
On-the-Fly Rendering Of Losslessly Compressed Irregular Volume Data

Chuan-kai Yang Tulika Mitra Tzi-cker Chiueh

State University of New York at Stony Brook∗

Abstract

Very large irregular-grid data sets are represented as tetrahedral
mesh and may incur significant disk I/O access overhead in the ren-
dering process. An effective way to alleviate the disk I/O overhead
associated with rendering large tetrahedral mesh is to reduce the
I/O bandwidth requirement through compression. Existing tetra-
hedral mesh compression algorithms focus only on compression
efficiency and cannot be readily integrated into the mesh render-
ing process, and thus demand that a compressed tetrahedral mesh
be decompressed before it can be rendered into a 2D image. This
paper presents an integrated tetrahedral mesh compression and ren-
dering algorithm calledGatun, which allows compressed tetrahe-
dral meshes to be rendered incrementally as they are being decom-
pressed, thus forming an efficient irregular grid rendering pipeline.
Both compression and rendering algorithms inGatun exploit the
same local connectivity information among adjacent tetrahedra, and
thus can be tightly integrated into a unified implementation frame-
work. Our tetrahedral compression algorithm is specifically de-
signed to facilitate the integration with irregular grid renderer with-
out any compromise in compression efficiency. A unique perfor-
mance advantage ofGatunis its ability to reduce the run-time mem-
ory footprint requirement by releasing memory allocated to tetrahe-
dra as early as possible. As a result,Gatunis able to decrease ren-
dering time by a factor of 2 for very large tetrahedral mesh whose
size exceeds the amount of physical memory. At the same time, the
smaller working set and better access locality ofGatunimprove the
rendering performance by up to 30%, even when the input tetrahe-
dral mesh is entirely memory-resident.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; E.4 [Coding and Information
Theory]: Data Compaction and Compression.

Keywords: Irregular Grids, Tetrahedral Compression, Volume
Rendering

1 Introduction

Irregular-grid volumetric data sets represented as tetrahedral mesh-
es are becoming ever more important in volume visualization re-
search because of its natural fit with the way physical systems are

∗Department of Computer Science, State University of New York at
Stony Brook, Stony Brook, NY 11794-4400. Emails:{ckyang, mitra, chi-
ueh}@cs.sunysb.edu

modeled, i.e., representing more details only where it is actually
needed. However, because of the lack of structure in the irregular
grids, the coordinates of the vertices need to be explicitly represent-
ed, as well as the connectivity among vertices. As a result, irregular
volume grids require relatively large storage space and may incur
significant disk I/O overhead during the rendering process. One
way to reduce this disk I/O performance overhead is to compress
the irregular grid data sets, so that at least the initial data set load-
ing time is reduced. Existing tetrahedral mesh compression algo-
rithms focus mainly on improving the compression efficiency and
are completely decoupled from the irregular volume rendering pro-
cess. Because of this decoupling, a compressed tetrahedral mesh
needs to be completely decompressed before it can be rendered in-
to a 2D image. In contrast to this “store and forward” approach,
this paper describes a “cut through” approach that integrates the
decompression and rendering steps into a streamlined process, and
thereby significantly cuts down both the run-time memory footprint
size and the disk I/O bandwidth requirement.

The resulting irregular-grid volume rendering system, called
Gatun, consists of a lossless tetrahedral mesh compression algo-
rithm and an object space-based ray-casting rendering algorithm.
The proposed tetrahedral mesh compression algorithm is a gener-
alization of the one originally designed for triangle mesh [9] and
provides compression efficiency comparable to [5]. Basically this
algorithm can start from a seed tetrahedron or a seed face, and then
proceeds in a “breadth first” manner until it covers all the tetrahe-
dra. This breadth first traversal decision plays an important role in
Gatun’s ability to streamline the decompression and rendering steps
of compressed tetrahedral meshes.

The second component ofGatunis an irregular grid volume ren-
derer that uses ray-casting, but is object space-based rather than
image space-based. This object space orientation allowsGatunto
incrementally build up the contribution of each tetrahedron to the
intersecting rays as it is decompressed. It exploits the tetrahedral
adjacency information, which is created and exploited by the tetra-
hedral mesh compression algorithm, to perform on-the-fly render-
ing of uncompressed tetrahedra without waiting for the whole data
set to be completely decompressed. As a result, the start-up latency
for rendering a compressed tetrahedral mesh is minimal. To support
incremental rendering, the grid compression algorithm traverses the
tetrahedral mesh from the external surface “inwards” towards the
core of the data set. As new tetrahedra appear in the decompres-
sion process, their contributions to the rays that intersect with them
are accumulated. This incremental rendering algorithm includes
a new tetrahedron interpolation scheme and a new segment-based
compositing formula, and implements unit sampling as in standard
regular-grid volume rendering.

