
DISJOINT PATTERN ENUMERATION FOR CUSTOM INSTRUCTIONS IDENTIFICATION

Pan Yu Tulika Mitra

Department of Computer Science
National University of Singapore

{panyu,tulika }@comp.nus.edu.sg

ABSTRACT

Extensible processors allow addition of application-specific cus-
tom instructions to the core instruction set architecture. These
custom instructions are selected through an analysis of the pro-
gram’s dataflow graphs. The characteristics of certain applications
and the modern compiler optimization techniques (e.g., loop un-
rolling, region formation, etc.) have lead to substantially larger
dataflow graphs. Hence, it is computationally expensive to auto-
matically select theoptimal set of custom instructions. Heuristic
techniques are often employed to quickly search the design space.
In order to leverage full potential of custom instructions, our previ-
ous work proposed an efficient algorithm forexactenumeration of
all possible candidate instructions (or patterns) given the dataflow
graphs. But the algorithm was restricted to connected computa-
tion patterns. In this paper, we describe an efficient algorithm to
generate all feasible disjoint patterns starting with the set of feasi-
ble connected patterns. Compared to the state-of-the-art technique,
our algorithm achieves orders of magnitude speedup while gener-
ating the identical set of candidate disjoint patterns.

Keywords: ASIPs, customizable processors, custom instruction,
instruction-set extensions, subgraph enumeration algorithm.

1. INTRODUCTION

The transition from desktop to embedded computing has made it
crucial to design high performance, low cost embedded systems
within very short time-to-market window. The conventional ap-
proach of designing “hand-crafted” ASIC is too expensive and in-
flexible. On the other hand, general purpose processors, while
inexpensive, are yet to meet the demanding performance require-
ment and usually consume too much power. These factors have re-
sulted in the emergence of instruction-set extensible processors that
consist of an existing processor core extended with application-
specificcustom instructions. These custom instructions execute
on custom functional units(CFU) implemented in reconfigurable
logic (as in Stretch S5 [3], NIOS from Altera [2] and Microblaze
from Xilinx [21]) or ASIC (for example Lx [12] and Xtensa [13]).
Application-specific instructions help simple embedded processors
achieve considerable performance/energy efficiency. Moreover, the
fact that the same set of custom instructions can benefit different
programs from an application domain illustrates the flexibility of
this approach [10, 12].

A custom instruction encapsulates the computation of a fre-
quently executed subgraph of the program’sdataflow graph (DFG).

A CFU is simply the hardwired datapath implementation of a cus-
tom instruction. Optimized hardwired CFUs help to improve per-
formance through parallelization and chaining of operations. At
the same time, custom instructions result in compact code size, re-
duced number of instruction fetch/decode and elimination of tem-
porary registers. All these factors reduce the total power consump-
tion. When the same computation pattern appears elsewhere in the
program or even in other programs, it can be converted to the same
custom instruction and executed on the same CFU.

However, identifying the suitable set of subgraphs from a pro-
gram’s DFG to form a set of custom instructions that is optimal in
performance, power and hardware cost (i.e., area) is not an easy
problem. This problem involves two subproblems: (1)custom in-
struction identification— enumeration of a set of candidate sub-
graphs from the program’s DFG and (2)custom instruction selec-
tion — evaluation of the performance, power, area of each candi-
date and then selection of an optimal subset under various design
constraints. In this paper, our focus is on the first problem. Inter-
ested readers can refer to [4, 10, 14, 18, 22] for various solutions
to the second problem.

Enumerating all possible subgraphs of a given graph is in-
tractable and computationally expensive. Previous approaches ei-
ther put very limiting constraints on the number of operands [11,
19] or use heuristics [7, 10] to explore the design space quickly.
However, it has been shown [6, 22] that such approaches can signif-
icantly restrict the performance potential of using custom instruc-
tions. There are only two works [18, 23] targeting exhaustive enu-
meration of feasible patterns1. In [18], the algorithm walks through
the enumeration space represented by a binary decision tree, and
prunes the space effectively based on constraint violation of the
patterns. However, in the worst case, it will look at2N patterns
whereN is the number of nodes in the DFG. Therefore, scalability
issues may occur when it deals with very large DFGs. Later, our
previous work [23] addresses the scalability problem by present-
ing a fast pattern enumeration algorithm. Although the method is
more scalable, it only produces the set of feasible connected pat-
terns, while [18] generates the set of feasible connected and disjoint
patterns. In this paper, an efficient algorithm for the enumeration
of disjoint patterns is introduced. The algorithm uses the set of fea-
sible connected patterns as the base and can be integrated with any
connected pattern enumeration algorithm.

