphics card. Table 5 shows the
maximum frontier size for different datasets in terms of the
number of vertices and the amount of memory required for
frontier buffer. Actual allocated frontier buffer size is equal
to the smallest 2’s power that is greater than or equal to the
maximum frontier size. For all the test 3D models, the fron-
tier buffer size is no more than 64KB, even when the input
3D model has close to million vertices. This implies that the
frontier buffer can be easily stored in off-chip memory, if
not on-chip. Compared to the vertex array scheme, Table 5
shows that BFT requires lower than 1% as much storage for
large models.

5.4 Frontier Cache Hit Rate

The key claim of the proposed BFT scheme is that at any
point of time, only a small window of the frontier buffer
is needed to allow vertex reuse. As a result, the on-chip
storage requirement is small and is independent of the input
mesh size. Figure 11 demonstrates that this is indeed the
case by showing the third vertex hit rate versus the cache
size. If the cache size isN , then the third vertex reference
is a hit if the offset is less than or equal toN2 −1 in either di-
rection (left or right). The hit ratio is calculated by dividing
the number of cache hits with total third vertex references.
These measurements show that the hit rate is 96-98% with
just 4-entry cache, which is sufficient to attain high decom-
pression performance.
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Figure 11. On-chip Cache Hit Rate for BFT.

6 Conclusion

Compression of 3D triangle mesh is a promising ap-
proach towards solving the bandwidth problems associated
with large 3D meshes. This paper demonstrates the prac-
ticability of this approach for high-performance polygonal
rendering with prototype FPGA implementation. Experi-
mental evaluation of our approach suggests that compressed
3D mesh representation can significantly reduce the band-
width requirement in the rendering pipeline, thereby en-
abling a 3D graphics system to render very large 3D meshes
that was not possible with traditional uncompressed ap-
proaches.
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