A key innovation ofGatunis its ability to determine when a tetra-
hedron is no longer needed and de-allocate the memory allocated
to the tetrahedron as soon as it is done. As a result,Gatunreduces
the maximal memory footprint to as low as one fifth of the entire
data set and greatly improves the rendering performance of very
large data sets by avoiding paging. In summary,Gatunstreamlines
decompression and rendering of losslessly compressed tetrahedral
mesh and significantly reduces the run-time memory and disk band-
width requirements. In certain cases,Gatunmakes it possible to
render certain data sets on a machine that were not even “runnable”

with standard irregular-grid volume renderers.
The rest of this paper is organized as follows. We review relat-

ed works on tetrahedral mesh compression, as well as on irregular
grid rendering in the next section. Section3 presents the proposed
tetrahedral mesh compression algorithm and how it is designed to
facilitate integration with the rendering process. In Section4, we
describe the on-the-fly rendering algorithm that is tightly coupled
with the mesh decompressor, and the current prototype implemen-
tation. Section5 reports the performance measurements ofGatun
prototype for six irregular-grid data sets with the number of tetra-
hedra ranging from1.3K to 1M . Section6 summarizes the main
research contribution of this paper.

2 Related Work

In the area of lossless tetrahedral mesh compression, there are two
existing methods. The first one was proposed by Szymczak [13].
Their representation consists of a tetrahedron spanning tree string,
which is obtained by recursively attaching tetrahedra to external
faces starting from an arbitrary tetrahedron, and a folding string,
which defines the incidence relations among the remaining external
faces. Their method requires 7 bits per tetrahedron on an average to
represent the topology. The second method, proposed by Gumhold
[5] achieves by far the best compression efficiency for tetrahedral
meshes. Their cut-border engine starts with the faces of an arbi-
trary tetrahedron and attempts to add tetrahedra to the external faces
through different operations. They require 2.04 bits per tetrahedron
on an average. The compression algorithm used inGatunis similar
in spirit to this approach. However, the operations we perform and
the heuristics we use are much simpler and leads to faster imple-
mentation.

There were several early works on rendering of irregular grid-
s. Wilhelms et. al. [15] applied a re-sampling technique to re-
duce the problem to rendering of traditional simpler regular rec-
tilinear grids. However, when accommodating the finest details,
the re-sampling overhead may be exceedingly high. Another at-
tempt from Fruhauf [2] tried to apply the traditional algorithm, o-
riginally designed for rectilinear grids, to curvilinear grids by cast-
ing “curved” rays to fit the curvilinearity of the data set. However
this approach can not be readily applied to the unstructured grid-
s. Another school of algorithms is called “sweeping” algorithm,
proposed originally by Giertsen [4] and later improved or modified
by Silva and Yagel [11, 16]. While the algorithm in [16] needs
a large amount of memory and high-end graphics engines, the ap-
proach in [11] is more memory efficient and reasonably fast assum-
ing a more moderate graphics engine is available. However, Bunyk
et. al. [1] presented a much faster algorithm based on the work
from Garrity and Uselton [3, 14]. This algorithm, although still re-
quires a great deal of memory for good performance, does provide a
good starting point to derive the rendering algorithm used inGatun.
Another completely different approach to render irregular grids is
through “projection.” Here each tetrahedron is scan-converted and
displayed on the image plane through a projection process that takes
into account the depth information. The idea was proposed by Max
et. al. [8] and similarly by Shirley et. al. [10]. The best prop-
erty of this approach is that it can take advantage of the standard
3D graphics hardwares. But a major drawback is that it requires
depth-sorting of the tetrahedra in order to generate correct compos-
ited image. The work from [7] uses a hybrid scheme by “splatting”
the sample points obtained from the object base. However, it re-
quires a re-sampling process and a sorting to get the correct result.
Ma [6] and Silva [12] have tried to parallelize irregular volume ren-
dering algorithms. In contrast, the target machines of this project
are mostly PC workstations which in general are single-processor
machines.

Gatunuses an object space-based ray-casting approach. Because

of ray-casting, the resulting rendered image quality is high. Be-
cause of the object space architecture, rendering can be done incre-
mentally and thus can be nicely tied with the mesh decompression
process.