1The method in [18] is an improved version of a previous one in [6] by
the same authors



2. RELATED WORK

The previous work in pattern enumeration can be classified accord-
ing to the restrictions imposed on the feasibility of patterns and
properties of generation process as follows:

Number of Operands The maximum number of input and out-
put operands of custom instructions is typically constrained due to
length of instruction encoding and/or ports to register files. How-
ever, these restrictions can sometime lead to very efficient enumer-
ation algorithms. For example, Pozzi et al. [19] have developed a
linear time algorithm to identify the maximal Multiple Inputs Sin-
gle Output (MISO) patterns. J. Cong et al. [11] enumerate all pos-
sible K-feasible MISO patterns (whereK is the input operands
constraint) through a single pass of the DFG. The problem of using
Multiple Inputs Multiple Outputs (MIMO) patterns is that there can
potentially be exponential number of them in terms of the number
of nodes in the DFG. As a result, most previous works [4, 7, 10]
only generate a subset of the candidate patterns that meet input,
output, and convexity constraints using various heuristics. How-
ever, they may miss opportunities to produce the globally optimal
set of custom instructions. Other than ours, Pozzi’s work [18] is
the only known approach that exhaustively enumerates all possi-
ble patterns. However, scalability becomes a major obstacle when
DFGs size increases.

Connectivity A candidate subgraph (pattern) may contain one
or more disjoint components. Including multiple components in
a subgraph increases the potential to exploit parallelism and thus
may provide better performance if the base architecture does not
support instruction-level parallelism (ILP). On the other hand, do-
ing so may not be beneficial for an ILP processor that would have
been able to exploit this parallelism anyway. Under such context,
custom instruction selection also needs to be considered carefully
together with instruction scheduling to ensure reduction of the crit-
ical path. [4, 7, 10, 11, 19, 23] identify subgraphs with only one
component, while [8], [18] and [14] combine disjoint components.

Overlap As the final set of selected custom instructions do not
normally overlap in the DFG, [7, 19] do not consider overlapped
candidate patterns (e.g., patterns{1, 2, 3} and{2, 4} in Fig. 1 over-
lap at node 2, so only one of them is enumerated). However, other
works enumerate overlapped patterns to produce a better optima
through pattern reuse, specially under tight area budget.

Explicitness Two recent works [5, 17] use ILP formulation to
generate the single best performing pattern in each iteration of their
algorithms. In this way, all the patterns are potentially enumerated
in an implicit manner and evaluated by the ILP solver. However,
as only one pattern is generated, other patterns are lost. All other
works identify patterns explicitly.

We aim to enumerate all feasible patterns (connected, disjoint,
and possibly overlapped) that meet the input, output and convexity
constraints. This gives the selection process an opportunity to find
the globally optimal solution. Our approach is scalable both in
terms of DFG size as well as number of input/output operands,
and can be applied to large DFGs produced after modern compiler
transformation techniques.

0

1

3

5

7

15

16

2

4

6LD

14

LD

8

10

12

9

11

13

Fig. 1. An example dataflow graph. Invalid nodes corresponding
to memory load operations (LD) are unshaded. Valid nodes are
labeled in reverse topologically sorted order.

3. CUSTOM INSTRUCTION ENUMERATION PROBLEM

In this section, we formally define the custom instruction enumer-
ation problem.

3.1. Dataflow Graph (DFG)

Given a program, custom instructions are identified on the dataflow
graphs corresponding to the basic blocks. ADataFlow Graph
G(V, E) represents the computation flow of data within a basic
block. The nodesV represent the operations and the edgesE rep-
resent the dependencies among the operations.G(V, E) is a di-
rected acyclic graph (DAG). Nodeu is a predecessor ofv if there
exists a directed path{u, x1, . . . , xi, v} between them, denoted as
u ∈ predecessor(v). Note thatv ∈ predecessor(v).

