
Analyzing Loop Paths for Execution Time
Estimation

Abhik Roychoudhury, Tulika Mitra, and Hemendra Singh Negi

School of Computing, National University of Singapore
{abhik,tulika,hemendra}@comp.nus.edu.sg

Abstract. Statically estimating the worst case execution time of a pro-
gram is important for real-time embedded software. This is difficult even
in the programming language level due to the inherent difficulty in de-
tecting infeasible paths in a program’s control flow graph. In this paper,
we study the problem of accurately bounding the execution time of a
program loop. This involves infeasible path detection followed by timing
analysis. We employ constraint propagation methods to detect infeasi-
ble paths spanning across loop iterations. Our timing analysis is exact
modulo the infeasible path information provided. Moreover, the analysis
is efficient since it relies on memoization techniques to avoid exhaustive
enumeration of all paths through a loop. The precision of our timing
analysis is demonstrated on different benchmark programs.

1 Introduction

Statically analyzing the worst-case execution time (WCET) of a program is im-
portant for real-time embedded software. An embedded system contains pro-
cessor(s) running specific application programs which communicate with an ex-
ternal environment in a timely fashion. These application programs thus have
real-time requirements, that is, there are hard deadlines on the execution time
of such software. Therefore, it is important to perform static analysis of embed-
ded software to guarantee the satisfiability of all timing constraints. One of the
prominent uses of the WCET estimate of a program is in schedulability analysis.

Due to its inherent importance in embedded system design, timing analysis
of embedded software has been extensively studied [6, 8, 12, 13, 17, 18, 20]. Usu-
ally this involves (a) a programming language level path analysis to find out
infeasible paths in the program’s control flow graph, and (b) micro-architectural
modeling to take into account the effect of performance enhancing architectural
features (such as pipeline, cache and branch prediction). In this paper, we only
concentrate on path analysis. Program path analysis for WCET estimation in-
volves solving two related problems (a) detecting infeasible paths and (b) using
infeasible path information for timing calculation.

Concretely, the contributions of this paper can be summarized as follows.

– We design and implement an infeasible path detection method based on
constraint propagation via weakest pre-condition calculation. The infeasible

paths detected by our method can be exploited for WCET analysis as well as
other purposes (like reducing test suite sizes, software model checking etc.)

– We provide a programming language level timing analysis algorithm for find-
ing the WCET of a program loop (which is bounded). The algorithm is ex-
act modulo the infeasible path information provided (via our infeasible path
detection method). In other words, we can find the longest feasible path
through a program loop if the infeasible path information provided is exact.
In particular if the detected infeasible path patterns span across at most K
loop iterations, we construct a transition system whose nodes denote paths
taken in K − 1 consecutive iterations. This allows us to ensure that no path
in the transition system contains any of the infeasible path patterns detected
in the first phase; so we can efficiently find the longest path through the pro-
gram loop. Our technique has been implemented and we show its utility via
experimental results on various programs.

We note that different WCET analysis techniques combine the results of path
analysis and micro-architectural modeling in different ways. Many of these ad-
vocate a separated approach (e.g. [20]) where the micro-architectural modeling
performs a categorization of the program’s instructions and this categorization
information is fed into path based timing estimation. The WCET analysis tech-
nique presented in this paper can also be extended in this fashion; that is, we can
augment it to take into account categorization of program instructions based on
micro-architectural modeling.

2 Related Work

One of the earliest works on programming language level timing analysis is the
timing schema approach [18]. It is a bottom-up compositional technique which
finds the worst-case execution time of a program fragment without considering
the contexts in which it is executed. Another early work by Puschner and Koza
[17] studied the conditions for decidability of WCET analysis and provided some
rules for WCET analysis.

