
Temperature aware Task Sequencing and Voltage Scaling
Ramkumar Jayaseelan Tulika Mitra

Department of Computer Science
National University of Singapore

{ramkumar,tulika}@comp.nus.edu.sg

Abstract—On-chip power density and temperature are rising expo-
nentially with decreasing feature sizes. This alarming trend calls for
temperature management at every level of system design. In this paper,
we propose task sequencing as a powerful and complimentary mechanism
to voltage scaling in improving the thermal profile of an embedded system
executing a set of periodic heterogenous tasks under timing constraints.
We first derive the peak temperature of a repeating task sequence
analytically and develop a heuristic to construct the task sequence that
minimizes the peak temperature. Experimental evaluation shows that
our task sequencing heuristic achieves peak temperature within 0.5oC
of the optimal solution and 7.47oC lower, on an average, compared
to the worst sequence for a large range of embedded task sets. We
also propose an iterative algorithm that combines task sequencing with
voltage scaling to further lower the peak temperature while satisfying the
timing constraints. For embedded task sets, our combined task sequencing
and voltage scaling approach achieves, on an average, 2.1oC− 6.94oC
reduction in peak temperature compared to voltage scaling alone.

I. INTRODUCTION

As power density continues to increase exponentially with technol-
ogy scaling, the resulting rise in on-chip temperature is pushing the
limits of packaging and cooling technology [4], [11]. Thus thermal
management and innovative cooling solutions have become important
aspects of computer system design. The thermal problem is equally
prominent in embedded systems, where power densities are expected
to rise significantly [22]. Moreover, the constraints on the size and
cost of mobile embedded devices do not allow for complex packaging
and cooling solutions.

Increased on-chip temperature can result in poor reliability, in-
creased cooling cost and timing errors. The cost of packaging and
cooling solutions increases super-linearly with increase in power
density [4]. Also the packaging and cooling costs form a significant
fraction of the total cost of a computing system [11]. Increased on-
chip temperatures can accelerate failure mechanisms, such as dielec-
tric breakdown and electro-migration, resulting in permanent damage
to the chip. A 10−15oC reduction in peak temperature can result in
2X increase in the lifetime of the chip [2]. Carrier mobility decreases
with increase in temperature; thus higher operating temperatures
can result in more frequent transient errors [19]. Leakage current
increases exponentially with increasing temperature and the positive
feedback between leakage power and temperature can result in a
thermal runaway. Hence there is a need to control on-chip temperature
at every level of the system design.

Traditionally on-chip temperature has been controlled by employ-
ing better packaging and cooling technologies. As on-chip tem-
perature continues to rise, it is prohibitively expensive to employ
packaging and cooling solutions for the worst-case temperature [4].
Hence chip packaging is designed for a peak temperature that is less
than the worst possible temperature [19]. The operating temperature
now needs to be maintained below this maximum specified limit by
engaging a host of hardware and software techniques. In the recent
years, researchers have explored a variety of schemes for architectural
and software level thermal management. Most of these techniques

are reactive or dynamic in nature. Whenever the on-chip tempera-
ture exceeds a predefined threshold, different mechanisms (such as
voltage and frequency scaling, fetch throttling [5], scheduling priority
adjustments [14], task migrations [10], etc.) can be engaged to reduce
the temperature. These dynamic thermal management techniques are
more suitable in the context of general purpose systems where there
are no constraints on the execution times or the quality of service.

More recently, the thermal aware design problem has been ad-
dressed in the context of embedded systems. The key difference is that
the application-specific and predictable nature of the embedded sys-
tems enable the use of static or design time temperature management
techniques. In this paper, we address the problem of minimizing the
peak temperature of a set of periodic heterogenous tasks executing on
a processor under timing constraints. The existing solutions to similar
problems [22], [16] employ voltage scaling as the only mechanism
for temperature management. We observe that task sequencing has
significant impact on the thermal profile and the peak temperature.
Therefore, we explore a combination of task sequencing and voltage
scaling to optimally reduce the peak temperature.

Why Task Sequencing? In general, tasks exhibit significant
variation in terms of their power consumption characteristics [18],
[16]. This is because power consumption depends on the circuit
activity factor that can vary significantly across tasks [16]. Moreover,
modern low-power processors engage aggressive clock gating and
static power saving techniques [6], [9], [8] where the idle functional
units are either clock gated or completely switched off. The power
consumption in such a scenario depends heavily on the usage pattern
of the functional units, which again varies significantly across tasks.
Variation in power consumption characteristics result in variation of
the thermal profile.

oC
)

ra
tu
re
 (o

k
Te
m
pe

Pe
ak

Sequence NumberSequence Number

Fig. 1. Peak temperature for all possible task sequences.