The architectural constraints may not allow all types of opera-
tions to be included as part of a custom instruction. For example,
memory access and control transfer operations are typically not in-
cluded. Therefore, the nodes of the DFG are partitioned into valid
nodes and invalid nodes. A node in the DFG is avalid node if
its corresponding operation can be included as part of a custom in-
struction; otherwise, it is aninvalid node. An example DFG is
shown in Fig. 1.

3.2. Patterns

Given a DFG, apattern is a induced subgraph of the DFG. A pat-
tern can be a possible candidate for custom instruction. For con-
venience, we represent a pattern by its set of nodes. A patternp
is connectedif for any pair of nodes〈u, v〉 in p, there exists a
path betweenu andv in the undirected graph that underlies the di-
rected induced subgraph ofp. A pattern isdisjoint if it is not con-
nected. The number of input and output operands ofp are IN(p)
andOUT(p), respectively.

The following special patterns are of interest for custom in-
struction enumeration problem.

• MISO : A patternP with only one output operand is called
a MISO (Multiple Input Single Output) pattern. Clearly,
a MISO pattern should be connected. MISO patterns are
supported by all instruction set architectures (ISA).



• Connected MIMO: A connected pattern with multiple in-
put operands and multiple output operands is called a con-
nected MIMO (Multiple Input Multiple Output) pattern.
MIMO patterns may not be supported by all ISAs.

• Disjoint MIMO : A disjoint pattern with multiple input and
multiple output operands is called a disjoint MIMO pattern.
A disjoint MIMO pattern consists of two or more MISO or
MIMO patterns. Disjoint MIMO patterns are more useful
for architectures with limited or no mechanisms to exploit
instruction-level parallelism.

3.3. Feasibility of Patterns

Given a DFG, not all patterns are feasible as custom instructions.
A patternp is convex if there does not exist any path in the DFG
from a nodem ∈ p to another noden ∈ p that contains a node
x /∈ p. For example,{6, 14, 15} is a convex pattern in Fig. 1. A
pattern can be implemented as custom instruction if it is convex as
non-convex patterns cannot be executed atomically. For example,
in Fig. 1, pattern{4, 6, 14} is non-convex (assuming memory load
is an invalid operation).

In addition, restrictions on instruction length and number of
ports to the register file can put constraints on the maximum num-
ber of allowed input and output operands for a pattern. We call
theseinput constraint and output constraint respectively. For
example, if a custom instruction is allowed to have only one out-
put operand, then the pattern{6, 14, 15} in Fig. 1 is infeasible. In
summary,a pattern extracted from the DFG is feasible only if it is
convex and satisfies the input and output constraints.

3.4. Problem Definition

Given the DFG corresponding to a code fragment, the problem is
to generate all feasible disjoint patterns corresponding to the DFG.
We now transform the problem using the following theorem.

Theorem 1. Any connected componentp of a feasible disjoint pat-
terndp must be a feasible connected pattern.

Proof. A connected componentp of a disjoint MIMO patterndp is
a maximal connected subgraph indp. An input ofp must also be an
input ofdp. SoIN(p) ≤ IN(dp). As dp satisfies input constraint,
p must also satisfy the input constraint. The same reasoning holds
for the output constraint.

We prove by contradiction thatp is convex. Let us assumep is
non-convex. Then there exists at least a pair of nodesm, n ∈ p s.t.
there exists a path fromm to n that contains a nodex /∈ p. There
are two cases forx. (1)x /∈ dp: In this casedp is also non-convex,
which is a contradiction; (2)x ∈ dp: As p is a maximal connected
subgraph,x is not connected top. So there must be two nodes
y, z /∈ p and connected top on a path〈m, y, . . . , x, . . . , z, n〉. We
havey, z /∈ dp, otherwise they will belong top too. So now we
have two paths〈m, y, . . . , x〉 and〈x, . . . , z, n〉 that makedp non-
convex, which is again a contradiction. Sop must be convex.

The above Theorem shows that a feasible disjoint pattern can
be generated from one or more feasible connected patterns. Given
the DFG and all the feasible connected patterns corresponding to
a code fragment, the problem then is to enumerate all feasible dis-
joint MIMO patterns for the DFG.

4. DISJOINT MIMO PATTERN ENUMERATION

Disjoint pattern enumeration algorithm produces the set of all fea-
sible disjoint MIMO patterns denoted asDPS. Each such disjoint
patterndp ∈ DPS is composed of more than one connected pat-
terns and satisfy the input, output and convexity constraints. We
use the the set of all feasible connected MIMO patterns denoted as
CPS as the base to produce all the disjoint patterns.