Techniques to extend the timing schema approach with infeasible path infor-
mation have been reported in [15]. In this work, the infeasible path patterns are
user-provided, that is, the technique only performs path analysis and not infea-
sible path detection. Lundqvist and Stenstrom [14] provide an instruction level
simulation approach for detection and elimination of infeasible paths. Ermedahl
and Gustafson [7] present a static analysis method to derive (and exploit) in-
feasible paths using program semantics. A nice feature of this work is that it
also automatically derives minimum and maximum loop bounds in a program.
Altenbernd [1] searches for infeasible paths in a control flow graph via branch-
and-bound search.

The components of our WCET analysis mechanism are probably most related
to the infeasible path detection technique of [3] and the path analysis technique
of [10]. The key idea in [10] is to compute the effect of any assignment or a
branch on other branch outcomes; if the effect of an assignment a is to force the

outcome of branch b to true, then a path from a to b with the outcome of b being
false is an infeasible path. This is certainly a clever and effective way of detecting
many commonly occurring infeasible path patterns. However, we note that since
our approach is based on constraint propagation, we do not rely on capturing
relationship between individual pairs of branches. In general, the outcome of a
program branch may be correlated to the outcome of several previous branches.

We also note that our constraint propagation methods differs substantially
from the propagation method of [3]. This work relies on inferring simple invariant
properties (which hold for all visits to a specific control location) in order to
detect infeasible paths in the control flow graph. The propagation is stopped at
basic block b if the propagated constraint c at basic block b can be be proved to
hold for all executions of basic block b. Note that if this condition holds then we
have found an infeasible path: a path from n to b that cannot make the branch
constraint of b false when b is reached. [3] uses some simple sufficient conditions
to check whether a constraint c holds for all visits to basic block n (such as n
containing an assignment statement whose effect constraint implies c).

1 sum = 0;

2 for (j=1; j<= limit; j++) {

3 if (j % 2 == 0) {

4 sum +=j;}

5 }

6 return sum;

Fig. 1. Sum of even numbers

To see the difficulties of the approach of [3], let us consider the program in
Figure 1 (taken from [2]) which adds up even numbers. Suppose we want to find
out the infeasible paths ending in the branch at line 3. A backward propagation
of the branch constraint will revisit the branch on line 3 (the previous iterations).
In fact, if we start at the branch on line 3 with the constraint j is even, we will
propagate this constraint backwards and visit the branch at line 3 with the
constraint j is odd. Note that in this program, the strongest invariant on j that
holds for all executions of line 3 is 1 ≤ j ≤ limit. From this constraint it is not
possible to infer that line 4 cannot be executed/skipped in consecutive iterations
(which says that both j and j+1 cannot be even/odd). Hence the infeasible path
detection technique of [3] will fail to infer this information. In the next section,
we will demonstrate how this information can be inferred in our infeasible path
detection method.

Finally, we note that our infeasible path detection technique is inspired by
the recent progress in abstraction refinement based software model checking of
invariants(e.g. see [11]). These works search through an abstract model of the
program to generate a counter-example trace and then show that the given
counter-example trace is an infeasible path in the program’s control flow graph.

The proof of infeasibility can be done via a backward (or forward) constraint
propagation along the counter-example trace. In our work, we start the propa-
gation from a program branch and backwards propagate the branch constraint
to all paths leading into the branch. Consequently we need to consider issues
like termination/speed-up of propagation. These issues are not so important in
checking of counter-examples where the propagation is restricted to one finite
(and typically short) counter-example trace.

3 Detecting Infeasible Paths

In this section we concentrate on the problem of detecting infeasible paths. First
we define the notion of an execution trace.

Definition 1 (Execution Trace) Given a program P with an initial control
location lstart and feasible inputs drawn from a (potentially infinite) set I, an
execution trace of the program is the sequence of basic blocks traversed by starting
from lstart with some input i ∈ I.

In practice, we are always dealing with programs where the length of every
execution trace is bounded, i.e., the loops are bounded. Indeed for timing analysis
of programs, we cannot work with programs having unbounded loops. Hence we
consider programs with bounded execution traces. In the rest of this paper,
whenever we refer to an infeasible path, we mean the following.