We observe that when a task set comprising of such heterogenous
tasks executes on a processor, the resulting temperature profile and
the peak temperature are highly sensitive to the execution sequence.
Figure 1 plots the peak temperatures corresponding to all possible
8! sequences of a task set consisting of eight tasks (crc, epic,
gsm, stringsearch, dijkstra, djpeg, adpcm, patricia). A difference
of 9.02oC is observed between the peak temperature of the worst
sequence (highest peak temperature) and the best sequence (lower
peak temperature).

Our Contributions: Our contributions in this paper are sum-
marized in the following.

• We observe that the peak temperature of a task set comprising
of heterogenous tasks is dependent on the execution sequence
and analytically derive the peak temperature of a given task
sequence.

• Given a task set, we present a heuristic for task sequencing to
minimize the peak temperature.

• Given a fixed task sequence and a timing constraint, we design
an optimal pseudo-polynomial time algorithm that performs
voltage scaling to minimize the peak temperature.

• Given a task set and a timing constraint, we propose an iterative
algorithm that combines task sequencing and voltage scaling to
reduce the peak temperature. Our iterative algorithm outperforms
the optimal voltage scaling algorithm even when the later is fed
with the best task sequence (for non-voltage-scaled versions of
the tasks).

Organization: The rest of the paper is organized as follows.
The background information on the thermal model and the thermal
profile of a single task are presented in the next section. Section III
presents the formulation of the task sequencing problem and our
task sequencing algorithm. Voltage scaling and task sequencing for
minimizing the peak temperature are discussed in Section IV. The
experimental results are presented in Section V, the related work is
presented in Section VI and Section VII concludes the paper.

II. BACKGROUND

Thermal Model: We choose a lumped RC model proposed by
Skadron et al. [19] as our processor thermal model. If the processor
dissipates an average power of P Watt over a time interval t, then
the temperature T (t) at the end of the time interval is given by

T (t) = P×R+Tamb− (P×R+Tamb−Tinit)e−t/RC (1)

where R is the thermal resistance measured in oC/Watt, C is the
thermal capacitance measured in Joules/oC, Tamb is the ambient
temperature, and Tinit is the initial temperature. TS = P×R + Tamb
is the steady state temperature associated with an average power
dissipation of P Watt.

Thermal Profile of a Task: Let us now look at the thermal
profile of an individual task Ji with average power consumption Pi
and execution time ci running on a processor. The thermal model of
the processor is given by Eqn 1. Therefore

T (ci) = Pi×R+Tamb− (Pi×R+Tamb−Tinit)e−ci/RC (2)

The steady state temperature of the task Ji is defined as

TSi = Pi×R+Tamb (3)

TSi is the temperature that would be reached if infinite number of
instances of task Ji execute continuously on the processor. Let

mi = e−ci/RC (4)

Then substituting into Eqn 2 and rearranging the terms, we get

T (ci) = (1−mi)TSi +miTinit (5)

We observe from Eqn 5 that if Tinit < TSi , then the temperature rises
towards TSi . Alternatively, if Tinit > TSi , then the temperature falls
towards TSi .

III. TASK SEQUENCING

In this section, we concentrate on the task sequencing problem.
Given a periodic set of heterogenous tasks (i.e., tasks with different
thermal profiles), our goal is to construct a task sequence that
minimizes the peak temperature. However, a proper formulation of
this problem first requires a clear definition of the thermal profile
and the peak temperature of a task sequence. So we first proceed to
analytically model the thermal profile of a task sequence.

A. Thermal Profile of a Task Sequence

73

74

75

76

ra
tu
re
(C
)

69

70

71

72

0 200 400 600 800 1000 1200

Te
m
pe

r

Time

Fig. 2. Thermal profile of a repeating sequence of tasks.
Let us consider a particular sequence L = 〈J1, . . . ,JN〉 of N tasks

with execution times c1, . . . ,cN , average power P1, . . . ,PN , and the
corresponding steady state temperatures TS1 , . . . ,TSN where TSi = Pi×
R+Tamb,1≤ i≤N. As the task set is periodic, the sequence L repeats
itself infinitely. Figure 2 shows the thermal profile of a repeating
sequence of 4 tasks. It is interesting to observe that starting from an
initial temperature, the processor temperature rises as the sequence
repeats itself. But it gradually reaches a steady state where the thermal
profile of the sequence exhibits a recurring pattern. The existence
of the this recurring pattern is a result of the fact that (a) given a
starting temperature and a repeating sequence, the temperature at the
end of each iteration of the sequence is either non-increasing or non-
decreasing (this can be proved using induction on the number of
tasks and Equation 5), and (b) the final temperature at the end of the
sequence is upper (lower) bounded by the steady state temperature
of the hottest (coldest) task. There are two important constraints that
are satisfied for the recurring thermal profile in the steady state.