3 Tetrahedral Mesh Compression

3.1 Overview

Given a tetrahedral mesh, the proposed tetrahedral mesh compres-
sion algorithm starts with the boundary faces and then grows the
surface inwards by visiting the tetrahedron that is paired with each
boundary face. After all the tetrahedra that can be paired with the
current surface are visited, the set of faces of these tetrahedra, that
are not parts of the current surface, form a new surface. The algo-
rithm then continues with this new surface to visit more tetrahedra,
iteration by iteration, until it visits every tetrahedron in the mesh.

The input tetrahedral mesh consists of avertex arraycontaining
the geometry information associated with the vertices and atetrahe-
dron arraycontaining four vertex indices per tetrahedron. The out-
put of the tetrahedral mesh compression algorithm also consists of
two parts: a representation of the boundary surface and a represen-
tation of the geometry and connectivity of the tetrahedral mesh. To
represent the boundary surface of a tetrahedral mesh efficiently, we
use a triangle mesh compression algorithm described in [9], which
is based on a similar breadth-first-traversal approach applied to tri-
angle meshes. The geometry information associated with a vertex,
such as coordinate and density value, appear in the compressed out-
put only once, when either the first boundary face or the first tetra-
hedron containing that vertex is visited. The first time the geometry
information of a vertex appears in the input, it is appended to the
vertex table. Future references to this vertex can then be an index
access to the vertex table. The order of the first appearance of each
vertex in the input determines the index of the vertex in the vertex
table, which is implicitly agreed upon by the mesh compressor and
decompressor. In the proposed tetrahedral mesh compression algo-
rithm, visiting a tetrahedron means denoting the fourth vertex that
pairs with a triangle face on the current surface. If the fourth vertex
of every visited tetrahedron is explicitly represented by its geome-
try information in its first appearance and as an index into the vertex
table for all subsequent appearances, then it takesN − V indices
whereN is the number of tetrahedra,V is the number of vertices,
and the size of each vertex index islog(V) bits. The challenge of
the tetrahedral mesh compression algorithm design is to represent
“fourth” vertices implicitly by exploiting connectivity information,
so that fewer thanlog(V) bits per tetrahedron is required.

Let us call the particular face with which to pair a “fourth” ver-
tex as thecurrent face. A face is apartly-used faceif only one
of its adjoining tetrahedra is not yet visited. A partly-used face is
either a boundary face with no adjoining visited tetrahedron or a
non-boundary face with one adjoining visited tetrahedron. This is
because a boundary face has exactly one adjoining tetrahedron and
a non-boundary face has two adjoining tetrahedra. LetT be the tri-
angle mesh containing all the partly-used faces as the compression
algorithm visits the tetrahedral mesh. The current face is an element
of T . In most cases, the fourth vertex that pairs with the current face
is a vertex that belongs to one of the edge-adjacent faces of the cur-
rent face inT . Note that the triangle meshT can be a non-manifold
with the implication that an edge of the current face can have more
than one adjacent faces. To denote the face with which the pairing
vertex is associated, we order the faces edge-adjacent to the cur-
rent face. First, we order the vertices of the current face according
to their indices to the vertex table. Let this order be(v1, v2, v3),
and letn1, n2, n3 be the number of faces adjacent to the edges
(v1, v2), (v2, v3), and(v3, v1) respectively (excluding the curren-
t face). Then the faces adjacent to the current face are numbered

v1

v2

v3

v1

v2

v3

Current
Face

Fourth
Vertex

v4

F0

F1

F2

F3

F0

F1
F2

F3

 d

e

Figure 1: Enumeration of the fourth vertex

V1

V2

V3

f0

f1

f2

f3

f4 f5 f6

f7

0

1

2

3

[fourth vertex]

Figure 2: Enumeration of the fourth vertex as a vertex incident to
the vertices of the current face. The shaded triangle is the current
face. Only vertex 0,1,2 and 3 satisfy the condition to be a candidate
for the fourth vertex and vertex 3 is the fourth vertex.

0, 1, . . . , n1 + n2 + n3 − 1. This ordering of adjacent faces with
respect to the current face is guaranteed to be unique and shared by
the compressor and the decompressor. Given this ordering, speci-
fying the neighboring face that contains the pairing vertex specifies
the fourth vertex and visits the associated tetrahedron. Empirical re-
sults indicate that this value is0, 1, 2 in most of the cases. Figure 1
shows how the fourth vertex can be represented using the order-
ing discussed. The vertices are ordered asv1, v2, v3. The faces
associated with the edges are ordered asF0, F1, F2 andF3 re-
spectively. The fourth vertex belongs to faceF2 and hence, in this
case the specification for the pairing vertex is2. This introduces
two new faces,d ande.