We observed that the number of output nodes of any feasible
disjoint pattern is simply the summation of those of its constituent
connected patterns. Based on this observation, we classify the pat-
terns according to the the number of output nodes. We defineCPSi

andDPSi as set of all the feasible connected patterns and disjoint
patterns with exactlyi output nodes, respectively. Note that accord-
ing to our definitionCPSi ∩DPSi = ∅. Feasible disjoint patterns
with n output nodes can be generated by combining feasible con-
nected patterns with less thann output nodes. More formally, we
have to consider all possiblepartitionsof n (a partition of a posi-
tive integern is a way of writingn as a sum of positive integers)
except for the partition with single elementn. For example, the
partitions of integer4 are4, 3+1, 2+2, 2+1+1, 1+1+1+1.
Therefore

DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2)
∪(CPS2 × CPS1 × CPS1)
∪(CPS1 × CPS1 × CPS1 × CPS1)

where× and∪ represent cross product and union operations, re-
spectively. However, we can simplify the disjoint pattern genera-
tion process by replacing certain parts of the above equation with
DPSi. Following we show the equations for disjoint patterns with
up to 5 output nodes.

DPS1 = ∅
DPS2 = CPS1 × CPS1

DPS3 = (CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1)
= (CPS2 × CPS1) ∪ (DPS2 × CPS1)

DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2)
∪(CPS2 × CPS1 × CPS1)
∪(CPS1 × CPS1 × CPS1 × CPS1)

= (CPS3 × CPS1) ∪ (CPS2 × CPS2)
∪ ((CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1))× CPS1

= (CPS3 × CPS1) ∪ (CPS2 × CPS2)
∪(DPS3 × CPS1)

DPS5 = (CPS4 × CPS1) ∪ (CPS3 × CPS2)
∪(DPS4 × CPS1)

The above equations indicate that the disjoint patterns should be
generated in increasing order of the number of output nodes (i.e.,
DPS2, DPS3, ...). Also each cross product operation is performed
on two sets, i.e., each disjoint pattern is obtained by composing
two previously generated patterns (connected or disjoint), thus sim-
plifying the generation algorithm. Note that starting fromDPS6,
cross product operation on more than two sets need to be per-
formed; for exampleCPS2 × CPS2 × CPS2 cannot be resolved.
However, the termCPS2 × CPS2 appears during the generation
of DPS4. By re-using these intermediate results, we can still en-
sure that the cross product is always performed with two sets.

Pruning We observe that directly computing the right side of
each equation may produce infeasible or redundant patterns. For
example, if we combine two connected patterns that overlap with



2

10

(a) (b)

p1

p2

upScope(p1)

4 5

3

6

7

8 2

10

4 5

3

6

7

8

Fig. 2. Non-connectivity/Convexity check based on upward scope.
(a)p2 connects withp1. (b) p2 introduces non-convexity.

each other, the resulting pattern will either be connected or will
have lesser number of output nodes than expected. Non-convex
patterns may also be generated in this process. In order to avoid
this, we must ensure that each feasible disjoint pattern is generated
by combining two patternsp1 andp2 (disjoint or connected) that
are (1) disjoint from each other and (2) there is no path fromp1 to
p2 or p2 to p1. The second condition ensures that combining the
two patterns does not result in a non-convex disjoint pattern.

We defineupward scope of a patternp (upScope(p)) for
this purpose. It is the collection of all the predecessors of the
nodes in patternp. When combining two patternsp1 andp2, if
p1 ∩ upScope(p2) 6= φ or p2 ∩ upScope(p1) 6= φ, either non-
connectivity and/or convexity condition will be violated; thus they
need not to be combined. Fig. 2 shows these two cases. In disjoint
pattern generation process, the upward scope for each pattern need
to be computed and stored to perform this check.

To further prune the design space, we first number the nodes
according to reverse topologically sorted order. Next we define
CPSv

i as the set of feasible connected patterns withi output nodes
andv as the smallest numbered node. Similar definition applies to
DPSv

i . Clearly,

DPSi =
[

v∈valid nodes

DPSv
i

DPS =

MAXOUT[

i=2

DPSi

whereMAXOUT is the output constraint.
Algorithm 1 details the disjoint pattern generation steps. It

computesDPSv
i for each valid nodev in the innermost loop (line

17) according to the corresponding equation (line 8), aggregates
them to formDPSi (line 20) and finallyDPS (line 21).