• The initial temperature Ti−1 of a task Ji (1 ≤ i ≤ N) is the
same for all its execution instances in the steady state. This
also implies that the final temperature Ti of a task Ji (which is
the initial temperature of the next task Ji+1 in the sequence) is
the same for all its execution instances.

• For a single instance of execution of L in the steady state, the
temperature at the beginning of the sequence is identical to the
temperature at the end of the sequence, i.e., T0 = TN .

The peak temperature of the task sequence in the steady state is
given by peak(L) = max(T1, . . . ,TN). Next we show how to analyt-
ically compute peak(L). Following Equation 5 and the constraints
on the thermal profile in the steady state, we can express T1, . . . ,TN
using linear equations.

T1 = (1−m1)TS1 +m1TN

T2 = (1−m2)TS2 +m2T1

...

TN = (1−mN)TSN +mNTN−1 (6)

This system of N linear equations in N variables T1, . . . ,TN can be
solved by employing Cramer’s rule [20] as

TN =

(
(1−mN)TSN +mN(1−mN−1)TSN−1

+mNmN−1(1−mN−2)TSN−2 + · · ·

)
(1−m1m2 . . .mN)

To express Ti for all values of i (1 ≤ i ≤ N), we need to define
a new operator / that computes the index of the predecessor tasks
in the sequence. Note that due to the repeating nature of the task
sequence, the predecessor of task J1 is task JN . Thus, given a task Ji
in the task sequence 〈J1, . . . ,JN〉, i/ k is defined as the index of the
kth predecessor task of Ji. Clearly

i/ k =
{

i− k if k < i
N +(i− k) otherwise

Now the temperature Ti at the end of task Ji can be defined as

Ti =

(
(1−mi)TSi +mi(1−mi/1)TSi/1 + · · ·
+mimi/1 . . .mi/N−2(1−mi/N−1)TSi/N−1

)
(1−m1m2 . . .mN)

(7)

The maximum of all the intermediate temperatures is the peak
temperature of the sequence, that is,

peak(L) = max(T1, . . . ,Ti, . . . ,TN) (8)

Now that we have formally defined the peak temperature of a task
sequence, we can present the formulation of the task sequencing
problem.

B. Problem Formulation

The input to our task sequencing problem is a set of N tasks
J = {J1, . . . ,JN} with execution times c1, . . . ,cN , average power con-
sumption P1, . . . ,PN , and the corresponding steady state temperatures
TS1 , . . . ,TSN where TSi = Pi × R + Tamb,1 ≤ i ≤ N. Our goal is to
construct a sequence of these N tasks that minimizes the peak
temperature.

Clearly, given N tasks, there exist N! possible sequences. An
optimal solution is the sequence with the minimum peak temperature
among the N! possible sequences. An exhaustive search technique can
enumerate each of the N! possible sequences, compute the peak tem-
perature for each such sequence (using equations in Section III-A),
and then return the sequence with the minimum peak temperature.
However, as the number of tasks N increases, the computational
complexity of this search technique becomes prohibitive.

Moreover, even a special case of the problem where (a) the task
sequence executes only once starting with some initial temperature
Tinit , and (b) the temperature at the end of a task in the sequence
depends only on the previous task, finding the optimal sequence that
minimizes the peak temperature is still NP-hard. This can be proved
by a polynomial reduction from the well known bottleneck traveling
salesman problem (Bottleneck TSP), which is NP-hard. Bottleneck
TSP problem finds the Hamiltonian cycle in a weighted graph with
the minimal weight of the most weighty edge of the cycle. Let us
construct a complete weighted graph G with N vertices, where each
vertex u maps to a distinct task task(u) and the edge weight between
two vertices u → v is the temperature at the end of execution of the
task sequence 〈task(u)task(v)〉. Finding an optimal solution to the
special case of our problem is equivalent to solving the bottleneck
TSP problem on graph G. Thus, even the special case of our problem
is NP-hard.

In the next subsection, we present a heuristic to solve the task
sequencing problem with the objective of minimizing peak tempera-
ture.