If a pairing vertex cannot be represented by an edge-adjacent
face, there are two possibilities: (1) the vertex appears for the first
time in the input or (2) the vertex appeared earlier. In the first case,
we can store the geometry information associated with the vertex
into the vertex table. In the second case (which fortunately does not
occur frequently), we first check if the paring vertex is incident to
any of the current face’s vertices, see Figure 2. If so, the vertex
is specified according to its position in an ordered vertex list that
includes all the vertices that neither belong to the current face nor
to any edge-adjacent face of the current face. If the pairing vertex
is not incident to any vertex of the current face, it is represented by
its index value into the vertex table. Once the fourth vertex of a
tetrahedron is determined, the three faces of the tetrahedron other
than the current face are examined individually. For each of these
faces, if it is marked partly-used, then all the adjoining tetrahedra
of that face have been visited and the face can be deleted. If not,
we mark the face as partly-used and put it in the next surface for the
next iteration. Finally, the current face is deleted.

The compression algorithm as described above does not speci-
fy which face of a surface to start with. The choice of the current
face has direct impact on compression efficiency since it determines
where the fourth vertex falls in the neighborhood of a face.Gatun
chooses to start with the order of the faces as determined by the tri-

angle mesh traversal and completes the formation of tetrahedra for
all of them before moving onto the next iteration. This design deci-
sion is based on the belief that peeling the tetrahedral mesh layer by
layer will allow the rendering process to complete the processing of
a tetrahedron as early as possible. Within an iteration, we choose
to follow the generation order of the faces, and empirical results
indicate that this heuristic works well.

Figure 3 illustrates how the visit of a tetrahedral mesh starts from
the boundary surface. The leftmost figure shows the traversal order
of the triangles as determined by the triangle mesh compression
algorithm. The rest of the figure shows the formation of the tetra-
hedra. The solid lines indicate the tetrahedron enumerated for a
particular boundary face. Notice that faces1, 3, 5, 6, and9 form
new tetrahedra with explicitly represented vertices, whereas other
tetrahedra are formed by pairing up with a neighboring face. The
rightmost figure shows the new faces that will participate in the next
iteration.

3.2 Encoding of the Compressed Mesh

The encoding for the boundary faces of a tetrahedral mesh is based
on a triangle mesh compression algorithm described in [9]. The
way each tetrahedron is represented depends on whether the fourth
vertex is represented explicitly, using index reference, or using con-
nectivity information. There are four different commands for the
encoding:

1. EXPLICIT {geometry information }: This is for ex-
plicit representation of a vertex when it first appears in the
input mesh.

2. INDEX {index value }: This corresponds to the case
when the fourth vertex is represented as an index into the ver-
tex table.

3. FACE {order }: This is used when the fourth vertex be-
longs to an incident face of an edge of the current face. The
order is the order of the face among the adjacent faces as de-
fined earlier.

4. VERTEX {order }: This is used when the fourth vertex be-
longs to a vertex-adjacent face of the current face and cannot
be represented by face-adjacency. Theorder is the position
of the fourth vertex in an ordered vertex list that includes all
the vertices that neither belong to the current face nor to any
edge-adjacent face of the current face. Theorder of the ver-
tices is determined by the order of the faces they belong to in
the partly-used face list described in subsection 3.3.

After each tetrahedron is represented using the above commands,
we then apply standard string compression methods such as Huff-
man encoding on the resultant command sequences to achieve fur-
ther compression.

3.3 Data Structure

BecauseGatunstreamlines the decompression and rendering steps,
the decompression step must be sufficiently simple to reduce its im-
pacts on run-time performance. The mesh decompressor maintains
the following data structures:

1. Vertex Table contains the geometry information of the ver-
tices and is accessed by both the decompressor and the render-
er. The table can be re-created on the fly from the compressed
mesh.

1
2 3

4
5

6 7

8
910

(1) Explicit (2) Face 0 (3) Explicit (4) Face 0 (5) Explicit

(6) Explicit (7) Face 0 (8) Face 0 (9) Explicit (10) Face 1

Figure 3: Tetrahedral mesh traversal

2. Partly-Used Face List is a list of partly-used faces for each
vertex at any point of time. This list changes dynamically as
faces are created and deleted. This list is used to determine the
particular face/vertex given theFACE {order } andVER-
TEX {order } command.