Definition 2 (Infeasible Path) Given a program P with feasible inputs drawn
from a (potentially infinite) set I, an infeasible path π is a finite sequence of basic
blocks which does not appear in any execution trace of P (i.e. π is not contained
in the execution trace of P for any input i ∈ I).

Our approach for infeasible path detection is based on constraint propagation.
In general, to detect infeasible paths ending at a given branch b, we need to
propagate backwards the constraint of b to all its immediate predecessors (who
in turn propagate it to their immediate predecessors and so on). This essentially
amounts to weakest pre-condition computation along the various paths coming
into b [5]. In other words, let ϕb(X) be the branch constraint for b where X
denotes the program data variables. Let stmt1 and stmt2 be two statements
which may be executed immediately before branch b. We can capture the effect
of any program statement as a constraint relating the program variable values
before and after the execution of the statement.1 Let the effect constraint of
stmt1 and stmt2 be ψ1(X, X

′
) and ψ2(X, X

′
) respectively, where X

′
denotes

the values of X after the statement execution. Then one step of the weakest

1 For example, the assignment statement x:= x+1 can thus be represented as x′ =
x + 1 ∧ ∀y ∈ X − {x} y′ = y where the primed variables denote the value of the
corresponding program variables after the statement is executed. Effect of branch
statements can also be captured as a constraint representing the branch condition.

pre-condition computation (for computing infeasible paths ending at branch b
involves computing

wpi(X) def= ∀X
′
ψi(X, X

′
) ⇒ ϕb(X

′
) i = 1, 2

for the two incoming edges from stmt1 and stmt2 into branch b in the control
flow graph.

Clearly such a constraint propagation based approach can detect whether
the outcome of a branch b can be deduced from the constraints for several
other branches. Termination of the propagation is guaranteed since we only
consider bounded loops. However, we still face the practical problem of the con-
straint propagation amounting to an exhaustive enumeration of paths ending at
a branch b. Thus, we need to incorporate mechanisms for speeding up the con-
straint propagation. In the following, we give our technique for infeasible path
detection and illustrate it via an example.

3.1 Technique

We now elaborate our technique for detecting infeasible paths. For simplicity of
exposition, let us first consider a single program loop. Let us consider a bounded
loop L with k branches inside the loop. Depending on the structure of the control
flow within L, the possible number of paths within each iteration can vary from
k + 1 to 2k (not all of these paths may be feasible though). To find the infea-
sible path patterns which (potentially) span across iterations, we first define k
propositions p1, . . . , pk corresponding to the conditions in the k branches inside
the loop. Let us suppose that the basic blocks which capture control flow within
the loop are B1, . . . , Bn. Then, the infeasible paths detected will be sequences
over the alphabet {B1, . . . , Bn}.

Our constraint propagation algorithm proceeds by backwards traversal. Each
visit of a basic block Bi is annotated with

– a constraint ci over the program variables X.
– a boolean formula bi over p1, . . . , pk.

The constraint propagation terminates if Bi was earlier visited with the same
boolean formula bi, or if ci is unsatisfiable. If the constraint propagation does
not terminate at this visit of Bi, then for each immediate predecessor Bij

of Bi

we do the following.

– the constraint cij
of Bij

is computed by a weakest pre-condition of ci w.r.t.
the statements in Bij

.
– the boolean formula bij

is the strongest boolean formula over p1, . . . , pk which
is implied by cij

.

Thus, bij
and cij

become the annotations of the corresponding visit of Bij
.

We can see that the annotations bi and ci for a visit of a basic block Bi

serve two different purposes. The boolean formula bi serves as an approximation

of the constraint store ci. Since the number of distinct boolean formula over a
fixed finite set of atomic propositions is bounded, this ensures that the number
of visits to any basic block is bounded (thereby ensuring termination).2 The
check for unsatisfiability of ci allows us to terminate the detection along certain
paths earlier. In other words, we maintain the concrete constraint store ci to
accurately detect infeasible paths. We also maintain bi, a boolean abstraction of
the constraint store ci, to guarantee termination of constraint propagation.