C. Task Sequencing Algorithm

Our heuristic for task sequencing is based on the following
observation. Equation 7 defines, in the steady state, the temperature
after task Ji in the sequence 〈J1, . . .Ji, . . . ,JN〉. Note that mi = e−ci/RC.

Algorithm 1 Task Sequencing
Input: Task set J = {J1, . . . ,JN}

1: for (i = 0, . . . ,N−1) Li = Ji+1;
2: while N > 1 do
3: for (i = 0, . . . ,N−1) compute metricLi ;
4: sort (L0 . . .LN−1);
5: for (i = 0, . . . , N

2 −1) Li = Li •LN−(i+1);
6: N = N

2 ;
7: end while

Thus 0 < mi < 1 and in practice, for all our tasks, mi varies between
0.2356 and 0.6832 depending on the execution time ci of the tasks.
A closer look at Equation 7 reveals that for task Ji, its execution
time ci (contributing towards mi) and its steady state temperature TSi

have the maximum influence on the temperature Ti at the end of
execution of Ji. This is followed by contribution from its immediate
predecessor Ji/1. The contributions from other predecessors of Ji
decrease in the order Ji/2, . . . ,Ji/N−1. Based on this observation, what
should be the characteristics of a task sequence that minimizes the
peak temperature?

First, a task with higher steady state temperature and longer
execution time is more likely to produce the peak temperature of a
task sequence. We can reduce the temperature at the end of this hot
task by choosing a cooler task as its predecessor. Also, a cold task is
a better candidate to absorb the temperature impact of execution of a
hot task. Therefore, it makes sense to put a cold task as the successor
of a hot task. In other words, a good task sequence that minimizes
the peak temperature must place tasks with opposite characteristics
close to each other to get a balanced thermal profile.

J2J1J3J7
m=70.70

J4J8J5J6
m=70.80

J4J8J5J6J2J1J3J7

J2J1
m=67.59

J3J7
m=71.59

J4J8
m=70.73

J5J6
m=70.83

J1
m=77.94

J2
m=62.40

J3
m=68.20

J4
m=68.88

J5
m=69.43

J6
m=72.30

J7
m=74.4

J8
m=72.88

Fig. 3. Task Sequencing Algorithm.

Based on this observation about the characteristics of a good task
sequence, we propose a hierarchical algorithm for task sequence
construction. Our algorithm proceeds in a bottom-up fashion by
pairing up tasks or task subsequences with opposing thermal char-
acteristics till a single task sequence is constructed. Given a set of
N tasks, we first pair up tasks with opposite characteristics to create
N
2 subsequences each containing two tasks. These subsequences are
further paired up to create N

4 subsequences each containing four tasks.
We proceed in this manner till we obtain a single sequence containing
all the N tasks. Algorithm 1 details the task sequencing algorithm.

So how do we choose tasks or task subsequences with opposing
characteristics? First, we need to define a “metric” that characterizes
or summarizes the thermal behavior of a task or a subsequence. Let us
first consider individual tasks. Following Equation 5, the temperature
at the end of task Ji is defined as Ti = (1−mi)TSi + miTinit where
Tinit is the temperature before execution of task Ji. In a task sequence,
however, Tinit depends on the sequence of tasks executed prior to Ji as
shown in Equation 7. As we are constructing the task sequence, Tinit is
unknown. Instead, we approximate the temperature contribution from
the other tasks contribJ−{Ji} and replace Tinit with contribJ−{Ji} in
Equation 5 to get

metricJi = (1−mi)×TSi +mi× contribJ−{Ji}

Here metricJi summarizes the thermal characteristics of task Ji. We
will describe shortly how we approximate contribJ−{Ji}. But before
that let us discuss how we compute metric for a a subsequence.

Let L be a task sequence consisting of a set of tasks denoted
by tasks(L). We treat L as a virtual task with average power
consumption and execution time as follows

PL =

∑
Jk∈tasks(L)

Pk × ck

∑
Jk∈tasks(L)

ck
and cL = ∑

Jk∈tasks(L)
ck

Thus
mL = e−cL /RC and TSL = PL ×R+Tamb

metricL = (1−mL)×TSL +mL × contribJ−tasks(L)

Now how do we approximate the thermal contribution of a set of
tasks as in contribJ−{Ji} or contribJ−tasks(L)? We simply set

contribJ−tasks(L) = TSJ−tasks(L) and contribJ−{Ji} = TSJ−{Ji}

Once we compute this “metric” for individual tasks or subse-
quences, our pairing strategy is quite straightforward. Let us assume
that we have N tasks or subsequences at some level. We sort the tasks
or subsequences in decreasing order of metric value and pair up the
entity in the ith position with the one at N − (i + 1)th position, for
i = 0, . . . ,N/2−1. For ease of exposition, we assume without loss of
generality that N is an even number.