DPSv
i is computed by combining pattern sets of nodev with

pattern sets of nodeu, whereu is bigger thanv in reverse topo-
logically sorted order (line 6). Non-symmetrical terms, such as
CPS1 × CPS2 should be combined twice (line 18–19). Upward
scope check helps reduce the design space at two places. First,
nodeu can be entirely bypassed if it falls inupScope(v) (line
7); otherwise non-connectivity or convexity will be violated. Sec-
ond, constituent patternp1 from pattern set ofv can be bypassed if
upScope(p1) overlaps withu (line 10). These two checks bypass
a set of combinations at each time and greatly reduce the search
space. A normal upward scope check between two constituent pat-
terns is conducted before combining them (line 13). Lastly, the

Algorithm 1 : Feasible disjoint pattern enumeration
begin

DPS := φ;1
for i = 2 to MAXOUT do2

DPSi := φ;3
for all valid nodesv of DFG in reverse topological orderdo4

DPSv
i := φ;5

for all valid nodesu s.t.order(u) > order(v) do6
if u ∈ upScope({v}) then continue with the nextu;7
for every termT on r.h.s. of the equation ofDPSi do8

Let T = T1× T2;
for all the patternsp1 in T1 with smallest nodev do9

if u ∈ upScope(p1) then10
continue with the nextp1;11

for all patternsp2 in T2 with smallest nodeu do12
if p1 ∩ upScope(p2) 6= φ or13
p2 ∩ upScope(p1) 6= φ then

continue to the nextp2;14
tmp := p1 ∪ p2;15
if InCheck (tmp) then16

DPSv
i := DPSv

i ∪ {tmp};17

if T1 6= T2 then18
repeat lines 9 to 17 by exchanging the place ofT119
andT2;

DPSi := DPSi ∪ DPSv
i ;20

DPS := DPS ∪ DPSi;21

end

resultant pattern is added toDPSv
i subject to input check (line 16–

17). A comprehensive illustration of the algorithm is given in [24]
with an example DFG.

4.1. Optimizations

Data structures We use fixed-length bit vectors to represent each
pattern. The length of the bit vectors is equal to the number of
nodes in the DFG. Given the bit vector of a pattern, each bit simply
indicates the presence and absence of a node in that pattern. Bit
vector representation provides a very natural and efficient means to
combine two patterns (as in line 15 of Algorithm 1 through bit-wise
OR operation). Many other information related to node set, such
as predecessors and upward scope of a pattern, are also represented
as bit vectors.

Patterns in a pattern set are sorted according to their bit vector
values. To perform efficient insertion that cannot be achieved ei-
ther with sorted array or linked list, we maintain a set of patterns as
a 2-3 Tree [1]. Every insertion of a pattern can be achieved within
O(log2(n)) time, wheren is the total number of patterns present
in the 2-3 tree. Sorted pattern set enables further pruning in Algo-
rithm 1.

Further Pruning In Algorithm 1, when combiningp1 andp2
fails upScope check (line 13–14),p2 is skipped. Moreover, all the
patterns in the set that are super graphs ofp2 can also be skipped.
Unfortunately, these patterns are scattered throughout the pattern
list. Due to the sorted pattern list, we can still efficiently skip
the patterns that are super graphs ofp2 and the additional nodes
have higher reverse topologically sorted order than the nodes in
p2. Similar reasoning applies to line 10–11 forp1.



0011 0100 0101 01100000 0001 0010 1010 1100 1101 1110 11110111 1000 1001 1011 END

Fig. 3. Bypass pointers (dashed arrows) on a linked list of patterns.