3. Surface Queuesare two queues of faces corresponding to the
triangle meshes associated with the current iteration and the
next iteration. The decompressor dequeues the first face from
the current iteration queue and adds the newly generated faces
to the next iteration queue.

4 On-the-Fly Compressed Mesh Render-
ing

4.1 Baseline Algorithm

The baseline tetrahedron mesh rendering algorithm is based on the
work described in [1]. Although this algorithm was designed for
parallel projection, it can be readily extended to support perspective
projection.

The algorithm has a “view-independent” preprocessing step that
identifies the adjacency information and some normal vector pro-
cessing associated with each face of the input tetrahedral mesh. The
adjacency information includes which vertices are used in which
faces, and which faces are used in which tetrahedra.

Given a view angle, the baseline algorithm first identifies the in-
tersections between the input mesh’s boundary faces and all the cast
rays. More concretely, the algorithm back-projects each boundary
face to the image plane, finds a bounding box for the projected foot-
print, and tests every ray inside the bounding box to check whether
it falls within the boundary face’s projected footprint. An optimiza-
tion to this step is to perform this intersection computation only for
boundary faces whose projected footprint is not completely occlud-
ed. Once the set of intersecting boundary faces are identified, the
algorithm sorts the intersection points with respect to a ray accord-
ing to their distance to the origin of the ray on the image plane.
Note that a ray may have multiple such intersection points if the
input tetrahedral mesh is not convex.

The final phase of the baseline algorithm is a ray-casting process.
For each ray, the algorithm retrieves the first boundary face that it
intersects, then the face’s associated tetrahedron, and then the next
face of the same tetrahedron that this ray passes through. If this
next face is a not a boundary face, then the “next” tetrahedron that
shares this new face is retrieved. Through the same process, a ray
can go through faces of neighboring tetrahedra until it hits another
boundary face and exits the data set. The adjacency information
computed by the pre-processing step plays an important role in al-
lowing the algorithm to quickly identify which faces and tetrahedra
to retrieve for a given ray at run time. As the baseline algorithm

image plane image plane image plane

data set data set
data set

(b) modified (c) general(c) original

tetrahedron

Figure 4: A 2D example of the original rays versus the modified
rays.

traverses the sample points on a cast ray, it performs interpolation
of density values, maps density values into color and opacity val-
ues, and accumulates the contributions of sample values through
standard compositing formulas. The sampling approach used here
is unit-distance sampling.

4.2 The Gatun Approach

The goal of on-the-fly mesh rendering is to accumulate the contribu-
tion of each tetrahedron as it is output from the decompressor. This
way there is no need to wait for the entire decompression process to
complete and the memory allocated to the tetrahedra can be freed as
soon as possible.Gatunuses an object-space ray-casting algorithm
to achieve this goal. The fundamental problem is to identify the set
of rays cast from the image plane that intersect with a given tetra-
hedron. Compared to the baseline algorithm, which assumes that
an uncompressed tetrahedral mesh is already available,Gatundoes
not have all the adjacency information immediately available, and
ray-casting process is dictated by the order of the tetrahedra that the
decompressor outputs.

By employing an inward approach towards tetrahedral mesh
compression,Gatunexploits the explicit representation of bound-
ary surfaces to calculate the intersections between the boundary sur-
faces and the cast rays. Then a ray is decomposed into a set of one
or multiple segments, each corresponding to a contiguous section
of the ray that intersects with the input data volume, as shown in
Figure 4. Moreover, each segment is further decomposed into two
subsegments, one starting with the end closer to the image plane
and having the original raycast direction, while the other starting
with the end that is further away from the image plane and having
the opposite of the original raycast direction, as shown in Figure 5.

Once the intersection points between the boundary faces and
the rays are available, each ray is “attached” to its corresponding
boundary face. Every time a tetrahedron is output from the decom-
pressor,Gatunchecks if it has some rays attached to any of its four
faces, and if so, advances those rays as much as possible. To de-
termine whether a ray has exhausted all the tetrahedra that it can

segment

sub-segment sub-segment

ray

high water-mark

low water-mark

tetrehedra

 ray

tetrahedra

image plane

Figure 5: A 2D example of the segment and subsegments for a
given ray.

A

B

C

D

E

a

c

c

d

e

f

image plane

ray

ray

tetrahedra

Figure 6: This figure shows a 2D case where a tetrahedra traversal
order may lead to the late arrival of some rays.

possibly intersect, the renderer maintains awater markthat repre-
sents the current progress of each subsegment, and concludes that a
segment is “done” when the water marks of these co-locating sub-
segments meet.