When we pair up two tasks or subsequences, the resulting sequence
is formed by placing the colder subsequence (lower metric value)
before the hotter subsequence (higher metric value). This is based on
the observation that the temperature at the end of a task is influenced
the most by its predecessor task in the final sequence. An illustration
of the working of the algorithm for a task set consisting of eight tasks
with sample metric values for the nodes is presented in Figure 3. It
can be seen that the algorithm works in a bottom up fashion pairing
up tasks or task sequences with opposite characteristics to get the final
balanced sequence. The complexity of our task sequencing algorithm
is O(N× (lgN)2) where N is the number of tasks.

IV. SEQUENCING & VOLTAGE SCALING

In this section we explore the possibility of lowering the peak
temperature by exploiting voltage scaling or insertion of idle tasks in
conjunction with task sequencing. The problem of minimizing peak
temperature can be stated formally as follows.

A. Problem Definition

The input to task sequencing and voltage scaling problem are
• A voltage scalable processor having r distinct active states with

supply voltages and frequencies {(V1, f1), · · · ,(Vr, fr)} where
(V1, f1) is the highest voltage and frequency level. We also a
assume an idle state (idle) where no useful work is done and
the corresponding power consumption is Pidle.

• A set of tasks {J1, · · · ,JN} with execution times {c1, · · · ,cN}
and power consumptions {P1, · · · ,PN} where ci and Pi are the
execution time and power consumption of task Ji at the highest
frequency f1 and supply voltage V1. The power consumption and
execution time of task Ji (1≤ i≤N) at active state j (1≤ j ≤ r)
are given by

Pi, j =
Pi×V 2

1 × f1
V 2

j × f j
and ci, j =

ci× f1
f j

Algorithm 2 Task Sequencing with Voltage Scaling
Input: Task set J = {J1, . . . ,JN}; deadline D

1: slack = D−∑
N
i=1 ci;

2: for (i = 1, . . . ,N) level(Ji) = 1;
3: repeat
4: L = Task Sequencing (J);
5: Compute peak(L) where Ji is the task with peak(L);
6: if ci,level(Ji)+1 − ci ≤ slack then
7: slack = slack− (ci,level(Ji)+1 − ci);
8: level(Ji) = level(Ji)+1; ci = ci,level(Ji); Pi = Pi,level(Ji);
9: else

10: if minidle ≤ slack then
11: Insert idle task with execution time minidle into the task set;
12: slack = slack−minidle;
13: end if
14: end if
15: until slack > 0

• The deadline for one instance of execution of all the tasks
where deadline ≥ ∑

N
i=1 ci. The slack can be defined as slack =

deadline−∑
N
i=1 ci.

The goal is to produce a task sequence and an assignment of
idle times and/or voltages levels to the tasks such that the peak
temperature is minimized while satisfying the deadline constraint. We
assume that the voltage switching times are negligible in comparison
to the execution times of the tasks.

B. Algorithm

Clearly, this problem requires solutions to two mutually dependent
sub-problems, namely, voltage assignment and task sequencing. The
task sequencing algorithm described in Section III-C takes the power
consumption and execution time of the tasks as input, which depend
on the active state in which each task executes (voltage assignment).
The voltage assignment for peak temperature minimization, in turn,
depends on task sequencing as the sequence determines the tempera-
tures reached by the tasks. Therefore, we design an iterative algorithm
that repeatedly performs (a) task sequencing to minimize the peak
temperature, and (b) voltage assignment to the tasks based on the
current sequence so as to lower the peak temperature. The voltage
assignment step exploits the “slack” (the difference between the
deadline and the total execution time) to lower the voltage/frequency
of a hot task or insert idle states to lower the peak temperature.
Therefore, the iterative algorithm terminates when slack = 0.

Algorithm 2 presents our iterative solution for task sequencing and
voltage assignment. Initially, we assume all the tasks are executing at
the highest voltage and frequency level (V1, f1). We first employ the
task sequencing algorithm (Algorithm 1) to return a task sequence
L that minimizes the peak temperature. Given the sequence L , we
can determine the peak temperature of the sequence peak(L) in the
steady state by solving a system of linear equations as described in
Section III-A. Let Ji be the task that produces the peak temperature
in the sequence L , that is, the peak temperature is reached at the end
of execution of Ji.