So far we have outlined the termination condition and each step of the con-
straint propagation. We have not specified the initial condition. In practice, we
run the constraint propagation algorithm 2k times, corresponding to the true
and false outcomes of the k branches within the loop. This will find out all
infeasible paths terminating at any of k branches.

j <= limit ?

j % 2 == 0 ?

sum += j

j++

yes no

yes no
return sum

B0

B1

B2

B3

B4

B5

j = 1
sum = 0

Fig. 2. Control Flow Graph for Example Program in Figure 1

Extensions In the above, we described a method for detecting infeasible paths
within a single loop. However, the constraint propagation mechanism in the
method is generic, and can analyze arbitrary nestings and sequences of loops.
We will then need to run the constraint propagation for all program branches
which are not loop branches. We note that our current implementation performs
infeasible path detection for each loop separately. This is not due to a limitation
of our infeasible path detection technique; rather this is because of the fact that
our WCET analysis method analyzes each program loop separately. So even if
2 One can use a canonical representation of boolean functions such as reduced ordered

Binary Decision Diagrams to detect whether a basic block was previously visited
with the same boolean formula bi.

we detect infeasible path patterns spanning across different loops, our current
WCET analysis cannot exploit such information. In future, we plan to augment
our WCET estimation technique to more accurately analyze complex control
flow involving sequences and nesting of loops.

3.2 An Example to show Infeasible Path Detection

We now work out the even number addition example in Figure 1 to detect
infeasible paths using our constraint propagation technique. The program in
Figure 1 illustrates a class of infeasible paths which are hard to detect statically
using current methods. In particular, these paths:

– span across multiple iterations of a loop
– contain branches whose outcome is different in different iterations (the dif-

fering outcomes make it impossible to use strong invariants for all executions
of the branch).

The control flow graph of the program fragment in Figure 1 is shown in
Figure 2. The loop is shown in a bold box. There is only one branch inside the
loop, the branch in basic block B2. Thus, the constraint propagation algorithm
will be executed twice corresponding to the yes/no outcomes of this branch.
We also define only one proposition corresponding to the condition in the only
branch inside our loop. Thus, proposition p1 is defined as p1 ≡ j % 2 == 0. Let
us now illustrate the constraint propagation for finding infeasible paths which
end at a no outcome at basic block B2. Note that during constraint propagation,
for each visit of a basic block we maintain a boolean formula (over the branch
propositions) and a constraint (computed via weakest pre-condition analysis).
So, we start with

B2, ¬p1, j%2 �= 0

We now propagate backwards and visit B1. This produces

B1, ¬p1, j ≤ limit ∧ j%2 �= 0

Now, the predecessors of B1 are B0 and B4. Since we are only analyzing the
infeasible paths spanning the iterations of a loop (this of course can be relaxed),
we only visit B4. This produces

B4, p1, j + 1 ≤ limit ∧ (j + 1)%2 �= 0

Note that this involves inferring the truth of p1 from (j+1) % 2 �= 0. This
inferencing has to be achieved by an external constraint solver. If this cannot
be inferred, then we will visit B4 with the boolean formula true instead (i.e.,
the constraint propagation will anyway proceed). The predecessors of B4 are B2
and B3. When we visit B2, the constraint store implies (j+1) % 2 �= 0∧ j % 2
�= 0. Since this is false, we can infer that the path B2,B4,B1,B2 cannot end with
a no outcome. In other words B2,B4,B1,B2,B4 is an infeasible path. Note that
termination of the analysis is guaranteed, since each basic block in this example
can be visited at most four times (with the boolean formulae true, p1, ¬p1 and
false).