Suppose nodei occupies theith bit from the left (i.e., node 0
is represented as the leftmost bit). Under such representation, the
patterns that can be safely skipped withp are the ones with the
same bit sequence up top’s rightmost “1”. For example, ifp is
0101000, at most 8 patterns can be bypassed whose values range
from 0101000 to 0101111. So we can safely jump to the first pat-
tern with bit vector value larger than0101111 (this pattern may not
be0110000 because patterns in the set may not be continuous). In
order to make use of this, we add abypass pointer to each pat-
tern, pointing to the next pattern that can be skipped to ifupScope
check is failed. Fig. 3 illustrates a list of patterns with their bypass
pointers. To compute the bypass pointers, we traverse the linked
list once sequentially while maintaining a stack. We definebypass
valueas the largest value that can be skipped for each pattern (e.g.,
for 0101000, the bypass value is0101111). When we are at pat-
tern p, we pop out all the patterns on the top of the stack whose
bypass value is less thanp’s bit vector value and set their bypass
pointers top, and then we pushp onto the stack. At the end of the
list, we set the bypass pointers of remaining patterns on the stack
to the END of the linked list.

5. EXPERIMENTAL EVALUATION

We compare the efficiency of our algorithm against the current
state-of-the-art algorithm [18] in this section. We first briefly de-
scribe the current state-of-the-art algorithm for exhaustive enumer-
ation, as we use it as the baseline for comparison purposes.

5.1. SingleStep Algorithm

We call the algorithm in [18]SingleStepalgorithm as it enumer-
ates all feasible MISO, connected MIMO, and disjoint MIMO pat-
terns through a combined design space exploration. In contrast,
we call our algorithmMultiStep algorithm as it generates MISO,
connected MIMO, and disjoint MIMO patterns in three different
stages.

The SingleStep algorithm first assigns labels0 . . . N− 1 to
the valid operations (nodes) of the DFG in reverse topological or-
der, whereN is the number of valid operations in the DFG. It
then searches an abstract binary tree containingN + 1 levels and
2N+1 − 1 nodes to generate feasible patterns. The root node at
level 0 represents the empty pattern. The two children of the root
represent the presence and absence of operation 0, i.e., an empty
pattern and a pattern containing operation 0, respectively. The
nodes at leveli (0 < i ≤ N) represent all possible patterns with
operations0 . . . i− 1. Basically, the search tree visits the oper-
ations in reverse topological order and explores the patterns cor-
responding to presence/absence of each operation. Clearly, the
search space is exponential. However, the algorithm uses a clever
strategy to prune the search space. If the pattern corresponding to
a nodes in the abstract search tree violates output and/or convexity

Benchmark Domain
BB % of Total
Size Exec. Time

rijndael† Encryption 894 61%
blowfish† Encryption 334 46%

sha(unroll)† Encryption 1468 54%
cjpeg† Encoding 154 7%
MD5§ Encryption 943 67%

Table 1. Benchmark Characteristics. The size of basic block are
given in terms of number of nodes (instructions).

constraint, then there is no need to explore the subtree ofs. As
the operations in the DFG are visited in reverse topological order,
all the patterns corresponding to the nodes in the subtree ofs are
guaranteed to violate output and/or convexity constraint. Besides,
certain cases of input violation caused by permanent inputs, which
cannot be resolved in the deeper subtree, can also be used to prune
the search space.

5.2. Experiment Setup

Table 1 shows the characteristics of the benchmarks used in our ex-
periments. Benchmarks marked with† are taken from MiBench [15],
and§ from the internet2. These benchmarks fall into encryption
and multimedia encoding domains, which are typically computa-
tion oriented and involve very large DFGs. We choose one fre-
quently executed basic block from each benchmark for the DFG.
Note that a large portion of time is spent in executing the chosen
basic block for each benchmark, and this justifies the effort in se-
lecting patterns from there large basic blocks.

The benchmarks are compiled and evaluated under SimpleScalar
tool set using SimpleScalar ported gcc-2.7.2.3 with -O3 optimiza-
tion [9]. We have run all the experiments on a 3.0GHz Pentium
4 machine with 1GB memory. We have measured the time taken
by the enumeration algorithms using the Pentium time-stamp cycle
counter.

5.3. Efficiency Comparison on Pattern Enumeration

Our algorithm generates all the feasible connected patterns using
algorithm presented in our previous work [23], and then enumer-
ates all the feasible disjoint patterns.