Because of the use of segments and subsegments, the composit-
ing process associated with a ray is necessarily hierarchical: a stan-
dard front-to-back compositing algorithm is used within a subseg-
ment, and a slightly modified front-to-back compositing algorithm
is used between subsegments and between segments. The sample-
to-sample front-to-back compositing formulas are:

Cout = Cin + (1−Oin)CvOv (1)

Oout = Oin + (1−Oin)Ov (2)

whereCin andOin are the input color and opacity values,Cout and
Oout are the output color and opacity values,Cv andOv are the col-
or and opacity values of the sample pointv, which are results of ap-
plying desired color and transfer functions to the interpolated den-
sity values ofv. It can be shown that to maintain the same sample-
by-sample compositing semantics the subsegment-by-subsegment
compositing formula is:

Ctotal = Cfront + (1−Ofront)Cback (3)

Ototal = Ofront + (1−Ofront)Oback (4)

whereCfront andOfront are the color and opacity values of the
front subsegment,Cback andOback, are the color and opacity val-
ues of the back subsegment, andCtotal andOtotal are the color and
opacity values of the encompassing segment.

(f) (e)

(a) (b) (c)

(d)

Figure 7: The possible geometrical projection shapes of a tetrahe-
dron.

BecauseGatun uses an object-space rendering algorithm that
processes the rays that intersect with each tetrahedron, it is con-
ceivable that the memory allocated for a tetrahedron can be freed
as soon as it is done, thus significantly reducing the memory foot-
print requirement of the rendering process. However, this requires
Gatunto maintain the following invariant: whenever a tetrahedron
is processed, all the rays that can intersect with this tetrahedron
have already been attached to its faces. This invariant does not hold
in general, because when the decompressor outputs a tetrahedron,
some of the rays that intersect with this tetrahedron may not arrive
at its faces yet. For example, in Figure 6, if tetrahedronA is output
first, then only the rays for its facea have arrived. Those rays that
are to be attached to facee through facec have not come yet.

To address this problem,Gatunchecks whether a tetrahedron is
readybefore processing it. A tetrahedron is ready if:the projection
of “processed” faces of this tetrahedron covers or forms a superset
of the projected footprint of this tetrahedron.This check is called
the readinesscheck. A face isprocessedif all the rays that can be
attached to this face have already been attached. By default faces
areunprocessed. There are only two cases in which a face can be-
come processed. First, this face is a boundary face, for whichGatun
uses back projection to identify all the intersecting rays. Therefore
by definition it is a processed face. Second, this face belongs to
a tetrahedron that is ready. By definition, a tetrahedron is ready if
all the rays that can be attached to it are already attached, there-
fore after the processing of the tetrahedron, all its constituent faces
must be processed. After a tetrahedron is processed, the memory
allocated to it is freed.

Gatun uses atetrahedron classificationscheme to classify the
projection of a tetrahedron into a fixed number of cases in order to
decide if the projected footprint of the processed faces of a tetrahe-
dron is the same as the projection of the entire tetrahedron. There
are6 different possible shapes for a tetrahedron’s projection image,
as shown in Figure 7. The algorithm first tries to decide which
case it is for a given tetrahedron. It first checks if there exists any
pair of vertices whose projections are exactly the same. If yes, then
the projection shape must be either case (d), (e) or (f) in Figure 7;
otherwise, the projection shape is either case (a), (b) or (c). Letp0,
p1, p2 andp3 represent the projected 2D points of the tetrahedron’s
four vertices on the image plane, and~ij the vector pointing from
pi to pj . For cases (a), (b) and (c), the algorithm performs four
2D cross products:~01 × ~02, ~01 × ~03, ~12 × ~13 and ~02 × ~03, and
classifies each tetrahedron according to the sign of these results:
positive, negative or zero. For cases (d), (e), and (f), the algorithm
performs three 2D cross products:~01 × ~02, ~01 × ~03 and ~02× ~03,
and classifies them according to the signs of these cross products.
If all of the three cross products are zero, then the projection of the
tetrahedron must be a segment or a point, for which further distinc-

tion is not necessary because practically such a tetrahedron would
not intersect rays. To speed up tetrahedron classification, we use a
radix-3 table look-up scheme to map the results of cross products
to the classification decision. On a Pentium II 300MHz machine,
this algorithm takes less than 1.5 secs to classify1M tetrahedra.