4 WCET Analysis

In this section, we present our analysis technique for estimating the WCET of a
program loop. We note that if the input program has nested loops or sequences
of loops, we perform the analysis for each loop separately and then compose the
results. Thus, for nested loops, the inner loop is analyzed first followed by the
outer loop.

The inputs to our analyzer are the following.

– The loop bound N . The loop bound is computed using offline techniques
like [9].

– The set of feasible paths IP , each member of which denotes the possible
execution of one iteration of the loop. From now on, we will refer to a path in
the set IP as ipath to distinguish it from a path through multiple iterations
of the loop. Each ipath is associated with its WCET.

– The set of infeasible ipath sequences through the loop called the infeasible
patterns. Each infeasible pattern is a finite string over the alphabet IP .
Let K + 1 be the maximum length for any infeasible pattern for the loop.
Clearly 1 ≤ K ≤ N − 1. Typically, K << N .

The basic idea of the technique is based on the following observation. Let
the maximum length of any infeasible pattern for the loop be K + 1. Therefore,
given a partially constructed ipath sequence, we need to look back at most K
iterations to enumerate the feasible ipaths in the next loop iteration such that
the sequence does not contain any infeasible pattern. Therefore, in order to
compute the WCET for the entire loop, we only exhaustively enumerate all the
legal ipath sequences of length K. As K is quite small in practice, this exhaustive
enumeration is quite fast. Note that if there is no infeasible pattern, then the
WCET of the loop is simply (maxp∈IP wcet(p)) × N .

Next, we find out whether an ipath sequence can follow another ipath se-
quence. This information is represented by a directed graph, called the transi-
tion graph G = (V, E). Each node v ∈ V of this graph represents a legal ipath
sequence of length K. An edge u → v ∈ E implies that v can follow u. A node
v can follow a node u if and only if the concatenation of the ipath sequences of
u and v does not include any infeasible pattern. Note that the graph can also
contain self-edges. Clearly, in the worst case |V | = |IP |K . Each node v ∈ V is
annotated with its WCET, wcet(v), defined as the summation of the WCETs of
its K constituent ipaths.

Given the transition graph G = (V, E), we need to find the WCET of the
loop. First, let us assume that N is a multiple of K. Then the problem reduces to
finding the sequence of N/K nodes (with possibly repeating nodes) of maximum
weight through the transition graph G. This problem can be solved through
dynamic programming as follows. Let WCET l

v be the maximum execution time
of any sequence of nodes of length l (i.e., a sequence of ipaths of length l × K)
ending at node v. We define WCET l

v recursively as follow. First,

WCET 1
v = wcet(v) ∀v ∈ V

For l > 1
WCET l

v = max
u∈V, u→v

(
WCET l−1

u + wcet(v)
)

Therefore, the WCET of the loop is defined as

WCET = max
v∈V

(
WCETN/K

v

)

The complexity of this dynamic programming approach is O(N
K ×|V |2) = O(N

K ×
|IP |2K). In practice, both |IP | and K are quite small.

If N is not a multiple of K, then we need to take the remainder iterations
N%K into consideration. First, we enumerate all legal sequences of ipaths of
length N%K; the number of such sequences is small since K << N . Let these
sequences be represented by the set S. Then, the WCET of the loop is defined
as

WCET = max
v∈V,s∈S,feasible(v,s)

(
WCETN/K

v + wcet(s)
)

where feasible(v, s) is true if and only if the concatenation of the ipath sequence
corresponding to v and s does not include any infeasible pattern. A fast but
conservative approach can simply use the worst possible ipath for the remainder.
That is, the WCET of the loop is

max
v∈V

(
WCETN/K

v

)
+ (maxp∈IP wcet(p)) × (N%K)

Note that the algorithm above works only because the state transition graph
is defined in such a way that no path in the graph contains any known infeasible
sequence of ipaths (i.e. a sequence detected as infeasible in the previous phase
of infeasible path detection).