Table 2 contains the results for all the benchmarks under differ-
ent input/output constraints. Two algorithms produce the same sets
of feasible patterns (connected and disjoint) for each benchmark
(under “No. of Feasible Patterns” column). The fourth column is
the number of patterns subjected to different constraint checks by
SingleStep algorithm. The fifth and sixth columns are the num-
ber of patterns checked in connected pattern enumeration step and
disjoint pattern enumeration step of MultiStep algorithm respec-
tively3. In general, the search space of MultiStep algorithm is
much smaller than that of SingleStep algorithm. Moreover, the
search space of MultiStep algorithm for connected patterns is very
small, thus the search for disjoint patterns dominates the enumer-
ation. The last two columns presents the actual execution time of

2http://sourceforge.net/projects/libmd5-rfc by L. Peter Deutsch
3Reported numbers for connected pattern enumeration is different

from [23] due to new pruning techniques introduced. Interested readers
can refer to [24] for more information.



Search Search Space No. of Time Time Speedup
Benchmark IN OUT Space MultiStep Feasible SingleStepMultiStep SingleStep

MultiStepSingleStepConnected Disjoint Patterns (sec) (sec)

Rijndael

3 1 412567 1926 0 437 0.446 0.012 37
3 2 33014612 3450 116666 3612 36.99 0.021 1761
3 3 434738397 3744 812455 3612 518.7 1.102 471
4 1 424929 2425 0 675 0.754 0.015 50
4 2 44573604 13125 169762 54203 54.85 0.486 113
4 3 1280116614 6305113599267 66785 1564 18.54 84
5 1 437287 2885 0 714 0.475 0.018 26
5 2 49440953 19989 176534 115434 56.75 0.722 79
5 3 2095522364 7277126956483 520993 2296 43.93 52

Blowfish

3 1 65226 823 0 177 0.063 0.003 21
3 2 430665 1378 3354 522 0.547 0.009 61
3 3 751917 1528 11634 522 2.297 0.018 128
4 1 70145 1163 0 279 0.168 0.004 42
4 2 645364 3923 4580 2577 0.769 0.018 43
4 3 1671412 4683 44452 2937 5.534 0.062 89
5 1 71550 1527 0 307 0.069 0.005 14
5 2 746739 9582 4608 4728 1.662 0.027 62
5 3 2876509 11916 73442 8428 7.498 0.126 60

Sha(unroll)

3 1 6391404 12029 0 1222 11.41 0.047 243
3 2 94121024 17682 79072 6172 217.6 0.331 657
3 3 365542922 20545 515750 9796 1328 1.135 1170
4 1 7836042 35680 0 2343 13.93 0.121 115
4 2 152320527 57246 116723 38728 331.5 0.704 471
4 3 866118119 81255 3905462 78566 2616 6.359 411
5 1 8995689 90456 0 3997 15.91 0.297 54
5 2 215044666 146414 166911 82022 449.8 1.360 331
5 3 7577280675 321797 7487850 280809 4312 15.44 279

Cjpeg

3 1 34715 717 0 166 0.020 0.001 20
3 2 2571515 970 39945 911 1.507 0.037 41
3 3 37250374 998 228304 960 22.53 0.192 117
4 1 37343 1537 0 306 0.022 0.003 7
4 2 4234944 2985 84718 13590 2.485 0.113 22
4 3 122703827 3391 4771054 18180 73.35 4.662 16
5 1 39406 3789 0 387 0.223 0.006 37
5 2 5571468 9221 116771 37603 3.277 0.210 16
5 3 271219380 1411815162301 142348 161.4 17.68 9

MD5

3 1 996513 3142 0 606 2.632 0.019 139
3 2 4489507 4399 75841 1255 17.58 0.155 113
3 3 8210790 4525 118955 1328 37.92 0.247 109
4 1 1124690 5584 0 1200 3.186 0.028 114
4 2 7006628 7593 110519 43106 27.36 0.354 77
4 3 13460076 8245 6703984 46028 60.60 9.745 6
5 1 1194981 9156 0 1613 4.030 0.041 98
5 2 9730310 11936 134698 79737 34.27 0.543 63
5 3 21367000 15215 9921718 119155 90.94 15.38 6

Table 2. Comparison of enumeration algorithms

the two algorithms. MultiStep outperforms SingleStep on orders
of 10X to 1000X as depicted in the last column.

6. CONCLUSION

In this paper, we have introduced an efficient algorithm to enumer-
ate all feasible candidate patterns under various architectural con-
straints. Compared with a previously proposed approach targeting
the same problem, the running time of our algorithm achieves or-
ders of magnitude speedup.