After a tetrahedron’s projection is classified,Gatun performs
the readinesscheck on the tetrahedron. For example, if an tetra-
hedron’s projection is case (a) in Figure 7 withp3 in the cen-
ter, then there are two ways to “cover” this projection:4012 or
4013 ∪ 4123 ∪ 4203, where4ijk is a face formed frompi, pj
andpk. So in this case, if4012 is already a processed face, then
the entire tetrahedron is covered and therefore ready. Scenarios in
which two processed faces are required to cover a tetrahedron’s pro-
jection can be found from group (b), (c) and (d) in Figure 7.

It should be noted that a tetrahedron must be ready when more
than two of its faces are processed, and a tetrahedron cannot be
ready when none of its faces is processed. Therefore the readi-
ness check only needs to be applied to a new tetrahedron when it
has one or two processed faces. When the decompressor outputs a
tetrahedron, if the renderer cannot conclude that it is ready, then the
renderer puts this tetrahedron to the waiting field of all its unpro-
cessed faces. If on the other hand the new tetrahedron is determined
to be ready, then the renderer processes all the attached rays by ac-
cumulating the contributions from the tetrahedron to the rays from
the processed faces, advancing these rays according to their casting
direction, and eventually attaching these rays to other faces of this
tetrahedron. As for unprocessed faces, they turn processed as more
rays are attached to them during the processing of the tetrahedron.

After a tetrahedron is processed, the renderer examines each con-
stituent face. If a face is previously processed, then it is freed be-
cause all its adjoining tetrahedra have been visited. If a face is
unprocessed,Gatun changes the status of this face to processed,
removes the tetrahedron in its waiting field, and performs the readi-
ness check on the tetrahedron just removed to see if it, with the
addition of this processed face, is ready or not. If the tetrahedron
indeed turns ready,Gatun continues to process this tetrahedron.
Whenever a tetrahedron is found to be ready, it is put into a tetrahe-
dra working queue andGatunreturns control to the decompressor
to output new tetrahedra only when this working queue is empty,
which means either currently all the non-ready tetrahedra are wait-
ing for some faces to become processed, or all the tetrahedra have
been processed already. Because a non-ready tetrahedron is put in-
to the waiting field of all its unprocessed faces, there is a bit in the
tetrahedron data structure to indicate that a given tetrahedron is al-
ready put in the tetrahedra working queue and to avoid duplicated
insertion from multiple faces.

With the tetrahedron classification scheme for efficient readiness
check,Gatunis able to free a large percentage of tetrahedra as soon
as their processing is done, thus greatly reducing the memory re-
quirement at run time. Moreover, the smaller working set also leads
to better overall performance in many cases, as will be shown in the
performance evaluation section.

5 Performance Evaluation

The data sets we are using for testing purposes are shown in Table
1, ordered by the number of tetrahedra. While the first two data
sets are unstructured grids, the remaining four are converted into
tetrahedral grids from originally curvilinear grids. The intent to
include the first two grids into our experiments, is to demonstrate
that our algorithm can be applied to general unstructured grids.

5.1 Compression Efficiency

Table 2 presents the compression performance. The command se-
quence generated by the compression code is run through a Huff-

Data set Points Tetrahedra Faces Bound. Faces
Spx 2896 12936 27252 2760

Fighter 13832 70125 143881 7262
Blunt 40960 187395 381548 13516

Combustion 47025 215040 437888 15616
Post 109744 513375 1040588 27676
Delta 211680 1005765 203208 41468

Table 1: Description of our testing data sets.

Dataset 0 1 2 >2
Spx 73.49 8.30 7.16 11.05

Fighter 75.71 7.75 7.48 9.06
Blunt 54.69 28.12 16.12 1.07

Combustion 54.78 28.09 15.88 1.25
Post 53.67 28.85 16.67 0.81
Delta 52.79 29.46 17.12 0.63

Table 3: Face order distribution

man encoder to arrive at the final compressed output. The first and
second column indicate the cost in bytes to represent the boundary
faces and the tetrahedra. This cost is only for topology. We ignore
the issue of compressing geometry information in this work. The
Total Cost column indicates the sum of boundary and tetrahedra
representation. The fourth column shows the average number of
bits required to encode the topology of a tetrahedra. Column five
and six show the percentage savings in terms of bytes in topology
and topology plus geometry, compared to the input representation.
The input representation is a vertex array followed by the tetrahedra
represented as four indices into the vertex array. Per-vertex geome-
try costs 16 bytes, 12 for coordinates and 4 for density. Finally, the
last column shows the decompression speed in tetrahedron per sec-
ond. This decompression speed is for topology only and does not
include the disk I/O cost. On an average, our encoding requires 2.31
bits per tetrahedron and can be decompressed at the rate of 162K
tetrahedra/sec. Our result is comparable to that of [5], which is
the fastest tetrahedral compression algorithm developed so far and
requires 2.04 bits on an average, and our encoding can be decom-
pressed 1.5 times as fast.