5 Experimental Results

We have implemented a prototype analyzer to estimate the worst case execution
time of a loop using the technique described in the previous sections. Figure
3 shows the framework of out timing analyzer which combines the infeasible
path detection and WCET analysis. The input to our analyzer is the binary
executable. For this particular implementation, we use executables compiled by
modified gcc for Simplescalar [4], an architectural simulation platform. The an-
alyzer first disassembles the binary, identifies the basic blocks, and constructs
the control flow graph (CFG) of the entire program. It then separates out the
CFGs corresponding to the loops. The analyzer first estimates the WCET of
inner loops and then uses these information to estimate the WCET of outer
loops. For each loop, the analyzer enumerates all the ipaths in the loop. Each
ipath is associated with the corresponding execution time. In the prototype an-
alyzer, we simply assume the execution time of an ipath is equal to the number
of instructions in the ipath.

estimate
WCET based WCET analysis

Dynamic Programming

nodes
sequences as
graph with ipath
State transition

Feasible ipaths,

Iteration contsraints
(Start, End)

Loop Bound,

Constraint

theorem prover
SIMPLIFY

Disassembly

Executable

Binary

Control Flow Graph
of basic blocks
ipaths as seq.

basic blocks
sequences of
Infesiable

B1 B2 B4 of feasible ipaths
Infeasible sequences

B1 B2 B3 B5

Propagation

Fig. 3. Design Flow of Timing Analyzer

The core of the analyzer first identifies the infeasible paths using the con-
straint propagation method. We use the Simplify theorem prover [19] in this
phase to check satisfiability of the constraint store in each step of the weakest
pre-condition computation. The infeasible path information is used to eliminate
some ipaths from further consideration. Moreover, this information is also used
to generate the infeasible ipath patterns. Finally, we generate the transition
graph over ipath sequences and use it to compute the WCET.

In our experiments, we have used the benchmarks shown in Table 1. Each of
these benchmarks contains only one loop. Three of them: fresnel, sprsin and
expint are taken from the book Numerical Recipes in C [16]; these benchmarks
have been used in other works on program path analysis for estimating WCET
(e.g. see [10]). The fresnel program has a loop which takes different ipaths
in odd and even numbered iterations. The loop in sprsin avoids the longer
ipath when the iteration counter reaches a specific constant value. Expint has
the reverse characteristic: the longer ipath in a loop is executed only when the
loop iteration counter reaches a specific constant value. The wordcount program
counts the words in a file by detecting spaces; this is done by a loop which ex-
ecutes different ipaths depending on whether (or not) the next character marks
the end of a word. This leads to infeasible path patterns spanning across itera-
tions. The programs SHM and check data also have iteration spanning infeasible
path patterns. In particular, since the loop in check data exits when a negative
number is encountered, an ipath corresponding to a negative number input can
never be followed by any other ipath.

The estimated WCET values for the benchmarks are shown in Table 2. The
estimate is given in terms of the number of instructions executed in the loop.
The number of iterations for the only loop in each benchmark is shown in the

Benchmark Description

Wordcount Counts the number of words in a string of 256 characters
Check data Check if the input vector of 100 integers has a negative entry

Fresnel Computes non-complex Fresnel integrals
Sprsin Convert 10 × 10 matrix to row-indexed sparse storage mode
Expint Computes an exponential integral
SHM Sequence of variable values repeats in a loop

according to Simple Harmonic Motion

Table 1. Description of benchmarks used

Program # Iterations Default WCET Our WCET Improvement

wordcount 256 9472 8064 14.9%

fresnel 100 5200 5000 3.8%

SHM 100 2200 2002 9%

check data 100 1900 916 51.8%

sprsin 10 520 476 8.5%

expint 100 185200 6109 96.7%

Table 2. WCET Estimation Results

column # iterations. Default WCET is simply the execution time of the longest
ipath multiplied by the number of iterations. In other words, it does not take into
account infeasible path information. The column Our WCET shows the result of
our WCET analysis which takes into account infeasible path information. The
column Improvement shows the reduction in WCET estimate using our method.