Input/output and convexity constraints are the most general
and minimal constraints on the dataflow subgraphs for CFU imple-
mentation. The specialty of particular CFU architectures, if any,
can be applied on the complete set of of enumerated subgraphs to
obtain the conforming ones; thus helping to reduce the number of
candidates in the later custom instruction selection phase.

Exhaustive enumeration of candidate subgraphs favors pattern
reuse through isomorphism. Even though isomorphism check is
costly in general, finger print of a subgraph such as number of
different type of operations can be used to quickly exclude non-
identical pairs. However, optimal instruction selection on the com-
plete set of subgraphs may not be practical. Consequently, heuris-
tics to filter out most insignificant subgraphs are crucial. Note how-
ever, it is not the same as using heuristics for enumeration right
from the beginning. Exhaustive enumeration provides a complete
set of patterns for reuse and scheduling possibilities, which cannot
be provided by current enumeration heuristics.

7. ACKNOWLEDGMENTS

This work was supported by NUS grant R252-000-292-112.

8. REFERENCES

[1] A. Aho, J. Hopcroft, and J.D.Ullman.Data structures and Algorithms. Addison-
Wesley, 1987.

[2] Altera. Nios embedded processor system development.http://www.
altera.com/products/ip/processors/nios .

[3] J. M. Arnold. S5: The architecture and development flow of a software config-
urable processor. InFPT, 2005.

[4] M. Arnold and H. Corporaal. Designing domain-specific processors. InCODES,
2001.

[5] K. Atasu, D. G̈unhan, and and̈Ozturan, Can. An integer linear programming
approach for identifying instruction-set extensions. InCODES+ISSS, 2005

[6] K. Atasu, L. Pozzi, and P. Ienne. Automatic application-specific instruction-set
extensions under microarchitectural constraints. InDAC, 2003.

[7] M. Baleani et al. Hw/Sw partitioning and code generation of embedded control
applications on a reconfigurable architecture platform. InCODES, May 2002.

[8] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. Instruction generation and
regularity extraction for reconfigurable processors. InCASES, October 2002.

[9] D. Burger et al. Evaluating Future Microprocessors: The SimpleScalar Toolset.
Technical Report CS-TR96-1308, Univ. of Wisconsin - Madison, 1996.

[10] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through automated
instruction set customization. InMICRO36, 2003.

[11] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction genera-
tion for configurable processor architectures. InFPGA, 2004.

[12] P. Faraboschi et al. Lx: A technology platform for customizable VLIW embed-
ded processing. InISCA, 2000.

[13] R. E. Gonzalez. Xtensa: A configurable and extensible processor.IEEE Micro,
20(2), 2000.

[14] C. Galuzzi et al. Automatic selection of application-specific instruction-set ex-
tensions. InCODES+ISSS, 2006

[15] M. R. Guthausch et al. Mibench: A free, commercially representative embedded
benchmark suite. InIEEE 4th Annual Workshop on Workload Characterization,
2001.

[16] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for automatic in-
struction set design of configurable ASIPs. InICCAD, 2002.

[17] R. Leupers et al. A design flow for configurable embedded processors based on
optimized instruction set extension synthesis. InDATE, 2006

[18] L. Pozzi, K. Atasu, and P. Ienne. Exact and Approximate Algorithms for
the Extension of Embedded Processor Instruction Sets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(7), 2006.

[19] L. Pozzi et al. Automatic topology-based identification of instruction-set exten-
sions for embedded processor. Technical Report 01/377, EPFL, 2001.

[20] S. Talla. Adaptive Explicitly Parallel Instruction Computing. PhD thesis, New
York University, 2000.

[21] Xilinx Inc. Microblaze soft processor core.

[22] P. Yu and T. Mitra. Characterizing embedded applications for instruction-set
extensible processors. InDAC, 2004.

[23] P. Yu and T. Mitra. Scalable custom instructions identification for instruction-set
extensible processors. InCASES, 2004

[24] P. Yu and T. Mitra. Efficient Custom Instruction Identification with Exact Enu-
meration. Technical Report TRB5/07, National University of Singapore, 2007

[25] Z. A. Ye. et al. Chimaera: A high-performance architecture with a tightly-
coupled reconfigurable functional unit. InISCA, 2000.