Table 3 represents the distribution of theorder values inFace
{order } command among four cases:0, 1, 2, and greater than2.
Across all data sets, more than 88% of the time, theorder value
is either0, 1, or 2. In fact, for all curvilinear data sets, the pairing
vertex can be covered with these three values for 99% cases.

5.2 Rendering Performance

To evaluate the performance ofGatun, we first modified the base-
line renderer (calledgeneric rendererhereafter) so that it reads the
compressed data set from the disk, uncompresses the entire data set,
and then starts the rendering. To show thatGatuncan improve the
rendering performance in many cases with a much smaller memory
footprint, we conduct experiments on a Pentium II 300MHz ma-
chine with 320M memory. With the help of LILO (Linux Loader),
we can configure the available physical memory capacity to 160M
and 80M as well.

Figures 9, summarizes the performance comparison ofGatun
and the generic renderer. There are totally three different main
memory settings: (1)320 MB, (2) 160 MB and (3) 80 MB and four
image resolutions: (1)128 × 128, (2) 256 × 256, (3) 512 × 512
and (4)1024× 1024. The total execution time of generic renderer

Dataset Boundary Tetra Total Cost in Topology Total Tetra
Rep Rep Cost Bits per Savings Savings Decoded
Cost Cost Tetra in % in % per Sec

Spx 606 3983 4590 2.84 97.78 79.89 185K
Fighter 1587 19268 20855 2.38 98.14 81.97 184K
Blunt 2569 48488 51058 2.18 98.30 80.66 164K

Combustion 2971 55772 58743 2.18 98.29 80.65 146K
Post 5240 132964 138204 2.15 98.32 81.00 149K
Delta 7846 263279 271125 2.15 98.32 81.22 148K

Table 2: Compression performance. The cost is in bytes

andGatuncorresponding to four different image resolutions for all
data sets are shown. When the system has 320MB of main memory,
the entire working set can be memory resident for all the data sets.
However, a system with 160MB main memory fails to hold the da-
ta set forLiquid Oxygen Postat resolution1024× 1024 andDelta
Wingat all resolutions, and a system with 80MB main memory fails
to hold the data sets forBlunt-finandCombustion Chamberat res-
olution 1024 × 1024 and Liquid Oxygen Post, Delta Wingat all
resolutions. The most important point to notice from this figure is
that sometimes for very large data set such asDelta Wing, the gener-
ic renderer fails to complete the rendering process due to excessive
memory requirement, for example, when the main memory size is
160MB. However,Gatuncan complete the rendering for this data
set due to its smaller memory footprint. In general, performance of
Gatun is much better than the generic renderer when the working
set of the generic renderer cannot fit in the main memory, resulting
in considerable virtual memory paging. In general,Gatunachieves
around 8.2% performance improvement for smaller resolution and
around 40% for higher resolution. Even when the entire working
set can be resident in the main memory, as in the case of 320MB
memory setting,Gatuncan improve the rendering performance by
as much as 30% for large data set and high image resolution.

For some data sets and for small image resolutions,Gatunmight
perform worse than the generic renderer. The reasons behind this
performance loss are the following. First,Gatunneeds to attach
rays from face to face, an overhead that does not appear in the
baseline approach where each ray is dealt with one at a time. The
generic approach therefore does not involve any intermediate book-
keeping cost. Second,Gatunneeds to maintain the invariant that
each tetrahedron, when being processed, have already had all the
rays attached to its faces. This involves the readiness checks and
possibly some queuing/dequeuing of tetrahedra to/from their faces.
These overheads turn out to be non-negligible in some low reso-
lution cases. The fundamental trade-off we face here is between
performance and memory. De-allocating the memory for a tetrahe-
dron requires performing the classification. In the generic renderer,
it can be shown that forDelta Wingat 256× 256 image resolution
, only about one third of the tetrahedra would intersect the rays.
Therefore inGatunabout two third of the effort to “classify” and
thus releasing the allocated memory for tetrahedra will end up as
redundant work. Thus the effort to reduce the memory usage re-
sults in more computation in this case, which in turn may hurt the
performance. As can be seen fr