Now we proceed to lower peak(L) by exploiting the slack. Let
level(Ji) be the current voltage and frequency level of task Ji. We
first check if we can lower the voltage/frequency level of task Ji by
one step to level(Ji)+1 and still meet the deadline. If the answer is
yes, then the algorithm updates the voltage/frequency level of task
Ji, its execution time, power consumption, and the slack. If there is
not enough slack to lower the active state of the hottest task Ji, then
we introduce an “idle task” with execution time minidle and power
consumption Pidle to the task set. minidle is the minimum granularity
at which we claim the slack time and clearly minidle ≤ slack. We
leave the appropriate sequencing of this idle task with respect to the

existing tasks to the next iteration when the task sequencing algorithm
is invoked again.

Optimal Voltage Scaling: We compare our approach with
[22], which presents a voltage scaling algorithm with a problem
formulation closest to ours. However, [22] performs voltage assign-
ment with the objective of minimizing execution time under peak
temperature constraint. In contrast, we consider the dual problem
of minimizing peak temperature under execution time constraint.
We develop an optimal pseudo-polynomial time algorithm (based
on dynamic programming) inspired by [22] to solve our voltage
assignment problem.

The problem formulation for voltage assignment alone is identical
to the formulation discussed in Section IV-A with one major differ-
ence. The input is a fixed task sequence L = 〈J1, · · · ,JN〉 instead of a
set of tasks. The goal is to produce an assignment of idle times to the
sequence and/or voltage levels to the tasks so as to minimize the peak
temperature while satisfying the deadline. Our algorithm is based
on the following observation. Given multiple voltage assignments
for a sequence of i tasks with the same final temperature and peak
temperature, the voltage assignment that results in the smallest total
execution time is preferred.

Our dynamic programming algorithm exploits this observation to
determine the voltage assignment that minimizes the peak temper-
ature. To incorporate idle times or sleep modes in the formulation,
we consider a sequence of M = 2N +1 jobs 〈S1, · · · ,SM〉 alternating
between original tasks and idle tasks. We develop a recurrence for
Ei(Tmax,Tf) that represents the total execution time corresponding to
a voltage assignment and sleep states for the tasks S1, . . . ,Si, 1≤ i≤
M with maximum observed temperature Tmax and final temperature
Tf . If no such voltage assignment exists, then Ei(Tmax,Tf) = ∞. Note
that Ei(Tmax,Tf) = ∞ when Tmax < Tf as Tmax < Tf is not feasible. The
details of the recurrence equations are not presented here due to space
constraints. The algorithm uses the recurrence to compute values of
E1....EM for different values of Tmax and Tf . The optimal solution is
the one with the lowest value of Tmax among all feasible solutions
EM(Tmax,Tf) where EM(Tmax,Tf) 6= ∞ and the final temperature at
the end of M tasks is less than the initial temperature. The second
constraint ensures that the schedule is repeatable.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our thermal management approach. We
use the SimpleScalar-3.0 [3] toolset for our experimental evaluation.
The power consumptions of the tasks are obtained from Wattch [6],
an architectural level power simulator. We use a base supply voltage
of 1.2V and a processor frequency of 1.5GHz. For voltage scaling
results, we use five different frequency values between 1.5GHz and
800MHz. We model a simple embedded processor architecture
resembling ARM Cortex A8 [1]: in-order issue with two integer
execution units, a 13 stage pipeline, 32 KB instruction and data caches
and a 512 entry branch target buffer.

The temperature values are obtained from HotSpot thermal simula-
tor [19]. The floorplan and silicon area of ARM Cortex A8 processor
are provided as input to the thermal simulator. We use the equations
and default configuration from HotSpot [13] to compute the thermal
resistances and capacitances for our input chip area at each layer. This
gives us an RC-network with a thermal resistance of 1.83oC/Watt
and capacitance of 112.2mJoules/oC. We use these as the default
values for our experiments.

We use a total of 16 benchmarks from MiBench [12] and Media
Bench [15] comprising of adpcm, blowfish, crc, dijkstra, djpeg, epic,
g721, ghostscript, gsm, lame, mp3, patricia, pegwit, sha, strsearch and

Set Tasks
T1 lame, sha, djpeg, mp3, ghostscript, blowfish, dijkstra, epic
T2 gsm, patricia, adpcm, pegwit, susan, crc, dijkstra, epic
T3 g721, lame, sha, djpeg, pegwit, blowfish, adpcm, lame
T4 gsm, patricia, pegwit, mp3, susan, blowfish, strsearch, epic
T5 lame, g721, ghscript, patricia, blowfish, strsearch, pegwit, sha
T6 gsm, mp3, ghscript, susan, crc, stringsearch, dijkstra, epic
T7 gsm, sha, strsearch, pegwit, mp3, susan, blowfish, patricia
T8 g721, gsm, sha, djpeg, patricia, adpcm, pegwit, strsearch

TABLE I
REPRESENTATIVE TASK SETS.