Running Times On a Pentium IV 2.4 GHz machine, our infeasible path detec-
tion phase takes only few seconds for all the benchmarks. The time is primarily
spent in the external prover Simplify. We found that the time overheads for using
the Simplify prover are tolerable, with each call to Simplify typically taking less
than 10 milliseconds. The second phase of our technique (i.e. WCET analysis)
takes less than 0.01 second for all the benchmarks.

6 Discussion

Detection of infeasible paths is central for obtaining tight Worst-case Execution
Time (WCET) estimates. In this paper, we have developed an infeasible path
detection technique based on constraint propagation. We have then exploited
these path patterns to develop tight WCET estimates of program loops. Our
WCET analysis technique is based on dynamic programming and carefully avoids
exhaustive enumeration of feasible path sequences. Experimental results on non-
trivial benchmarks show that our technique leads to substantial reduction in
WCET estimates.

References

1. P. Altenbernd. On the false path problem in hard real-time programs. In Euromicro
workshop on Real-time Systems, 1996.

2. T. Ball and J.R. Larus. Programs follow paths. Technical report, Microsoft Re-
search, MSR-TR-99-01, 1999.

3. R. Bodik, R. Gupta, and M. Lou Soffa. Refining data flow information using
infeasible paths. In ESEC/SIGSOFT FSE, 1997.

4. D. Burger, T. Austin, and S. Bennett. “Evaluating future microprocessors: The
simplescalar toolset”. Technical Report CS-TR96-1308, University of Wisconsin-
Madison, 1996.

5. E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
6. J. Engblom and B. Jonsson. Processor pipelines and their properties for static

WCET analysis. In Intl. Conf. on Embedded Software (EmSoft), LNCS 2491,
2002.

7. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of
execution time. In EUROPAR, 1997.

8. C. Ferdinand, F. Martin, and R. Wilhelm. Applying compiler techniques to cache
behavior prediction. In ACM Intl. Workshop on Languages, Compilers and Tools
for Real-Time Sys. (LCTRTS), 1997.

9. C.A. Healy et al. Supporitng timing analysis by automatic bounding of loop iter-
ations. Real-Time Systems, 18(2-3), 2000.

10. C.A. Healy and D.B. Whalley. Automatic detection and exploitation of branch
constraints for timing analysis. IEEE Transactions on Software Engineering, 28(8),
2002.

11. T.A. Henzinger, R. Jhala, R. Majumder, and G. Sutre. Lazy abstraction. In POPL,
2002.

12. X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for soft-
ware timing analysis. In IEEE Real-time Systems Symposium (RTSS), 2004.

13. Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded software
with instruction cache modeling. ACM Transactions on Design Automation of
Electronic Systems, 4(3), 1999.

14. T. Lundqvist and P. Stenstrom. Integrating path and timing analysis using
instruction-level simulation techniques. In Intl. Workshop on Languages, Com-
pilers and Tools for Embedded Systems (LCTES), 1998.

15. C.Y. Park. Predicting program execution times by analyzing static and dynamic
program paths. Real-time Systems, 5(1), 1993.

16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numeri-
cal Recipes in C: The Art of Scientific Computing, Second Edition,. Cambridge
University Press, 1988.

17. P. Puschner and Ch. Koza. Calculating the maximum execution time of real-time
programs. Real-time Systems, 1(2), 1989.

18. A.C. Shaw. Reasoning about time in higher level language software. IEEE Trans-
actions on Software Engineering, 1(2), 1989.

19. Simplify. Simplify theorem prover, 1998. http://www.research.compaq.com/SRC/
esc/Simplify.html.

20. H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction
by separated cache and path analysis. Real Time Systems, 18(2/3), 2000.