80

85

90

er
at
ur
e(

o C
)

Worst Sequence

Average

65

70

75

T1 T2 T3 T4 T5 T6 T7 T8

Pe
ak
 T
em

pe

Task Set

Best Sequence

Seq‐Algorithm

Fig. 4. Accuracy of Task Sequencing Algorithm.

susan in this study. The tasks have execution cycles in the range of
4×107−6×108 cycles and steady state temperatures in the range of
49.85oC−88.25oC. For our experiments we create 100 task sets each
with eight tasks chosen from the 16 benchmarks. Some representative
task sets are shown in Table I.

Task Sequencing Algorithm: We evaluate our task sequenc-
ing algorithm by comparing the peak temperature of the sequence
produced by our algorithm with (a) the peak temperature of the
best sequence, (b) the peak temperature of the worst sequence, and
(c) the average value of the peak temperature over all possible
sequences. For each of the 100 task sets, we generate all 8! (each
task set has 8 tasks) possible task sequences and obtain the peak
temperature of each sequence through thermal simulation. From these
simulation results for each task set, we get the peak temperatures
of the best sequence (sequence with lowest peak temperature), the
worst sequence (sequence with highest peak temperature) and the
expected value of peak temperature (average peak temperature over
all possible sequences). Finally, we employ our task sequencing
algorithm described in Section III to construct a sequence L that
we expect will minimize the peak temperature. We estimate the peak
temperature of the sequence L returned by our algorithm through
thermal simulation.

The results for the eight representative task sets in Table I are
shown in Figure 4. Our task sequencing algorithm achieves signifi-
cantly lower peak temperature compared to the worst sequence and
the expected value of peak temperature. More importantly, the peak
temperature of the sequence constructed by our algorithm is very
close to the peak temperature of the best sequence. The same trends
are reflected when we consider all the 100 task sets. When all the
100 task sets are considered, our algorithm has, on an average, a peak
temperature 7.47oC lower than the worst sequence and 4.09oC lower
than the expected value of peak temperature. The peak temperature
of the sequence returned by our algorithm is within 0.5oC of the peak
temperature of the best sequence for all the 100 task sets. In the next
subsection we examine the impact of voltage scaling techniques on
the peak temperature.

Voltage Scaling: We compare the peak temperature returned
by our iterative task sequencing and voltage scaling algorithm (Sec-
tion IV-B) with the optimal voltage scaling algorithm . The result of

75

77

79

81

83

pe
ra
tu
re
(o
C)

Worst +VS

65

67

69

71

73

T1 T2 T3 T4 T5 T6 T7 T8

Pe
ak
 T
em

p

Task Set

Worst +VS

Best+VS

Seq+VS

Fig. 5. Advantage of combined sequencing and voltage scaling (Seq+VS)
over voltage scaling alone.

the optimal voltage scaling depends on the task sequence provided
as input. For each task set, we provide the best and the worst task
sequence (at the highest voltage/frequency level) as input to the
voltage scaling algorithm. These two, (Best + VS) and (Worst +
VS) represent the best and worst possible scenarios if only voltage
scaling is used. The slack is assumed to be 5% of the total execution
time of the tasks at highest frequency. The results for the task sets
in Table I are presented in Figure 5. Our iterative algorithm that
combines voltage scaling and sequencing performs better than even
the best possible results with voltage scaling alone. On an average,
our algorithm (Seq + VS) results in a peak temperature that is 2.1oC
lower than the best scenario (Best + VS) and 6.94oC lower than
the worst scenario (Worst + VS). Our algorithm for task sequencing
is more efficient than the optimal voltage assignment even though
it is iterative in nature. It has a runtime (average 1.45 sec) that is
much lower than the runtime of optimal voltage assignment algorithm
(average 78.57 sec) while running on 3 GHz Pentium 4 machine with
1 GB memory.

VI. RELATED WORK

Modern low power processors are equipped with on-chip temper-
ature sensors that are monitored continuously. When the temperature
exceeds a predefined threshold, different mechanisms are engaged
to reduce the temperature. Such mechanisms include voltage and
frequency scaling, fetch throttling [5] among others. A comparison
of the various hardware based thermal management schemes is
presented in [19]. Similarly, software based techniques for thermal
management have also been proposed. These include mechanisms
such as scheduling priority adjustments [14] and task migrations [10].
These techniques are online or dynamic in nature and are targeted
towards general purpose systems.

The well define functionality of embedded systems enables the
use of static or design time thermal management techniques. Liu
et al. [16] formulate the problem of assigning voltages to tasks on
an MPSoC under thermal constraints as a non linear programming
problem. They observe that optimizing purely for energy can result
in higher peak temperatures. Zhang and Chatha [22] examine the
problem of voltage assignments to minimize the total execution
time of a set of periodic tasks while operating under thermal
constraints. They observe that the voltage mapping problem is NP-
hard and develop approximation algorithms. Rao et al. [17] derive
the optimal throttling curve to maintain the temperature below a
maximum limit. Temperature aware allocation and scheduling in
MPSoC for peak temperature reduction have been examined as well.
Xie and Hung [21] present an allocation scheme where the maximum
temperature is used as one of the factors to drive the allocation of
tasks to cores. Chantem et al. [7] formulate the problem of allocation
and scheduling on an MPSoC as a mixed integer linear programming
problem.

VII. CONCLUSION

In this paper, we propose task sequencing as a powerful and
complimentary mechanism to voltage scaling in thermal management
of embedded systems. We propose an efficient algorithm to determine
the optimal ordering that minimizes the peak temperature. Our
sequencing algorithm achieves a peak temperature that is very close
to the peak temperature of the optimal sequence (the difference is
less than 0.5oC). We have also presented an iterative algorithm that
combines task sequencing and voltage scaling with the objective of
minimizing peak temperature while satisfying the timing constraints.
Our combined approach achieves, on an average, 2.1oC − 6.94oC
reduction in peak temperature compared to voltage scaling alone.

VIII. ACKNOWLEDGEMENTS

This work is partially supported by NUS research project R-252-
000-292-112.

REFERENCES

[1] ARM Cortex A8 Processor. http://www.arm.com/products/CPUs/ARM
Cortex-A8.html.

[2] Failure mechanisms and models for semiconductor devices. JEDEC
publication JEP122C. http://www.jedec.org.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling. IEEE Computer, 35(2), 2002.

[4] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro,
19(4), 1999.

[5] D. Brooks and M. Martonosi. Dynamic Thermal Management for High-
Performance Microprocessors. In HPCA, 2001.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-level Power Analysis and Optimizations. In ISCA, 2000.

[7] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling
and assignment for hard real-time applications on MPSoCs. In DATE,
2008.

[8] S. Dropsho et al. Managing static leakage energy in microprocessor
functional units. In MICRO, 2002.

[9] K. Flautner et al. Drowsy caches: Simple techniques for reducing leakage
power. In ISCA, 2002.

[10] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-Run:
Leveraging SMT and CMP to manage power density through the
operating system. In ASPLOS, 2004.

[11] S. Gunther et al. Managing the Impact of Increasing Microprocessor
Power Consumption. Intel Technology Journal, 2001.

[12] M. R. Guthausch et al. Mibench: A free, commercially representative
embedded benchmark suite. In IEEE 4th Annual Workshop on Workload
Characterization, 2001.

[13] W. Huang et al. An improved block-based thermal model in HotSpot
4.0 with granularity considerations. In Workshop on Duplicating,
Deconstructing, and Debunking, 2007.

[14] A. Kumar et al. HybDTM: A Coordinated Hardware-Software Approach
for Dynamic Thermal Management. In DAC, 2006.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communicatons systems.
In MICRO, 1997.

[16] Y. Liu et al. Thermal vs energy optimization for DVFS-enabled
processors in embedded systems. In ISQED, 2007.

[17] R. Rao et al. An optimal analytical solution for processor speed control
with thermal constraints. In ISLPED, 2006.

[18] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Iterative schedule
optimization for voltage scalable distributed embedded systems. ACM
Transactions on Embedded Computing Systems, 3(1), 2004.

[19] K. Skadron et al. Temperature-aware Microarchitecture: Modeling and
Implementation. ACM TACO, 1(1), 2004.

[20] G. Strang. Introduction to Linear Algebra. Wellesley Cambridge Press,
1993.

[21] Y. Xie and W. L. Hung. Temperature-aware task allocation and schedul-
ing for embedded multiprocessor systems-on-chip (MPSoC) design.
Journal of VLSI Signal Processing Systems, 45(3), 2006.

[22] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In ICCAD, 2007.

